Skip to main content
Log in

Origin and evolution of teosinte (Zea mexicana (Schrad.) Kuntze)

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

The tripartite hypothesis postulates that cultivated maize was derived from a wild podcorn which was once indigenous to the lowlands of South America; that this wild Z. mays is now extinct; that Z. mexicana (teosinte) originated from natural hybridization of Z. mays and a species of Tripsacum after cultivated maize was introduced into Central America; and that most modern races of maize resulted from introgression of primitive maize with teosinte, Tripsacum, or both. This hypothesis has been criticized primarily on the basis that it involves too many theories for the available facts.

The basic question that needs to be answered is whether maize was domesticated from a wild Z. mays or from Z. mexicana. The oldest known archaeological remains suggest that a wild Z. mays existed before Z. mexicana came on the scene. This question can only be settled by further archaeological research.

Accepting the assumption that a species of Zea which is distinctly different from Z. mexicana gave rise to maize, however, does not necessarily lead to accepting a hybrid origin for teosinte. Judging from present day breeding behaviour, Z. mays and Z. mexicina are conspecific and only distantly related to Tripsacum. This cytogenetic similarity could be explained on the basis of extensive introgression between teosinte and maize. Introgression of germplasm from teosinte into maize is obvious wherever these taxa are sympatric. This pattern of a crop absorbing genes of its wild progenitor across a weedy race, is commonly encountered in all other cereals. Should this not be true in maize, it certainly will be a rare exception.

The assumption that teosinte originated as a hybrid between domesticated Z. mays and a species of Tripsacum remains an intriguing possibility. However, after weighing the pros and cons of the available morphological and genetical evidence, the level of confidence with which this hypothesis can be excepted appears rather low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson E. & Erickson R. O., 1941. Antethetical dominance in North American maize. Proc. Natn. Acad. Sci. 27:436–440.

    Google Scholar 

  • Barghoorn E., Wolfe M. K. & Clisby K. H., 1954. Fossil maize from the Valley of Mexico. Bot. Mus. Leafl. Harv. Univ. 16:229–240.

    Google Scholar 

  • Beadle G. W., 1932. The relation of crossing over to chromosome association in Zea-Euchlaena hybrids. Genetics 17:481–501.

    Google Scholar 

  • Brown W. L., 1949. Number and distribution of chromosome knobs in United States maize. Genetics 34:524–536.

    Google Scholar 

  • Chaganti, R. S. K., 1965. Cytogenetic studies of Maize-Tripsacum hybrids and their derivaties. Ph. D. thesis, Bussey Inst. Harvard Univ. Publ., Cambridge.

  • Collins G. N. & Kempton J. H. 1914. A hybrid between Tripsacum and Euchlaena. J. Wash. Acad. Sci. 4:114–117.

    Google Scholar 

  • Collins G. N. & Kempton J. H., 1916. Parthenogenesis. J. Hered. 7:106–118.

    Google Scholar 

  • Cutler H. C. & Anderson E., 1941. A preliminary survey of the genus Tripsacum. Ann. Mo. Bot. Gdn. 28:249–269.

    Google Scholar 

  • Wet de J. M. J., Lambert R. J., Harlan J. R. & Naik S. N., 1970. Stable triploid hybrids among Zea-Tripsacum-Zea backcross populations. Caryologia 23:183–187.

    Google Scholar 

  • Emerson R. A. & Beadle G. W., 1930. A fertile tetraploid hybrid between Euchlaena perennis and Zea mays. Am. Nat. 64:304–315.

    Google Scholar 

  • Farquharson L. I., 1957. Hybridization of Tripsacum and Zea. J. Hered. 48:295–299.

    Google Scholar 

  • Galinat W. C., 1963. Form and function of plant structures in the American Maydeae and their significance for breeding. Econ. Bot. 17:51–59.

    Google Scholar 

  • Galinat, W. C., 1970. The cupule and its role in the origin and evolution of maize. Agric. Exp. Stn Univ. Mass. Bull. No. 585.

  • Galinat W. C., Chaganti R. S. K. & Hager F. D., 1964. Tripsacum as a possible amphidiploid of wild maize and Manisuris. Bot. Mus. Leafl. Harv. Univ. 20:289–316.

    Google Scholar 

  • Harlan J. R., Wet J. M. J. de, Naik S. M. & Lambert R. J., 1970. Chromosome pairing within genomes in Maize X Tripsacum hybrids. Science 167:1247–1248.

    Google Scholar 

  • Hernandez, X. E. & Randolph, L. F., 1950. Decripcion de los Tripsacum diploides de Mexico; Tripsacum maizar y Tripsacum zopilotense. Spp. Nov. Ofic. Estud. Esp. SAG. Fol. Tec. No. 4.

  • Hitchcock A. S., 1922. A perennial species of teosinte. J. Wash. Acad. Sci. 12:205–208.

    Google Scholar 

  • Hitchcock. A. S., 1950. Manual of the grasses of the United States. U.S. Dept. Agric. Misc. Publ. 200.

  • Irwin H. & Barghoorn E. S., 1965. Identification of the pollen of maize, teosinte and Tripsacum by phase contrast microscopy. Bot. Mus. Leafl. Harv. Univ. 21:37–57.

    Google Scholar 

  • Longley A. E., 1934. Chromosomes in hybrids between Euchlaena perennis and Zea mays. J. Agric. Res. 48:789–806.

    Google Scholar 

  • Longley A. E., 1941. Chromosome morphology in maize and its relatives. Bot. Rev. 7:262–289.

    Google Scholar 

  • Longley A. E., 1952. Chromosome morphology in maize and its relatives. Bot. Rev. 18:399–412.

    Google Scholar 

  • Longley A. E. & Kato T. A., 1965. Chromosome morphology of certain races of maize in Latin America. Int. Center for Imp. Maize and Wheat, Chapingo, Mexico, Res. Bull. 1.

    Google Scholar 

  • Maguire M. P., 1957. A study of homology between a terminal portion of Zea chromosome 2 and a segment derived from Tripsacum. Genetics 45:195–209.

    Google Scholar 

  • Maguire M. P., 1960. A study of pachytene chromosome pairing in a corn-Tripsacum hybrid derivative. Genetics 45:651–664.

    Google Scholar 

  • Maguire M. P., 1961. Divergence in Tripsacum and Zea chromosomes. Evolution 15:394–400.

    Google Scholar 

  • Maguire M. P., 1962. Common loci in corn and Tripsacum. J. Hered. 53:87–88.

    Google Scholar 

  • Mangelsdorf P. C., 1961. Introgression in maize. Euphytica 10:157–168.

    Google Scholar 

  • Mangelsdorf P. C., 1968. Cryptic genes for ‘Tripsacoid’ characteristics in maiz Amargo of Argentina and other Latin-American countries. Bol. Soc. Argentina Bot. 12:180–187.

    Google Scholar 

  • Mangelsdorf P. C. & Cameron J. W., 1942. Western Guatemala; a secondary center of origin of cultivated maize varieties. Bot. Mus. Leafl. Harv. Univ. 10:217–252.

    Google Scholar 

  • Mangelsdorf P. C. & Lister R. H., 1956. Archaeological evidence on the evolution of maize in northwestern Mexico. Bot. Mus. Leafl. Harv. Univ. 17:151–178.

    Google Scholar 

  • Mangelsdorf P. C., MacNeish R. S. & Galinat W. C., 1964. Domestication of corn. Science 143:538–545.

    Google Scholar 

  • Mangelsdorf P. C., MacNeish R. & Galinat W. C., 1967. Prehistoric maize, teosinte, and Tripsacum from Tamaulipas, Mexico. Bot. Mus. Leafl. Harv. Univ. 22:33–62.

    Google Scholar 

  • Mangelsdorf P. C. & Reeves R. G., 1931. Hybridization of maize, Tripsacum, and Euchlaena. J. Hered. 22:328–343.

    Google Scholar 

  • Mangelsdorf, P. C. & Reeves, R. G., 1939. The origin of Indian corn and its relatives. Tex. Agric. Exp. Stn Bull. 574.

  • Mangelsdorf P. C. & Reeves R. G., 1959. The origin of corn. III. Modern races, the product of teosinte introgression. Bot. Mus. Leafl. Harv. Univ. 18:389–411.

    Google Scholar 

  • Mangelsdorf P. C. & Smith C. E., 1949. New archaeological evidence on evolution in maize. Bot. Mus. Leafl. Harv. Univ. 13:213–247.

    Google Scholar 

  • Prywer L. C., 1960. Estudios citologicos sobre algunas especies del genera Tripsacum. Bol. Soc. Bot. Mex. 25:1–21.

    Google Scholar 

  • Prywer L. C., 1965. Cytological evidence of natural intertribal hybridization of Tripsacum and Manisuris. Am. J. Bot. 52:182–184.

    Google Scholar 

  • Randolph L. F., 1952. New evidence on the origin of maize. Am. Nat. 86:193–202.

    Google Scholar 

  • Randolph L. E., 1955. Cytogenetic aspects of the origin and evolutionary history of corn. Corn and Corn Improvement, G. F. Sprague (Ed.), Acad. Press, N. Y.

    Google Scholar 

  • Randolph L. F., 1959. The origin of maize. Indian J. Genet. 19:1–12.

    Google Scholar 

  • Reeves, R. G., 1953. Comparative morphology of the American Maydeae. Tex. Agric. Exp. Stn Bull. 761.

  • Reeves R. G. Mangelsdorf P. C., 1959. The origin of corn. II. Teosinte a hybrid of corn and Tripsacum. Bot. Mus. Leafl. Narv. Univ. 18:357–387.

    Google Scholar 

  • Rogers, J. S., 1950. Fertility relationship in maize-teosinte hybrids. Tex. Agric. Exp. Stn Bull. 730-1-14.

  • Shaver D. L., 1962. A study of meiosis in perennial teosinte in tetraploid maize and in their tetraploid hybrid. Caryologia 15:43–57.

    Google Scholar 

  • Tantravahi, R. V., 1968. Cytology and crossability relationships of Tripsacum. Ph. D. thesis, Bussey Inst. Harv. Univ. publ., Cambridge.

  • Ting, Y. C., 1964. Chromosomes of maize-teosinte hybrids. Ph. D. thesis, Bussey Inst. Harv. Univ. publ., Cambridge.

  • Weatherwax P., 1955. Early history of corn and theories as to its origin. Corn and Corn Improvement, G. F. Sprague (Ed.), Acad. Press, N. Y.

    Google Scholar 

  • Wilkes, H. G., 1967. Teosinte: The closest relative of maize. Ph D. thesis, Bussey Inst. Harv. Univ. publ., Cambridge.

  • Wilkes H. G., 1970. Teosinte introgression in the maize of the Nobogame Valley. Bot. Mus. leafl. Harv. Univ., Cambridge, 22:297–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Wet, J.M.J., Harlan, J.R. & Grant, C.A. Origin and evolution of teosinte (Zea mexicana (Schrad.) Kuntze). Euphytica 20, 255–265 (1971). https://doi.org/10.1007/BF00056085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00056085

Keywords

Navigation