Skip to main content
Log in

Primary photochemistry in photosystem-I

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In this review, the main research developments that have led to the current simplified picture of photosystem I are presented. This is followed by a discussion of some conflicting reports and unresolved questions in the literature. The following points are made: (1) the evidence is contradictory on whether P700, the primary donor, is a monomer or dimer of chlorophyll although at this time the balacnce of the evidence points towards a monomeric structure for P700 when in the triplet state; (2) there is little evidence that the iron sulfur centers FA and FB act in series as tertiary acceptors and it is as likely that they act in parallel under physiological conditions; (3) a role for FX, probably another iron sulfur centrer, as an obligatory electron carrier in forward electron transfer has not been proven. Some evidence indicates that its reduction could represent a pathway different to that involving FA and FB; (4) the decay of the acceptor ‘A2 ’ as defined by optical spectroscopy corresponds with 700+ % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa% aaleaadaqdaaqaaiaadIfaaaaabeaaaaa!37D1!\[F_{\overline X } \] recombination under some circumstances but under other conditions it probably corresponds with P700+ A1 recombination; (5) P700+ A1 recombination as originally observed by optical spectroscopy is probably due to the decay of the P700 triplet state; (6) the acceptor A1 as defined by EPR may be a special semiquinone molecule; (7) A0 is probably a chlorophyll a molecule which acts as the primary acceptor. Recombination of P700+ A0 gives rise to the P700 triplet state.

A working model for electron transfer in photosystem I is presented, its general features are discussed and comparisons with other photosystems are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aasa R, Bergström J and Vänngard T (1981) Biochim Biophys Acta 637, 118–123

    Google Scholar 

  2. Arnon DI, Tsujimoto HY and Tang GMS (1981) Proc Natl Acad Sci USA 78, 2942–2946

    Google Scholar 

  3. Baker RA and Weaver EC (1973) Photochem Photobiol 18, 237–241

    Google Scholar 

  4. Baltimore BG and Malkin R (1980) Photochem Photobiol 31, 485–490

    Google Scholar 

  5. Bearden AJ and Malkin R (1972) Biochem Biophys Res Commun 46, 1299–1305

    Google Scholar 

  6. Beinert H, Kok B and Hoch G (1962) Biochem Biophys Res Commun 7, 209–212

    Google Scholar 

  7. Bolton JR (1978) In ‘The Photosynthetic Bacteria’ (Clayton RK and Sistrom WR eds.) Plenum Press, New York, pp. 419–429

    Google Scholar 

  8. Bonnerjea J (1983) PhD Thesis, University of London

  9. Bonnerjea J and Evans MCW (1982) FEBS Lett 148, 313–316

    Google Scholar 

  10. Bonnerjea J and Evans MCW (1984) Biochim Biophys Acta 767, 153–159

    Google Scholar 

  11. Cammack R and Evans MCW (1975) Biochem Biophys Res Commun 67, 544–549

    Google Scholar 

  12. Cammack R, Ryan MD and Stewart AC (1979) FEBS Lett 107, 422–426

    Google Scholar 

  13. Chamarovsky SK and Cammack R (1982) Biochim Biophys Acta 679, 146–155

    Google Scholar 

  14. Chamarovsky SK and Cammack R (1982) Photobiochem Photobiophys 4, 195–200

    Google Scholar 

  15. Commoner B, Heise JJ and Townsend J (1956) Proc Natl Acad Sci USA, 42, 710–718

    Google Scholar 

  16. Cramer WA and Crofts AR (1982) In Photosynthesis I ‘Energy Conversion by Plants and Bacteria’ (Govindjee ed) Academic Press, New York, pp. 387–467

    Google Scholar 

  17. Crowder MS and Bearden AJ (1983) Biochim Biophys Acta 722, 23–35

    Google Scholar 

  18. Demeter S and Ke B (1977) Biochim Biophys Acta 462, 770–774

    Google Scholar 

  19. Den Blanken HJ and Hoff AJ (1983) Biochim Biophys Acta 724, 52–61

    Google Scholar 

  20. Dismukes GC, McGuire A, Blakenship R and Sauer K (1978) Biophys J 21, 239–256

    Google Scholar 

  21. Dornemann D and Senger H (1981) FEBS Lett 126, 323–327

    Google Scholar 

  22. Dutton PL, Leigh JS and Seibert M (1971) Biochem Biophys Res Commun 40, 406–413

    Google Scholar 

  23. Evans EH, Cammack R and Evans MCW (1976) Biochem Biophys Res Commun 68, 1212–1218

    Google Scholar 

  24. Evans EH, Dickson DPE, Johnson CE, Rush JD and Evans MCW (1981) Eur J Biochem 118, 81–84

    Google Scholar 

  25. Evans MCW and Cammack R (1975) Biochem Biophys Res Commun 63, 187–193

    Google Scholar 

  26. Evans MCW and Heathcote P (1980) Biochim Biophys Acta 590, 89–96

    Google Scholar 

  27. Evans MCW, Telfer A and Lord AV (1972) Biochim Biophys Acta 267, 530–537

    Google Scholar 

  28. Evans MCW, Reeves SG and Cammack R (1974) FEBS Lett 49, 111–114

    Google Scholar 

  29. Evans MCW, Sihra CK, Bolton JR and Cammack R (1975) Nature 259, 668–670

    Google Scholar 

  30. Evans MCW, Sihra CK and Cammack R. (1976) Biochem J 158, 71–77

    Google Scholar 

  31. Evans MCW, Sihra CK and Slabas AR (1977) Biochem J 162, 75–85

    Google Scholar 

  32. Fajer J, Davis MS, Forman A, Klimov VV, Dolan E and Ke B (1980) J Am Chem Soc 102, 7143–7145

    Google Scholar 

  33. Fenton JM, Pellin MJ, Govindjee and Kaufman KJ (1979) FEBS Lett 100, 1–4

    Google Scholar 

  34. Frank HA, McLean MB and Sauer K (1979) Proc. Natl Acad Sci USA 76, 5124–5128

    Google Scholar 

  35. Fujita F, Davis MS and Fajer J (1978) J Am Chem Soc 100, 6280–6282

    Google Scholar 

  36. Furrer R and Thurnauer MC (1983) FEBS Lett 153, 399–403

    Google Scholar 

  37. Gast P (1982) Ph D Thesis, State University Leiden

  38. Gast P and Hoff AJ (1979) Biochim Biophys Acta 548, 520–535

    Google Scholar 

  39. Gast P, Swarthoff T, Ebskamp FCR and Hoff AJ (1983) Biochim Biophys Acta 722, 168–175

    Google Scholar 

  40. Golbeck JH and Kok B (1978) Arch Biochem Biophys 188, 233–242

    Google Scholar 

  41. Golbeck JH and Warden JT (1982) Biochim Biophys Acta 681, 77–84

    Google Scholar 

  42. Golbeck JH, Velthuys BR and Kok B (1978) Biochim Biophys Acta 504, 226–230

    Google Scholar 

  43. Govindjee (1984) In ‘Advances in Photosynthesis Research’ (C Sybesma ed.) Vol I, Martinus Nijhoff/Dr W Junk Publishers Den Haag pp 227–238

    Google Scholar 

  44. Heathcote P and Evans MCW (1980) FEBS Lett 111, 381–385

    Google Scholar 

  45. Heathcote P and Evans MCW (1981) in ‘Photosynthesis II’ pp 665–675 (Akoyunoglou E ed.) Balaban Int Sci Press Philadelphia

    Google Scholar 

  46. Heathcote P, Williams-Smith DL and Evans MCW (1978) Biochem J 170 373–378

    Google Scholar 

  47. Heathcote P, Williams-Smith DL, Sihra CK and Evans MCW (1978) Biochim Biophys Acta 503, 338–342.

    Google Scholar 

  48. Heathcote P, Timofeev KN and Evans MCW (1979) FEBS Lett 101, 105–109

    Google Scholar 

  49. Hiyama T and Fork D (1980) Arch Aiochem Biophys 199, 488–496

    Google Scholar 

  50. Hiyama T and Ke B (1971) Proc Natl Acad Sci USA 68, 1010–1013

    Google Scholar 

  51. Hiyama T Ohtsuka T and Sakurai H (1984) J Biochem 95, 855–860

    Google Scholar 

  52. Hootkins R, Malkin R and Bearden A (1981) FEBS Lett 123, 299–234

    Google Scholar 

  53. Hootkins R and Bearden A (1983) Biochim Biophys Acta 723, 16–29

    Google Scholar 

  54. Interschick-Niebler E and Lichententhaler HK (1981) Z Naturforsch 63c, 276–283

    Google Scholar 

  55. Kamogawa K, Namiki A, Nakashima N, Yoshihara K and Ikegami I (1981) Photochem Photobiol 34, 551–516

    Google Scholar 

  56. Kamogawa K, Morris JM, Takagi Y, Nakashima N, Yoshihara K and Ikegami I (1983) Photochem Photobiol 37, 207–213

    Google Scholar 

  57. Kaplan S and Arntzen CJ (1982) in Photosynthesis I ‘Energy conversion by Plants and bacteria’ (Govindjee ed.) Academic Press, New York pp. 65–151

    Google Scholar 

  58. Karapetyan NV and Shubin VV (1984) Photochem Photobiol 39, 28S

  59. Ke B (1972) Arch Biochem Biophys 152, 70–77

    Google Scholar 

  60. Ke B and Beinert H (1973) Biochim Biophys Acta 305, 689–693

    Google Scholar 

  61. Ke B, Hansen RE and Beinert H (1973) Proc Natl Acad Sci USA 70, 2941–2945

    Google Scholar 

  62. Ke B Sugahara K Shaw ER, Hansen RE, Hamilton WD and Beinert H (1974) Biochim Biophys Acta 368, 401–408

    Google Scholar 

  63. Ke B, Dolan E, Sugahara K and Shaw ER (1975) Biochim Biophys Acta 408, 12–25

    Google Scholar 

  64. Ke B, Dolan E, Sugahara K, Hawkridge F, Demeter S and Shaw ER (1977) Plant Cell Physiol Spec Issue, p 187–199

  65. Knaff DB and Malkin R (1973) Arch Biochem Biophys 159, 555–562

    Google Scholar 

  66. Koike H and Katoh S (1982) Photochem Photobiol 35, 527–532

    Google Scholar 

  67. Kok B (1956) Biochim. Biophys Acta 22, 299–401

    Google Scholar 

  68. Leigh JS and Dutton PL (1974) Biochim Biophys Acta 357, 67–77

    Google Scholar 

  69. Lozier RH and Butler WL (1974) Biochim Biophys Acta 333, 460–464

    Google Scholar 

  70. Malkin R (1978) FEBS Lett 87, 329–333

    Google Scholar 

  71. Malkin R (1984) Biochim Biophys Acta 764, 63–69

    Google Scholar 

  72. Malkin R and Bearden AJ (1971) Proc Natl Acad Sci USA 68, 16–19

    Google Scholar 

  73. Malkin R and Bearden AJ (1978) Biochim Biophys Acta 505, 147–182

    Google Scholar 

  74. Mathis P and Conjeaud H (1979) Photochem Photobiol 29, 833–837

    Google Scholar 

  75. Mathis P, Sauer K and Remy R (1978) FEBS Lett 88, 275–278

    Google Scholar 

  76. Mayne BC and Rubinstein D (1966) Nature 210, 734–735

    Google Scholar 

  77. McClean MB and Sauer K (1982) Biochim Biophys Acta 679, 384–392

    Google Scholar 

  78. McCracken JC and Sauer K (1983) Biochim Biophys Acta 724 83–93

    Google Scholar 

  79. McCracken JC and Sauer K (1984) in ‘Advances in Photosynthesis Research’ 1, pp 585–588 (Sybesma C ed.) M Nijhoff/Junk Den Haag

    Google Scholar 

  80. McCracken JC, Frank HA and Sauer K (1982) Biochim Biophys Acta 679, 156–168

    Google Scholar 

  81. McIntosh AR and Bolton JR (1976) Biochim Biophys Acta 430, 555–559

    Google Scholar 

  82. McIntosh AR, Chu M and Bolton JR (1975) Biochim Biophys Acta 376, 308–314

    Google Scholar 

  83. McIntosh AR, Manikowski H and Bolton JR (1979) J Phys Chem 83, 3309–3333

    Google Scholar 

  84. McIntosh AR, Manikowski H, Wong SK, Taylor CPS and Bolton JR (1979) Biochem Biophys Res Commun 87, 605–612

    Google Scholar 

  85. Norris JR, Uphaus RA, Crespi HG and Katz JJ (1971) Proc Natl Acad Sci USA 68, 625–629

    Google Scholar 

  86. Norris JR, Druyan ME and Katz JJ (1973) J Am Chem Soc 95, 1680–1682

    Google Scholar 

  87. Nugent JHA, Miller BL and Evans MCW (1981) Biochim Biophys Acta 634, 249–255

    Google Scholar 

  88. O'Malley PJ and Babcock GT (1983), Biophys J 41, 315a

  89. O'Malley PJ and Babcock GT (1984) Proc Natl Acad Sci USA 81, 1098–1101

    Google Scholar 

  90. Parson WW and Ke B (1982) in Photosynthesis I, ‘Energy Conversion by Plants and Bacteria’ (Govindjee ed.) Academic Press New York pp 331–385

    Google Scholar 

  91. Phillipson KP Satoh VL and Sauer K (1972) Biochemistry 11, 4591–4594

    Google Scholar 

  92. Rupp H, Rao KK, Hall DO and Cammack R (1978) Biochim Biophys Acta 537, 255–269

    Google Scholar 

  93. Rutherford AW and Mullet JE (1981) Biochim Biophys Acta 635, 225–235

    Google Scholar 

  94. Rutherford AW, Mullet JE, Paterson DR, Robinson HH, Arntzen CJ and Crofts AR (1981) in ‘Photosynthesis III’ (Akoyunoglou G ed), pp 919–928 Balaban Science Service Philadelphia

    Google Scholar 

  95. Rutherford AW, Paterson DR and Mullet JE (1981) Biochim Biophys Acta 635, 205–214

    Google Scholar 

  96. Rutherford AW, Satoh K and Mathis P (1983) Biophys J 41, 40a

  97. Sauer K, Acker S, Mathis P and Van Best J (1977) in: ‘Bioenergetics of Membranes’ (Packer L, Papageorgiou G and Trebst A eds) Elsevier, 351–359

  98. Sauer K, Mathis P, Acker S and Van Best JA (1978) Biochim Biophys Acta 503, 120–134

    Google Scholar 

  99. Sauer K, Mathis P, Acker S and Van Best JA (1979) Biochim Biophys Acta 543, 466–472

    Google Scholar 

  100. Setif P (1984) Thèse d'Etat, University of Paris

  101. Setif P and Mathis P (1980) Arch Biochem Biophys 204, 477–485

    Google Scholar 

  102. Setif P, Hervo G and Mathis P (1981) Biochim Biophys Acta 638, 257–267

    Google Scholar 

  103. Setif P, Quaegerbeur JP and Mathis P (1982) Biochim Biophys Acta 681, 345–353

    Google Scholar 

  104. Setif P, Mathis P, Lagoutte B and Duranton J (1984) In ‘Advances in Photosynthesis Research’ 1, pp 589–591 (ed Sybesma C) M Nijhoff/junk publishers Den Haag

    Google Scholar 

  105. Steif P, Mathis P and Vanngard T (1984) Biochim Biophys Acta, submitted

  106. Shuvalov VA, Dolan E and Ke B (1979) Proc Natl Acad Sci USA 76, 770–773

    Google Scholar 

  107. Shuvalov VA, Ke B and Dolan E (1979) FEBS Lett 100, 5–8

    Google Scholar 

  108. Shuvalov VA, Klevanik AV, Sharkov AV, Kryukov PG and Ke B (1979) FEBS Lett 107, 313–316

    Google Scholar 

  109. Sonneveld A, Duysens LNM and Moerdijk A, (1981) Biochim Biophys Acta 636, 39–49

    Google Scholar 

  110. Swarthoff T, Gast P, Amesz J and Buisman HP (1982) FEBS Lett 146, 129–132

    Google Scholar 

  111. Takahashi Y, Hirota K and Katoh S (1984) Photosynth Res submitted

  112. Thurnauer MC and Gast P (1985) Photobiochem Photobiophys submitted

  113. Thurnauer MC and Norris JR (1980) Chem Phys Lett 76, 557–561

    Google Scholar 

  114. Thurnauer MC, Katz JJ and Norris JR (1975) Proc Natl Acad Sci USA 72, 3270–3274

    Google Scholar 

  115. Thurnauer MC, Bowman MK and Norris JR (1979) FEBS Lett 100, 309–312

    Google Scholar 

  116. Thurnauer MC, Rutherford AW and Norris JR (1982) Biochim Biophys Acta 682, 332–338

    Google Scholar 

  117. van Gorkom HJ (1985) Photosynthesis Research 6, 97–112

    Google Scholar 

  118. Warden JT and Bolton JR (1973) J Am Chem Soc 95, 6435–6436

    Google Scholar 

  119. Warden JT, Mohanty P and Bolton JR (1974) Biochem Biophys Res Commun 59, 872–878

    Google Scholar 

  120. Wasielewski MR, Norris JR, Crespi HL and Horper J (1981) J Am Chem Soc 103, 7664–7665

    Google Scholar 

  121. Wasielewski MR, Norris JR, Shipman LL, Lin CP and Svec WA (1981) Proc Natl Acad Sci USA 78, 2957–2961

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutherford, A.W., Heathcote, P. Primary photochemistry in photosystem-I. Photosynth Res 6, 295–316 (1985). https://doi.org/10.1007/BF00054105

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054105

Keywords

Navigation