Skip to main content

Lidar-Inertial SLAM Method for Accurate and Robust Mapping

  • Conference paper
  • First Online:
Cognitive Systems and Information Processing (ICCSIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1918))

Included in the following conference series:

  • 221 Accesses

Abstract

In recent studies on LiDAR SLAM, the achievement of robust optimized LiDAR odometry is the primary objective. For the mapping part, some studies focus on improving the processing of point cloud, while others aim to the optimization of the result deviation caused by errors. Meanwhile, in the fields of robotics and autonomous driving, multi-sensor fusion solutions based on IMUs are becoming the norm. This paper contributes to the optimization of mapping by leveraging a lightweight LiDAR-inertial state estimator. The proposed method combines information from a 6-axis IMU and a 3D LiDAR to form a tightly-coupled scheme that incorporates iterative error state Kalman filter (IESKF). Due to the continuous error accumulation, trajectory deviations can be significant. To mitigate this, an adaptive distance threshold loop closure detection mechanism is employed. Furthermore, since the algorithm primarily addresses outdoor scenes, ground features collected by sensors account for a significant portion of the computation. Improvements in the ground segmentation method lead to less disturbance during mapping on uneven terrain, enabling the method to effectively ad-dress a wider range of real-world environments. As a result, the proposed method demonstrates excellent stability and accuracy, as verified in experiments conducted on urban dataset and campus environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin, C., Ye, H., Pranata, C.E., Han, J., Zhang, S., Liu, M.: Lins: a lidar-inertial state estimator for robust and efficient navigation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 8899–8906 (2020)

    Google Scholar 

  2. Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, no. 9, pp. 1–9 (2014)

    Google Scholar 

  3. Shan, T., Englot, B.: Lego-loam: lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4758–4765 (2018)

    Google Scholar 

  4. Kim, G., Park, Y.S., Cho, Y., Jeong, J., Kim, A.: Mulran: multimodal range dataset for urban place recognition. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6246–6253 (2020)

    Google Scholar 

  5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012)

    Google Scholar 

  6. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  7. Himmelsbach, M., Hundelshausen, F. V., Wuensche, H. J.: Fast segmentation of 3D point clouds for ground vehicles. In: IEEE Intelligent Vehicles Symposium, pp. 560–565 (2010)

    Google Scholar 

  8. Ye, H., Chen, Y., Liu, M.: Tightly coupled 3d lidar inertial odometry and mapping. In: International Conference on Robotics and Automation (ICRA), pp. 3144–3150 (2019)

    Google Scholar 

  9. Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., Rus, D.: Lio-sam: tightly-coupled lidar inertial odometry via smoothing and mapping. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 5135–5142 (2020)

    Google Scholar 

  10. Lim, H., Oh, M., Myung, H.: Patchwork: Concentric zone-based region-wise ground segmentation with ground likelihood estimation using a 3D LiDAR sensor. IEEE Rob. Autom. Lett. 6(4), 6458–6465 (2021)

    Article  Google Scholar 

  11. Kim, G., Kim, A.: Scan context: egocentric spatial descriptor for place recognition within 3d point cloud map. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4802–4809 (2018)

    Google Scholar 

  12. Tang, J., et al.: LiDAR scan matching aided inertial navigation system in GNSS-denied environments. Sensors 15(7), 16710–16728 (2015)

    Article  Google Scholar 

  13. Zhen, W., Zeng, S., Soberer, S.: Robust localization and localizability estimation with a rotating laser scanner. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6240–6245 (2017)

    Google Scholar 

  14. Neuhaus, F., Kob, T., Kohnen, R., Paulus, D.: Mc2slam: real-time inertial lidar odometry using two-scan motion compensation. In: Pattern Recognition: 40th German Conference, pp. 60–72 (2019)

    Google Scholar 

  15. Sung, C., Jeon, S., Lim, H., Myung, H.: What if there was no revisit? Large-scale graph-based SLAM with traffic sign detection in an HD map using LiDAR inertial odometry. Intell. Serv. Rob. 1–10 (2022)

    Google Scholar 

  16. Narksri, P., Takeuchi, E., Ninomiya, Y., Morales, Y., Akai, N., Kawaguchi, N.: A slope-robust cascaded ground segmentation in 3D point cloud for autonomous vehicles. In: 21st International Conference on intelligent transportation systems (ITSC), pp. 497–504 (2018)

    Google Scholar 

  17. Na, K., Park, B., Seo, B.: Drivable space expansion from the ground base for complex structured roads. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 000373–000378 (2016)

    Google Scholar 

  18. Zermas, D., Izzat, I., Papanikolopoulos, N.: Fast segmentation of 3d point clouds: a paradigm on lidar data for autonomous vehicle applications. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5067–5073 (2017)

    Google Scholar 

  19. Cheng, J., He, D., Lee, C.: A simple ground segmentation method for LiDAR 3D point clouds. In: 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), pp. 171–175 (2020)

    Google Scholar 

  20. Wang, B., Lan, J., Gao, J.: LiDAR filtering in 3D object detection based on improved RANSAC. Remote Sens. 14(9), 2110 (2022)

    Article  Google Scholar 

  21. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  22. Rizzini, D.L.: Place recognition of 3D landmarks based on geometric relations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 648–654 (2017)

    Google Scholar 

  23. Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Rob. 28(5), 1188–1197 (2012)

    Article  Google Scholar 

  24. Nurunnabi, A., Belton, D., West, G.: Diagnostics based principal component analysis for robust plane fitting in laser data. In: 16th International Conference on Computer and Information Technology, pp. 484–489 (2014)

    Google Scholar 

  25. Liao, L., Fu, C., Feng, B., Su, T.: Optimized SC-F-LOAM: optimized fast LiDAR odometry and mapping using scan context. In: 6th CAA International Conference on Vehicular Control and Intelligence, pp. 1–6 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhang, L. (2024). Lidar-Inertial SLAM Method for Accurate and Robust Mapping. In: Sun, F., Meng, Q., Fu, Z., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2023. Communications in Computer and Information Science, vol 1918. Springer, Singapore. https://doi.org/10.1007/978-981-99-8018-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8018-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8017-8

  • Online ISBN: 978-981-99-8018-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics