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Abstract. While research on digital twins of cyber-physical systems within in-

dustry 4.0 is emerging, the software development perspective on digital twins 

remains under-explored. Contemporary definitions and examples of digital twins 

have covered company- or product-specific solutions or discussed the use of dig-

ital twins in rather proprietary value chains. This paper addresses the importance 

of taking an ecosystem view on software development on digital twins for indus-

try 4.0 and outlines a framework for building a research agenda for such ecosys-

tems. The framework includes three dimensions: scope of the digital twin soft-

ware platform (internal, value chain, ecosystem), life-cycle phases of the industry 

4.0 system related with the digital twin (creation, production, operation & 

maintenance, disposal), and level of integration between the twin and the physical 

system (model, shadow, twin). As this research-in-progress addresses examples 

of research questions in light of the framework, further research to build a full-

scale research agenda based on a systematic literature review is suggested. 

Keywords: digital twin, software platform, service ecosystem, research agenda, 

industry 4.0 

1 Introduction 

Industry 4.0 has attracted growing scholarly attention in recent years [1]. Progress in 

information technologies (IT), big data, and intelligent manufacturing have stimulated 

and enabled the global transformation in the manufacturing industry [2]. With the re-

cent advances in the Internet of Things (IoT) in the modern industry, the conventional 

industrial production planning and management paradigm demands a shift or upgrade 

from purely providing surveillance-centric functions to building a comprehensive in-

formation framework of the industrial processes [3]. 

In this vein, an emerging concept of digital twin has gained momentum and much 

attention [4]. The term was coined by Michael Grieves in 2002 as a virtual, digital 

equivalent of a physical product [5] in context of an executive course on Product 
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Lifecycle Management (PLM) [6]. A digital twin is “a set of virtual information con-

structs that fully describes a potential or actual physical manufactured product” [6, p. 

94]. Moreover, a digital twin can be defined at two levels: digital twin prototype (DTP), 

which contains digital information “necessary to describe and produce a physical ver-

sion that duplicates or twins the virtual version”, and digital twin instance (DTI), which 

“describes a specific corresponding physical product that an individual Digital Twin 

remains linked to throughout the life of that physical product” [6, p. 94]. 

From the viewpoint of cyber-physical systems (CPSs), a digital twin is defined as a 

specific applied technical framework as a realization of a CPS [7], while from the prod-

uct life cycle perspective, a digital twin is a dynamic digital replica of physical assets, 

processes, and systems that comprehensively monitors the entire product lifecycle [3]. 

Grieves & Vickers propose also the concept of Digital Twin Environment (DTE) to 

cover an integrated multi-domain “application space for operating on Digital Twins 

for a variety of purposes” [6, p. 94]. Digital twin's backbone involves IoT technologies 

for real-time and multisource data acquisition. Additionally, artificial intelligence 

(AI) and software analysis are incorporated as part of the system to create digital sim-

ulation models that are dynamically updated and modified with their physical coun-

terparts. The digital twin also advances the data visualization schemes, such as Virtual 

Reality (VR) and Augmented Reality (AR), so as to create more vivid, seamless, and 

user-friendly interfaces and user experience, for instance, for multimodal interactions 

with the physical system in question [8]. 

Overall, research (by Autumn 2019) on digital twins is emerging, diverse, scattered 

and weakly-linked. For example, there is a need for research in relation to the chal-

lenges of defining the unified framework for building the digital twin at the systemic 

level [9] while others call for the modular approach and continue to work on optimiz-

ing the synchronization framework between the cyber and physical worlds [10]. A 

majority of the literature has been primarily focused on the design schemes of the digital 

twin in narrow technical applications (e.g. surveillance signal processing [3], multi-

modal user interface adaptation [11]), while [12] suggests that a (technological) system 

needs a coherent view at different levels or aspects such as core technology, platform, 

and application levels. Last but not least, the software development and implementation 

perspective on digital twin remains an under-explored territory in the existing studies. 

We argue that the development perspective on digital twins as software platforms 

within adjacent service development ecosystems is a crucial centerpiece to facilitate 

and enable the proliferation of digital twin applications in industry 4.0. 

In the domain of Industry 4.0, asset administration related to an industrial plant and 

related CPSs requires multiple stakeholders throughout the plant life cycle, such as de-

vice manufacturers, system integrators, plant owners and Industry 4.0 architects (e.g., 

[13]). While architectural standards are still emerging, digital twins are expected to 

change current business models, development approaches, and technologies, while pos-

ing significant challenges to the architects and stakeholders in need to co-operate in this 

domain (e.g., [13], [14]). This trend highlights that development of innovative services 

and software applications on digital twins (such as those targeted to diagnostics, pre-

dictive maintenance, training, or virtual support for fieldwork on industrial artifacts) is 



3 

increasingly taking place in platforms of actors in a value chain or even ecosystems of 

actors throughout the CPS life-cycle. 

In an effort to understand the development of digital twins in industry 4.0, this paper 

outlines the challenges and proposes a framework for building a research agenda for 

the development of digital twins with related software and services at the platform and 

ecosystem levels. This paper sheds light on positioning digital twin research challenges 

related to the ecosystem and platform views on digital twins in the manufacturing in-

dustry. 

The rest of this paper is organized as follows. Section 2 provides the review and 

discussion on the definition of the digital twin in the literature. Section 3 introduces the 

concepts of platform and ecosystem as an overarching framework to systematically 

identify the challenges and research agenda concerning the software development of a 

digital twin, especially in the ecosystem setting. Section 4 focuses on the presentation 

and proposition of the key research agenda for digital twins. Section 5 summarizes the 

contributions of our work and concludes the paper. 

2 Analytical Dimensions of Digital Twins 

2.1 High Level Structure of Digital Twins 

The fundamental idea of the digital twin includes the elements of the continuous real-

time data exchange between the physical space, e.g. smart factory and the digital space, 

the data-driven training loop for continuous optimization and improvement of produc-

tion as well as the integration of production and information elements [7]. A high-level 

illustration of digital twin is presented in Fig. 1. 

 

 
Fig. 1. High-level illustration of digital twin (adapted from [15]) 



4 

Two key aspects of the digital twin system architecture are: 1) a tight logical con-

nection between the digital twins, the physical world counterparts and between differ-

ent digital twins that are needed to realize a dedicated system functionality; 2) a 

changeable logical system architecture. Digital twin components may change proper-

ties like interfaces, connections to other components, behavior and simulation models, 

as well as communication protocols. Therefore, the initial logical architecture (of the 

DTP) may differ from the actual logical architecture (of a particular DTI) during run-

time [14]. 

 

2.2 PLM Stages and Digital Twins 

Based on the existing literature discussing digital twin in PLM [16], digital twin’s inte-

gration into the PLM can include the following tasks and processes (at a coarse level): 

Creation, Production, Operations (and Maintenance), and Disposal [6]. 

In the Creation phase, a digital twin can be connected to design drawings, behavior 

prediction, design simulation, engineering data, manufacturing operations management 

key performance indicators (KPIs) and design tools. The digital twin can include order 

planning based on statistical assumptions, improved decision support by means of de-

tailed diagnosis as well as automatic planning and execution from orders by the pro-

duction units [17]. 

In the Production phase, the digital twin can focus on such issues as manufacturing 

instructions, virtual commissioning, and Hardware (HW)-in-the-loop tests [18]. 

In the Operations and Maintenance phase, digital twins can provide operation in-

structions, plant visualization, control performance, what-if studies, operational data, 

real-time movement, operational KPIs, and operational state display. The digital twin 

can be used to identify the impact of state changes on upstream and downstream pro-

cesses of a production system [19, 20]. 

In maintenance actions, involved in the operations phase, digital twins are used to 

diagnose the system run-time, identification, and evaluation of anticipatory mainte-

nance measures, the evaluation of machine conditions based on descriptive methods 

and machine learning algorithms [21]. As well, a digital twin can facilitate the integra-

tion, management, and analysis of machinery or process data during different stages of 

the machine life cycle to handle data/information more efficiently and further achieve 

better transparency of a machine’s health condition [22]. 

The disposal phase has been so far less prominent in the mainstream discussion on 

digital twins. However, digital twin solutions within and after the disposal phase of the 

physical system life-cycle may appear important as well – for example, in the field of 

nuclear plants and spent nuclear fuel [6]. 

 

2.3 Three Levels of Digital Twin Integration 

Digital twins were initially considered to be high fidelity mathematical models to reflect 

the behavior of the actual system as close as possible [18, 23]; this perception has 

evolved to include simulated and visible dynamic 3D models of real-world assets. The 

digital twin definition has been enriched over the time to be an evolving digital profile 
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of the historical and current behavior and all properties of an asset, where an asset can 

be anything of value for an organization such as a physical device, a subsystem, a plant, 

or a software entity. 

Based on the given definitions of a digital twin in any context, digital twins represent 

digital counterparts of physical objects. It is argued by [21] that three levels of how 

such counterparts interact are interchangeably used in the literature, namely, digital 

model, digital shadow and digital twin. Evidently, some digital representations are 

modeled manually and are not connected with any physical object in existence. At the 

same time, other digital twins are fully integrated with real-time data exchange. Thus, 

the definition of digital twins needs to be classified at different levels of how the digital 

counterparts interact with the physical objects to endorse a clear understanding of the 

existing and future research. 

Based on the categorical classification of the digital twin [21], a digital model is a 

digital representation of an existing or planned physical object that involves no form of 

automated data exchange between the physical object and the digital object. Digital 

data of existing physical systems might still be in use for the development of such mod-

els, but all data exchange is done manually. A change in the state of the physical object 

has no direct effect on the digital object and vice versa as illustrated in Fig. 2.  

 

 

Fig. 2. Digital model, digital shadow, and digital twin [21] 

The digital shadow utilizes automated one-way data flow between the state of an 

existing physical object and a digital object, becoming a virtual “shadow” of the phys-

ical object or system. A change in the state of the physical object or system changes the 

modelled state in the digital object [21]. In a full digital twin, the data flow between an 

existing physical object and a digital object is fully integrated to both directions. The 

digital object or system controls or affects a physical object. There might also be other 

physical or digital objects, which can make changes of state in the digital object. A 

change in the state of the physical object directly leads to a change in the state of the 

digital object, and this process goes in both directions as can be seen in Fig. 2.  



6 

3 Digital Twin Platforms and Ecosystems 

3.1 Digital Platforms 

When developing a variety of products that can meet the needs of a large number of 

customers, the manufacturers strive for commonalities and distinguishing features of 

the developed product variants. A common approach for this is the adoption of a plat-

form approach [24], which is typically achieved by modularizing the product's archi-

tecture [25] or the production system [26]. The key to a platform approach is to 

achieve economies of scale in production [27] by using common components for a 

variety of product configurations [28]. 

In the literature, there are numerous platform types with different definitions and 

properties, e.g. the two-sided platform of [29]. To facilitate and navigate the literature 

of platform, the study of [30] divides the discussion of the digital platform into two 

perspectives: economics and engineering design. From an economic point of 

view, digital platforms are seen as markets where the platform facilitates ex-

changes between actors who otherwise would not be able to do business with each 

other. An example of this type of platform can be Airbnb, as the platform connects 

the business and leisure travelers with homeowners and enables the transaction be-

tween the buyers and sellers from different sides of the platform.  

 

3.2 Digital Twin as Software Platform and Ecosystem 

The technological perspective of the platform considers that a platform is a techno-

logical architecture that enables innovation [30, 31]. One of the basic ideas is that the 

platform inherently has the modularized features, functions, and components that can 

be used to decompose complex systems into manageable components connected by 

interfaces. Based on the level of authorization, the different modules are accessed and 

share data and information on the platform [28]. Furthermore, it is categorized by 

[30] the platforms into three organizational categories: the internal platform, the sup-

ply chain platform and the industry ecosystem platform (Table 1). 

Table 1. Integrative classification of technological platforms (adapted from [30]). 

 Internal platform Supply-chain platform Ecosystem platform 

Unit of analysis Company Supply chain Industry ecosystem 

Degree of open-

ness 

Closed interfaces Selectively open and 

closed interfaces 

Open interfaces 

The level of ac-

cess 

Company capabilities Supply-chain capabilities Unlimited number of ex-

ternal sources 

Control/govern-

ance mechanisms 

Managerial hierarchy Contracts between supply 

chain companies 

Ecosystem governance 

Literature [30, 32] [30, 33, 34] [30, 35, 36] 
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Digital Twin Platforms, Units of Analysis. Gawer [30] suggests the following units 

of analyses while looking at software and service platforms. An organization’s inter-

nal platform often stands for the enterprise information system are sole available and 

accessible within a company or organization (e.g. an internal Enterprise resource plan-

ning (ERP) system of a factory), while the supply chain platform and ecosystem plat-

form are outside a focal organization and exist in a broader network or ecosystem. As 

such, each platform type can be considered as a different unit of analysis. The internal 

platform only defines a single company/organization as the unit of analysis, while the 

boundary of an ecosystem platform covers multiple interconnected and interdependent 

actors with an ecosystem. [30]. 

Digital Twin Platforms, Degree of Openness. The degree of openness is a defining 

characteristic of a platform. The traditional top-down enterprise management systems 

operate in a closed and hierarchical manner with higher-level controllers to plan, co-

ordinate, and optimize production processes start to shift to changes that enable greater 

flexibility and adaptability to internal and external changes. In the world of networked 

production with multiple actors in complex manufacturing and production processes 

and ecosystems, the control process will inherently be a hybrid combination of hierar-

chical and heterarchical collaboration processes [15]. 

The equipment and technology vendors and software and system developers are all 

needed to become part of the ever-increasing complexity of larger and larger auto-

mated production networks [37], such as a digital twin network or ecosystem to sup-

port the production systems in industry 4.0 [15]. In this light, interconnectivity plays 

a crucial role not only within the boundaries of the manufacturing company in order to 

optimize production processes, but also beyond these limits. As a result, manufactur-

ing is inherently a distributed control process [15].  

A digital twin can improve the transparency of the production process beyond the 

organizational boundaries of the manufacturing company and data supports business 

applications on any device, anytime, anywhere [15]. The data-intensive nature 

of smart factory systems allows for timely, accurate, and detailed logging traces that 

enable real-time viewing of many systems and activities that were previously unavail-

able [15]. Evidently, today’s production systems are no longer fully closed as [30]’s 

internal platforms. 

Access to Capabilities and Resources. The platform’s openness does not only affect 

actors’ access to information, naturally, it also influences the platform’s access to ca-

pabilities and resources as an increasing number of participators means a larger number 

of source pool and stronger capabilities, such as the open innovation capability in the 

literature [38, 39].  

By incorporating the open innovation and ecosystem literature, we elaborate on 

[30]’s original proposition that focuses solely on the platform’s innovation capabilities. 

We enrich this conceptualization and propose that platforms (especially in the ecosys-

tem setting) can offer varying levels of access to resources and capabilities. Therefore, 

in contrast to a closed, internal platform focusing on internal development, a more open 
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ecosystem platform supports also the external actors to access, exchange and share re-

sources (e.g., software, information and data) and capabilities (e.g., domain-based tech-

nical expertise) through the platform [30].  

Platform Control and Governance. Orchestration and choreography [40] are two 

well-known composition strategies in the area of service-oriented architectures to cre-

ate business processes from individual web services. According to [15], these concepts 

are partly related to the hierarchical and heterarchical functioning of manufacturing 

control systems. First, orchestration interacts with internal and external web ser-

vices to take control from a stakeholder perspective. On the other hand, the choreog-

raphy reflects a more collaborative interaction in which each involved stakeholder can 

describe his share of the interaction [15]. 

It is suggested by [41] that virtual factories that combine service-oriented compu-

ting and service-oriented workflows with the IoT. Similar to the typical roles of a ser-

vice requester, a service provider, and a service register in a service-oriented architec-

ture, they propose service providers, service consumers, and virtual factory brokers as 

essential roles of the virtual factory. The latter role is responsible for managing and 

controlling the virtual factory and uses services to model manufacturing processes and 

assemble products based on the results of factories of various business partners. The 

plug-and-play character of digital twin and virtual factories helps companies execute 

cross-organizational manufacturing processes as if they were running in a single com-

pany. Overall, as an emerging concept, the digital twin’s technological development is 

at its nascent stage. Multiple aspects of the digital twin platform still require further 

development. This paper will focus more on software development with the platform 

and ecosystem perspective in the next section. 

4 Framework for Building a Research Agenda 

To outline existing (recognized) research issues and gaps, we constructed a three-di-

mensional framework based on the above-mentioned, three streams of literature related 

to the scope of the industrial organization and structure [30], the life-cycle perspective 

of the digital twin in industry 4.0 [6] , and the levels of integration of digital twin [21]. 

First, the scope dimension consists of three organizational scopes: internal opera-

tions of a particular organization, the value chain of a group of suppliers, producers and 

distributors, and the ecosystem that includes organizations beyond a particular value 

chain (see Fig. 3). 

Second, we utilize the product life-cycle perspective on digital twins [6] as the sec-

ond dimension. Essentially, the life-cycle dimension defines the four stages of the in-

dustrial 4.0 processes: creation and design of the products, the production process, op-

eration and maintenance process, and the disposal of the wastes, defects, and decom-

missioned products (Fig. 3). 

Third, we employ the categorization on the levels of integration between digital 

twins and the represented physical objects [21] as the third dimension of the framework 



9 

(Fig. 3). The three levels of integration include the aforementioned concepts of the dig-

ital model, the digital shadow, and the digital twin. We use acronyms of DM (digital 

model), DS (digital shadow), and DT (digital twin), respectively, in Fig. 4. The level of 

integration dimension can be observed in each cell of the framework to assist the clas-

sification of the research issues and gaps concerning the digital twin studies. 

 

 
 

Fig. 3. Research agenda framework  

By utilizing the three-dimensional framework as the conceptual lens, we mapped a 

number of research gaps and challenges that dwell in the digital twin research do-

main. The overall results are presented in Fig. 4.  

Internal Digital Twin. Digital twin research focusing on internal operations of an 

organization has specific technical issues to address in different stages of the produc-

tion life-cycle. Data management and integration challenges from the viewpoint of the 

whole CPS to be twinned within one host organization is an important issue to be 

addressed across the internal production life-cycle, especially in creation, production, 

and operation and maintenance stages. 

Data capture from IoT represents challenges in such stages as production and oper-

ation and maintenance. For example, in certain industrial contexts, digital twin utilizes 

high-density intensive network cameras to ensure seamless monitoring. On the one 

hand, when processing intensively networked video, the computer architecture must 

be updated to meet the specific use case requirements. On the other hand, enabling a 

resource-constrained IoT device with modern analysis techniques, e.g., deep learning, 

can help relieve the pressure of cloud infrastructure and save the network bandwidth 

[3]. Another challenge lies within the internal organization is in regard to understanding 

needs and opportunities for data utilization in the later phases of the CPS life-cycle of 

a complex CPS, for instance, how predictive diagnosis can be utilized in operation and 

maintenance stage and even disposal stage. In general, the extant research in digital 

twin has made the process from the conventional digital model to the digital shadow 

and digital twin. However, the study identifies the fully digital twin development re-

mains a gap to be addressed by the research community. 



10 

 

 
 

Fig. 4. Examples of identified research issues in light of the framework 

Value Chain -Focused Digital Twin. When we expand the digital twin scope from 

internal organization to the level of a value chain, new challenges regarding data in-

teroperability and data governance emerge. 

First, data interoperability challenges are related to enhancing data capture by com-

ponent providers, for instance, how to standardize data acquisition and exchange 

within a value chain. Second, data governance challenges arise as the organizational 

boundary of digital twin shifts from internal operations to a value chain. As an exam-

ple, the intellectual property rights (IPRs) within the value chain with regard to data 

analytics and processing is an important issue. Third, the integration of intelligence 

(e.g. AI and machine learning) in the value chain is a potential area for software or web 

applications to explore further. Supporting the integration of the AI and machine learn-

ing capabilities can resolve the resource constraints that exist in contemporary digital 

twin systems. Complexity increases when digital twins exit in the much wider applica-

tion scope. Large technology companies like Google have been focusing on tackling 

the challenges and issues of data analytics integration. For example, Google has enabled 

TensorFlow (Google’s machine learning and deep learning software library) to be able 

to be implemented in the mobile device through JavaScript, which solves the resource 
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constrains for AI and machine learning integration in different systems and devices. In 

the context of the value chain, all three levels of integration (digital model, digital 

shadow, and digital twin) demand further research efforts. 

Ecosystem-Focused Digital Twin. Currently, the digital twin ecosystem is primarily 

defined as a technical architecture that integrates the modeling and simulation while 

taking advantage of the industrial Internet of Things for data acquisition and infor-

mation processing with cloud computing [42]. The technical ecosystem-focused digital 

twin system is visible and expected to be integrated into all phases of the PLM. The 

key challenges can be found in the areas of ecosystem governance mechanisms, degree 

of openness, and data sharing and access. The overall concept of suggesting digital 

twins as a basis for software and service development ecosystems represents a new 

contextual scope and view on related researc. Such a view contributes to the existing 

digital twin research that mainly targets internal operations or value chain. Such a view 

will need to cover all the four stages of the CPS / product life-cycles. 

First, the governance mechanisms concerning software ecosystem orchestration for 

digital twins requires further investigation. Our research has so far identified little or 

no discussion of digital twins related to platform thinking in the context of industry 4.0 

beyond such platform concepts as digital twin clouds [43]. Challenges arise when the 

traditional industry moves from the closed internal platforms to the more open ecosys-

tems. 

As suggested by [44], digital twin components must interact and work together to 

solve complex problems. Digital twins encompass three types of interaction and col-

laboration: physical-to-physical, virtual-to-virtual, and virtual-to-physical. Through 

physical-to-physical interaction, multiple physical entities can communicate, coordi-

nate, and collaborate to perform a complex task that cannot be performed by any sin-

gle entity. Through virtual-to-virtual interaction, multiple virtual models can be con-

nected to a network for information sharing. Through virtual-to-physical interaction 

and collaboration, the virtual model can be tuned in synchronization with the physical 

object, while the physical object can be dynamically adjusted based on direct com-

mands from the virtual model.  
Second, the degree of openness regarding the shift from proprietary software to 

open-source software represents another research gap in relation to digital twin eco-

systems for Industry 4.0. In relation to digital twin platforms, the majority of previous 

literature deals exclusively with challenges related to technical development. For ex-

ample, it is argued by [45] that integrating and interoperating systems is a major dif-

ficulty. These technologies are expensive and complex, making the use of digital 

twins more difficult [45]. However, numerous existing industrial software applications 

are proprietary, which creates barriers for industry players to embrace open-source soft-

ware. There is a dilemma faced by the platform owner (particularly the industry incum-

bents) to protect proprietary intellectual properties while harnessing the scope and scale 

advantages of integrated, open-source software development environments. 

Third, the data access related to data provisioning, utilization, and sharing is another 

under-explored area.  As discussed in the previous section, the data fusion of digital 

twins involves three processes: data preprocessing, data mining and data optimization. 
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First, digital twins have to process a huge amount of data, including physical data, 

virtual data, and fusion data between them. Therefore, a data preprocessing that in-

cludes data cleansing, data conversion, and data filtering must be performed. Second, 

the preprocessed data is determined by fuzzy sets, rule-based closure, intelligent algo-

rithms, and other advanced data analysis methods. Third, theories of data optimization 

are useful for dealing with the iterations of physical data, virtual data, connection data, 

service data, and data fusion, to discover the data evolution laws [44]. 

In the course of digitization, data on both products and processes are increasingly 

being created in the process industry. The data is needed to create digital twins, 

and more data is generated when digital twins are applied while code is being devel-

oped and analyzed. However, the study of [28] clearly shows that the digital twin eco-

system actors are unwilling to share both product and process-specific data, as well as 

code-specific data. In terms of product and process-specific data, end-users and ma-

chine builders are concerned that their data will be passed on to competitors, thereby 

revealing their company-specific secrets. Digital twins do not minimize these con-

cerns because they need detailed information about products and processes in order 

to be fully exploited. 

5 Conclusion and Future Work 

Digital platforms are transforming nearly every industry today [36] revolutionizing fu-

ture value creation in the manufacturing industry as they enable companies to become 

more digitalized [46]. The advent of industry 4.0 fosters digital platforms and the con-

cept of a digital twin to attract scholarly attention and interest as the industries start to 

realize and understand related technological and business opportunities [47].  

Digital twin as an emerging concept represents new research issues crossing the 

disciplines of industrial engineering, software engineering, cyber-physical systems, AI 

and machine learning, and ecosystem and platforms. Digital twins need to be investi-

gated holistically throughout three organizational scopes (internal operations, value 

chain, and ecosystem) while the challenges of interoperability through the combination 

of completely different models, systems and tools for digital twin become paramount. 

From the product and CPS life-cycle perspective [6], the digital twin must be seam-

lessly integrated with the existing systems, processes, and models [9] in different life-

cycle stages to realize its true potential in industry 4.0. Additionally, this study incor-

porates the levels of integration for digital twin [21] to decrease the conceptual ambi-

guity in the existing digital twin research. New challenges and research issues are ex-

pected to emerge as novel applications on digital twins are required for system life-

cycle phases of operations, maintenance, and disposal; built upon expanding software 

platforms opened for expanding digital service ecosystems, and involving increasingly 

integrated full-fledged twins instead of mere models or shadows of the physical sys-

tems. The key contributions of this study are constructing a three-dimensional frame-

work to explore and analyze the research challenges and gaps in a structured manner 

and investigating the ecosystem context for digital twin that is rarely addressed in the 

digital twin studies Further studies can utilize the framework to systematically study 
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the digital twin research in both theoretical and empirical contexts, in order to spot 

knowledge gaps and new research issues for the future research agenda. 
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