Skip to main content

Time-, Stress-, and Cycle-Dependent Tensile Strength of Fiber-Reinforced Ceramic-Matrix Composites

  • Chapter
  • First Online:
Book cover Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Part of the book series: Advanced Ceramics and Composites ((ACC,volume 1))

  • 197 Accesses

Abstract

In this chapter, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to multiple fatigue loading at room temperature, oxidation environment at elevated temperature, and cyclic loading at elevated temperatures in oxidative environments is investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation, and fiber fracture, the residual strength model of CMCs is established by combining the microstress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fiber failure, oxidation time and temperature, and applied cycle number are established. The effects of the peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus, fiber strength, oxidation temperature and time on the degradation of composite strength and fiber failure are investigated. The evolution of residual strength versus oxidation temperature and time and applied cycle number curves of non-oxide and oxide/oxide CMCs is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbiao Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L. (2020). Time-, Stress-, and Cycle-Dependent Tensile Strength of Fiber-Reinforced Ceramic-Matrix Composites. In: Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures. Advanced Ceramics and Composites, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-15-3274-0_3

Download citation

Publish with us

Policies and ethics