Skip to main content

Time-Dependent First Matrix Cracking Stress of Ceramic-Matrix Composites at Elevated Temperatures

  • Chapter
  • First Online:
Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Part of the book series: Advanced Ceramics and Composites ((ACC,volume 1))

  • 187 Accesses

Abstract

In this chapter, the time-dependent first matrix cracking stress of fiber-reinforced ceramic-matrix composites (CMCs) is investigated using the energy balance approach. The shear-lag model combined with the interface oxidation model, fiber oxidation model, and fiber failure model is adopted to analyze the microstress distributions in fiber-reinforced CMCs. The relationships between the first matrix cracking stress, interface debonding and slip, fiber fracture, and oxidation time and temperature are established. The effects of the fiber volume, the interface shear stress, the interface debonding energy, the fiber Weibull modulus, the fiber strength on the first matrix cracking stress, the interface debonding length, and the fiber broken fraction are analyzed. The first matrix cracking stresses of C/SiC with strong and weak interface bonding after unstressed oxidation at 700 °C in air atmosphere are predicted for different oxidation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbiao Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L. (2020). Time-Dependent First Matrix Cracking Stress of Ceramic-Matrix Composites at Elevated Temperatures. In: Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures. Advanced Ceramics and Composites, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-15-3274-0_1

Download citation

Publish with us

Policies and ethics