Skip to main content

Multistep Approach for Nonlinear Fractional Bloch System Using Adomian Decomposition Techniques

  • Conference paper
  • First Online:
Fractional Calculus (ICFDA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 303))

  • 788 Accesses

Abstract

In this chapter, a superb multistep approach, based on the Adomian decomposition method (ADM), is successfully implemented for solving nonlinear fractional Bolch system over a vast interval, numerically. This approach is demonstrated by studying the dynamical behavior of the fractional Bolch equations (FBEs) at different values of fractional order \(\alpha \) in the sense of Caputo concept over a sequence of the considerable domain. Further, the numerical comparison between the proposed approach and implicit Runge–Kutta method is discussed by providing an illustrated example. The gained results reveal that the MADM is a systematic technique in obtaining a feasible solution for many nonlinear systems of fractional order arising in natural sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matuszak, Z.: Fractional Bloch’s equations approach to magnetic relaxation. Curr. Topics Biophys. 37, 9–22 (2014)

    Article  Google Scholar 

  2. Petras, I.: Modeling and numerical analysis of fractional order Bloch equations. Comp. Math. Appl. 61, 341–56 (2011)

    Article  MathSciNet  Google Scholar 

  3. Singh, H.: A new numerical algorithm for fractional model of Bloch equation in nuclear magnetic resonance. Alexandria Eng. J. 55, 2863–2869 (2016)

    Article  Google Scholar 

  4. Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical solution of boundary value problems for ordinary differential equations. Classics Appl. Math. 13 (1995)

    Google Scholar 

  5. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.L.: Transient chaos in fractional Bloch equations. Comput. Math. Appl. 64, 3367–3376 (2012)

    Article  Google Scholar 

  6. Magin, R., Li, W., Velasco, M., Trujillo, J., Reiter, D., Morgenstern, A., Spencer, R.: J. Magn. Reson. 210(2), 184 (2011)

    Google Scholar 

  7. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.L.: Fractional Bloch equation with delay. Comput. Math. Appl. 61(5), 1355–1365 (2011)

    Article  MathSciNet  Google Scholar 

  8. Hajipour, M., Jajarmi, A., Baleanu, D.: An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J. Comput. Nonlinear Dyn. 13, (2018). In press

    Google Scholar 

  9. Kumar, S., Faraz, N., Sayevand, K.: A fractional model of Bloch equation in NMR and its analytic approximate solution. Walailak J. Sci. Technol. 11(4), 273–285 (2014)

    Google Scholar 

  10. Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical simulation of the fractional Bloch equations. J. Comput. Appl. Math. 255, 635–651 (2014)

    Article  MathSciNet  Google Scholar 

  11. Singh, H., Singh, C.S.: A reliable method based on second kind Chebyshev polynomial for the fractional model of Bloch equation. Alexandria Eng. J. (2017). In press

    Google Scholar 

  12. Abuteen, E., Momani, S., Alawneh, A.: Solving the fractional nonlinear Bloch system using the multi-step generalized differential transform method. Comput. Math. Appl. 68, 2124–2132 (2014)

    Article  MathSciNet  Google Scholar 

  13. Herrmann, R.: Fractional calculus: an introduction for physicists. World Scientific (2014)

    Google Scholar 

  14. Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)

    Article  MathSciNet  Google Scholar 

  15. Abu Arqub, O., Al-Smadi, M.: Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space, Chaos Solitons & Fractals (2018). In press

    Google Scholar 

  16. Abu Arqub, O., Odibat, Z., Al-Smadi, M.: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn., 1–16 (2018)

    Google Scholar 

  17. Moaddy, K., Freihat, A., Al-Smadi, M., Abuteen, E., Hashim, I.: Numerical investigation for handling fractional-order Rabinovich-Fabrikant model using the multistep approach. Soft Comput. 22(3), 773–782 (2018)

    Article  Google Scholar 

  18. Agarwal, P., Chand, M., Baleanu, D., O’Regan, D., Jain, S.: On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018(1), 249 (2018)

    Article  MathSciNet  Google Scholar 

  19. Khalil, H., Khan, R.A., Al-Smadi, M., Freihat, A.: Approximation of solution of time fractional order three-dimensional heat conduction problems with Jacobi Polynomials. Punjab Univ. J. Math. 47(1), 35–56 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Agarwal, P., Al-Mdallal, Q., Cho, Y.J., Jain, S.: Fractional differential equations for the generalized Mittag-Leffler function. Adv. Differ. Equ. 2018(1), 58 (2018)

    Article  MathSciNet  Google Scholar 

  21. Agarwal, P., El-Sayed, A.A.: Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation. Phys. A: Stat. Mech. Appl. 500, 40–49 (2018)

    Article  MathSciNet  Google Scholar 

  22. Alaroud, M., Al-Smadi, M., Ahmad, R.R., Salma Din, U.K.: Computational optimization of residual power series algorithm for certain classes of fuzzy fractional differential equations. Int. J. Differ. Equ. 2018, 1–11 (2018). Art. ID 8686502

    Article  MathSciNet  Google Scholar 

  23. Al-Smadi, M.: Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Eng. J. (2017). In press. https://doi.org/10.1016/j.asej.2017.04.006

    Article  Google Scholar 

  24. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Partial Differ. Equ., 1–21 (2017). https://doi.org/10.1002/num.22209

    Article  MathSciNet  Google Scholar 

  25. Al-Smadi, M., Abu Arqub, O., Shawagfeh, N., Momani, S.: Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl. Math. Comput. 291, 137–148 (2016)

    Article  MathSciNet  Google Scholar 

  26. Agarwal, P., Choi, J., Jain, S., Rashidi, M.M.: Certain integrals associated with generalized Mittag-Leffler function. Commun. Korean Math. Soc 32(1), 29–38 (2017)

    Article  MathSciNet  Google Scholar 

  27. Agarwal, P., Berdyshev, A., Karimov, E.: Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math. 71(3–4), 1235–1257 (2017)

    Article  MathSciNet  Google Scholar 

  28. Agarwal, P., Jain, S., Mansour, T.: Further extended Caputo fractional derivative operator and its applications. Russian J. Math. Phys. 24(4), 415–425 (2017)

    Article  MathSciNet  Google Scholar 

  29. Abuteen, E., Freihat, A., Al-Smadi, M., Khalil, H., Khan, R.A.: Approximate series solution of nonlinear, fractional Klein-Gordon equations using fractional reduced differential transform method. J. Math. Stat. 12(1), 23–33 (2016)

    Article  Google Scholar 

  30. Khalil, H., Khan, R.A., Al-Smadi, M., Freihat, A., Shawagfeh, N.: New operational matrix for Shifted Legendre polynomials and fractional differential equations with variable coefficients. Punjab Univ. J. Math. 47(1), 81–103 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Abu-Gdairi, R., Al-Smadi, M., Gumah, G.: An expansion iterative technique for handling fractional differential equations using fractional power series scheme. J. Math. Stat. 11(2), 29–38 (2015)

    Article  Google Scholar 

  32. Adomian, G., Rach, R.C., Meyers, R.E.: Numerical integration, analytic continuation, and decomposition. Appl. Math. Comput. 88, 95–116 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Wazwaz, A.M.: The modified Adomian decomposition method for solving linear and nonlinear boundary value problems of tenth-order and twelfthorder. Int. J. Nonlinear Sci. Numer. Simul. 1, 17–24 (2000)

    Article  MathSciNet  Google Scholar 

  34. Wazwaz, A.M.: A note on using Adomian decomposition method for solving boundary value problems. Found. Phys. Lett. 13, 493–498 (2000)

    Article  MathSciNet  Google Scholar 

  35. Ebadi, G., Rashedi, S.: The extended Adomian decomposition method for fourth order boundary value problems. Acta Univ. Apulensis 22, 65–78 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Al-Smadi, M., Freihat, A., Khalil, H., Momani, S., Khan, R.A.: Numerical multistep approach for solving fractional partial differential equations. Int. J. Computat. Methods 14(1750029), 1–15 (2017). https://doi.org/10.1142/S0219876217500293

    Article  MathSciNet  MATH  Google Scholar 

  37. Al-Smadi, M., Freihat, A., Abu Hammad, M., Momani, S., Abu Arqub, O.: Analytical approximations of partial differential equations of fractional order with multistep approach. J. Comput. Theor. Nanosci. 13(11), 7793–7801

    Article  Google Scholar 

  38. Momani, S., Abu Arqub, O., Freihat, A., Al-Smadi, M.: Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes. Appl. Comput. Math. 15(3), 319–330 (2016)

    Google Scholar 

  39. Odibat, Z.M., Bertelle, C., Aziz-Alaoui, M.A., Duchamp, G.H.E.: A multi-step differential transform method and application to non-chaotic or chaotic systems. Comput. Math. Appl. 59, 1462–1472 (2010)

    Article  MathSciNet  Google Scholar 

  40. Gokdog\(\widehat{a}\)n, A., Merdan, M., Yıldırım, A.: Adaptive multi-step differential transformation method for solving nonlinear equations. Math. Comput. Model. 55(3–4), 761–769 (2012)

    Google Scholar 

  41. Jafari, H., Daftardar-Gejji, V.: Solving a system of nonlinear fractional differential equations using Adomian decomposition. J. Comput. Appl. Math. 196, 644–651 (2006)

    Article  MathSciNet  Google Scholar 

  42. Magin, R., Feng, X., Baleanu, D.: Solving the fractional order Bloch equation. Concepts Magn. Reson. Part A 34A(1), 16–23 (2009)

    Article  Google Scholar 

  43. Velasco, M., Trujillo, J., Reiter, D., Spencer, R., Li, W., Magin, R.: Anomalous fractional order models of NMR relaxation, In: Proceedings of FDA’10, the 4th IFAC Workshop Fractional Differentiation and its Applications, Vol. 1, 2010. Paper number FDA10-058

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaher Momani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Freihat, A., Hasan, S., Al-Smadi, M., Arqub, O.A., Momani, S. (2019). Multistep Approach for Nonlinear Fractional Bloch System Using Adomian Decomposition Techniques. In: Agarwal, P., Baleanu, D., Chen, Y., Momani, S., Machado, J. (eds) Fractional Calculus. ICFDA 2018. Springer Proceedings in Mathematics & Statistics, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-15-0430-3_9

Download citation

Publish with us

Policies and ethics