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Abstract— Osteoarthritis (OA) causes progressive degeneration 
of articular cartilage and pathological changes in subchondral 
bone, conventionally assessed volumetrically using micro-
computed tomography (μCT) imaging in vitro. The local binary 
patterns (LBP) method has recently been suggested as a new 
alternative solution to perform analysis of local bone structures 
from μCT scans. In this study, a novel 3D LBP-based method to 
provide a new lead in bone microstructural analysis is proposed. 
In addition to the detailed description of the method, this 
solution is tested using µCT data of OA human trabecular bone 
samples, harvested from patients treated with total knee 
arthroplasty. The method was applied to correlate the 
distribution of orientations of local patterns with the severity of 
the disease. The local orientations of the bone fibers changed 
along the severity of OA, suggesting an adaptation of the bone 
to the disease. The structural parameters derived from the 
process were able to provide a new approach for the assessment 
of the disease, supporting the potential of this volumetric LBP-
based method to assess trabecular bone changes. 
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I. INTRODUCTION  

The bone can be divided in two different structures: the 
trabecular bone and the cortical bone surrounding it. While 
the dense cortical part provides the rigidity and bending 
resistance of the bone, the trabeculae, corresponding to the 
inner part, is metabolically more active. As suggested already 
in the 19th century by Wolff´s law [1], the trabecular bone 
adapts itself to environmental changes, such as daily loadings. 
Not only its architecture is highly correlated with strength, but 
it can also provide symptomatic indications of diseases [2]. 
Due to these characteristics, the trabecular part of the bone is 
at upmost interest in studies of bone adaptation to conditions 
such as osteoporosis (OP) or osteoarthritis (OA) [3]. While 
OP corresponds to a bone loss and an increase of the bone 
fragility [4], OA is a disease of the whole joint causing – 
among other things – a remodeling of the subchondral bone 
(bone area below the cartilage) [5]. 

Different imaging modalities are available to assess the 
trabecular architecture clinically (e.g., X-ray, computed 
tomography (CT)). However, to perform accurate analysis of 
the bone structures, devices with higher resolutions are 

required. For this purpose, micro-CT (µCT) is a good 
alternative, as the imaging technique is similar to the clinical 
CT one, but at micro-scale level instead of macro-scale level. 
Beside its high resolution, a main asset of µCT is its capability 
of provide volumetric data of microstructures [6]. While 
applied to bone samples, it allows to visualize the organization 
of the trabeculae and obtain information related to its density, 
and eventually on the strength of the bone. Multiple artefacts 
can affect the µCT scans, the main two for structure analysis 
being: the partial volume effect (bone not totally within the 
voxel) [7] and the beam hardening (inconstant brightness 
within the stack of images) [8]. Thus, the development of 
methods unaffected by these issues is a challenging topic to 
be addressed in bone structural analysis. 

Conventional bone analysis consists on the binarization of 
the data from a threshold believed to represent the minimum 
greyscale value of the bone, to generate a 3D model. Then 
several parameters of the trabecular bone are calculated from 
this model to assess the bone inner architecture [6]. The main 
limitation of the conventional method is that the information 
related to the pixel values are ignored in the analysis. An 
alternative method using local binary patterns (LBP) [9], was 
recently suggested to assess trabecular bone structures [10]. 
The low sensitivity of the LBP for monotonic greyscale 
variations [9] makes it ideal for medical image processing. 
One of the main asset of LBP –based method on bone 
microarchitecture studies, is that the local distribution of 
patterns can be assessed not only in 2 dimensions (2D), but 
also in 3D by applying the analysis on multiple slices 
simultaneously. Recent studies applied the method in 1D and 
2D on plain radiographic imaging [10-11] and 2D slice-by-
slice in µCT imaging [12]. The results obtained showed the 
potential of this new tool to assess OA, and eventually a full 
3D approach was suggested [13], providing a better 
understanding of bone-related changes of OA. 

The aim of this paper is to describe in details the 3D LBP -
based method previously reported [13]. The methodological 
concepts introduced here were developed to get a real 
volumetric investigation of the bone by multi-slice analysis. 
The method was applied to human OA bone sample scans, to 
correlate different structural parameters derived from the 
method, with the severity of OA from histopathology grading. 



II.  BONE STRUCTURAL ANALYSIS USING LBP METHOD  

A. Basics of 3D LBP applied to bone structural analysis 

The neighbors of a central (studied) voxel are evaluated to 
assess if some have an equal or higher grey level values than 
the studied voxel. Based on the location of these occurrences 
(markers), a local pattern is derived from a corresponding 
weight matrix. The pattern depicts the local structure 
surrounding the studied voxel and it can provide an 
information on the nature of the neighborhood: such as edges, 
contours and flat regions. The local structure s of each 
neighbor within a region of interest is calculated by the 
following function: LBP =  ∑ 𝑠 𝑔 − 𝑔𝑐 ,−=        𝑠 𝑥 = { ,    𝑥 ≥,    𝑥 < , (1) 

where n is the amount of neighbors evaluated, 𝑔  the grey 
level value of the k-th neighbor, and 𝑔𝑐 the value of the central 
(studied) voxel. The final amount of different possible 
patterns is 2n, being ≈67 million in the example in Fig.1 (n=26 
neighbors). However, it has to be noted that some patterns are 
redundant in structural analysis, and that they need to be 
grouped, based on their identical local structures. 

Typically, in image texture analysis using LBP method, 
every pixels are assessed and a 2n-sized histogram is 
generated, with n being the amount of neighbors considered 
in the analysis. For 3D LBP applied to structural analysis of 
volumetric data, the concept is similar except that the method 
is applied solely to the relevant voxels within or at the edge of 
the bone, ignoring the “empty spaces” in the analysis. 

B. Spherical approach and grouping of patterns 

To improve the cubic representation of the method (Fig. 1) 
by taking into consideration the distance between voxels, a 
sphere is created with equidistant neighbors fitted on it. While 
the studied voxel is the center of the sphere, the grey level 
value of each neighbor is interpolated from its surrounding 
voxels values. 

 

Fig. 1 Cubic 3D-LBP. A) A center pixel 𝑔𝑐 and its 26 neighbors; B) basic 
LBP: original picture in left with grey center pixel, weight matrix in right 
with relevant values bolded (Id= 23+26+212+214+215+223+224= 25,219,144). 

The number of voxels from which the neighbors are 
interpolated depends on the location and varies between 1 
(neighbor at the center of a voxel) and 8 voxels (4 voxels in 2 
consecutive slices). The amount of neighbors required to 
cover the volumetric aspect of the analysis is based on the 
radius of the sphere. A minimum of 26 neighbors can be 
suggested for a sphere with radius 1, this number requires to 
be higher for bigger spheres.  

Due to the huge amount of possible patterns (>67 millions) 
in volumetric analysis, a grouping of redundant / similar 
patterns is required. Therefore, we propose to group the 
patterns by their main orientations using Principal Component 
Analysis (PCA). This method can provide both an angle 
corresponding to the elevation between 0° and 90°, and an 
angle corresponding to the azimuth between 0° and 180° 
(Fig.2A). Eventually, the elevation represents the angle 
between the horizontal and vertical planes, while the azimuth 
angle provides information in the horizontal plane. To 
perform PCA, the position of the markers on the sphere is used 
and the main orientation of the pattern is then derived from it 
(Fig.2B). The axis obtained from PCA is then converted in 
elevation and azimuth angles. 

 

Fig. 2 PCA to evaluate elevation and azimuth angles. A) Representation of 
the angles; B) PCA analysis from the markers (red dots). 

Before grouping the patterns from the angles obtained, the 
consistency of the PCA is assessed. This is performed by 
evaluating how sparse are the markers towards the axis 
obtained by PCA. For this purpose, if any non-marker (blue 
dots in the Fig. 2B) is closer to the axis than the markers, it 
suggests that the pattern is non-uniform. A representation of 
patterns uniformity is provided in Fig. 3. 

 

Fig. 3 Patterns uniformity. Left: Uniform pattern; right: non-uniform 
pattern (the blue and red volumes cross each other’s). 



III.  EXPERIMENT: APPLICATION TO HUMAN OA SAMPLES  

A. Sample preparation, OA grading and  imaging 

The samples and their preparation have been described in 
details previously [12-13]. Briefly, 24 osteochondral samples, 
obtained from tibial plateus, were prepared from 14 patients 
with OA (age 76 ± 9 years), treated with total knee 
arthroplasty at Oulu University Hospital. Sample collection 
and their use were approved by the Ethical Committee of the 
Northern Ostrobothnia Hospital District, Oulu, Finland. 

The severity of OA was analyzed from the histological 
sections of the samples using the standardized OARSI grading 
system [14]. The final OARSI grade was calculated by 
averaging the values obtained by three evaluators. Samples 
were scanned with a µCT device at isotropic voxel size of 27.8 
µm (Skyscan 1172, Bruker microCT, Kontich, Belgium). The 
scanned trabecular bone was located below the subchondral 
plate of the proximal tibia.  

The µCT scans were then segmented with a fully automatic 
custom-made algorithm developed in a numerical computing 
environment and programming language (MATLAB version 
R2013b, MathWorks, Natick, Massachusetts, USA). The 
script separated the bone and its edges from the irrelevant 
empty spaces using a threshold value derived from the 
average minimum value returned by Otsu method [15] applied 
to the whole stack of data. An example of a segmented slice 
using the method is provided in Fig. 4. 

 
Fig. 4 Data segmentation. Left: original slice; right: segmented data, in 
white the bone and in grey its edges assessed from multi-slices analysis. 

B. Patterns grouping 

After the segmentation, the 3D LBP –based analysis was 
performed on the relevant voxels to assess the patterns 
structures, their 3D orientation and the amount of markers of 
each of them. The method was applied using a sphere with 
radius 1 and 26 neighbors. Since only the proximal-distal axis 
was known, only the elevation angle was assessed in the 
analysis. The elevation angles were grouped every 15°, from 
0° (horizontal axis) to 90° (vertical, parallel to the distal-
proximal axis). The uniformity test was applied for all the 
patterns to keep only the relevant data in the structural 
analysis. A distribution of the local elevation angles is 
provided in Fig. 5. 

 

Fig. 5 Distribution of elevation angles within a µCT slice. 

C. Definition of the structural parameters 

All the data processing part was performed with a custom-
made algorithm developed in MATLAB. For each sample, 
various parameters were assessed from the 3D LBP method: 
 The mean amount of markers: corresponds to the mean 
amount of markers (1-26) for all the local patterns of the 
sample pooled together. 
 The amount of different patterns: for 26 neighbors, the 
maximum amount of different patterns is ≈67 million. This 
parameter provides a count of all the different local patterns 
recognized within the sample. 
 The entropy of local patterns: describes the randomness 
of local patterns and is calculated as follows: 𝐸 =  − ∑ 𝑃 𝑙𝑜𝑔 𝑃   (2) 

where Pi contains the count of a specific local pattern i 
occurring in the data. If an image contains only one local 
pattern, the entropy of the patterns within the image is zero. 
 The entropy of elevation: describes the randomness of 
elevation values. Similar equation than (2), where Pi contains 
the count of a specific elevation angle i occurring in the data. 
If an image contains only one elevation angle, the entropy of 
the elevation angle within the image is zero. 
 The homogeneity of the elevation: Describe spatial 
distribution of the elevation angle and provides indication on 
its continuity. An angle-level co-occurrence matrix (ALCM) 
was first calculated with volumetric rotational invariance, to 
assess the spatial distribution of the elevation angle. The 
homogeneity of the elevation was then calculated from the 
ALCM as such: 𝐻𝑒 𝑒𝑣𝑎𝑡 =  ∑ 𝐴 𝐶 ,+| − |  ,    (3) 

where each element (i,j) in the ALCM is the sum of the 
occurrences that a voxel with elevation i has a voxel with 
elevation j in its vicinity (one voxel-size radius). Eventually, 
a high value of homogeneity of the elevation corresponds to 
data with consecutive voxels with similar elevation angles. 
 The average elevation: provides the mean elevation angle 
of the sample when the orientations of all the studied voxels 
are pooled together. 



D. Structural parameters versus severity of the disease 

The OARSI grades obtained were considered as the 
ground truth for OA severity with a distribution from 0.89 to 
6.25 (mean 3.51 ± 1.69). The statistical analyses were 
performed using SPSS statistical software (version 20.0; 
SPSS, Chicago, Illinois, USA). For all analysis, Pearson’s 
linear correlation coefficients were calculated between the 
OARSI grade and the parameters derived from 3D LBP-based 
method (see Table I). 

Table 1 Pearson correlation coefficients between the structural parameters 
and the OARSI grades. N=24. 

 Edges Bone Total 

Mean amount markers 0,79*** 0,83*** 0,82*** 

Amount different patterns 0,43* 0,68*** 0,68*** 

Entropy patterns 0,67*** 0,79*** 0,79*** 

Entropy elevation 0,49* 0,57**  0,53** 

Homogeneity elevation -0,58** -0,75***  -0,71***  

Average elevation -0,37 -0,37 -0,36 

*p<0.05, **p<0.01, *** p<0.001 

Similarly to the results obtained previously in the study of 
Hirvasniemi et al. [11] and from the previous 2D [12] and 3D 
[13] analysis of the same µCT data, the entropy of local 
patterns is proportionate to the increase of OA severity. These 
results suggests that “new” local patterns occur with an 
increase of OA level, which could be explained by the 
appearance of bone sclerosis at higher OARSI grades [14]. 
This hypothesis is further supported by the increase of amount 
of different patterns with OA. With OA, the trabecular bone 
tends to compensate the degeneration of the overlying 
cartilage by changing the orientation of its fibers, indicating a 
local regulation of bone metabolism (i.e., osteoclast 
regulation). As suggested in the Table I, the average elevation 
of the voxels decreases with OA, meaning that some fibers 
parallel to the cartilage orientation are created, making 
connections between vertical fibers. These “bridges” are 
clearly visible in the Fig. 5 (in blue), as they connect the 
“original” fibers (in yellow). Due to its characteristic, the 
homogeneity of the elevation provides better information than 
its entropy, as it assess the continuity of the angles while the 
entropy assess the general distribution.  

The slight difference in the reported results here compared 
to the previous study [13] is related to the segmentation which 
was performed fully automatically in this study, from an 
algorithm based on structure continuity to extract edges in 3D. 
The analysis of edges is highly influenced by the partial 
volume effect and the restricted amount of considered voxels 
can explain the slightly “weaker” results. However, this 
distinction between edges and bone should be further 
investigated with larger data and also for other bone 
conditions such as OP. 

IV.  CONCLUSION 

This study describe a novel 3D LBP –based method to 
perform fully automatic volumetric bone structural analysis of 
µCT data. While conventional bone structural analysis 
ignores the grey level value information of the data, the 
method here is directly based on the local distribution of the 
voxel values. Furthermore, the results obtained from the LBP-
derived structural parameters were able to assess the local 
changes in the trabecular bone with OA, and as such, validate 
the potential of this approach for microstructural bone 
analysis. Further developments of the method should be 
performed to adapt it to clinical modalities and to provide a 
better estimation of the disease severity. 
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