Skip to main content

Chronic administration of the antidepressant phenelzine and its N-acetyl analogue: effects on GABAergic function

  • Conference paper
Book cover Amine Oxidases: Function and Dysfunction

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 41))

Summary

The MAO inhibitor phenelzine (2-phenylethylhydrazine; PLZ) is used widely in psychiatry for the treatment of depression and panic disorder. Its N-acetyl metabolite, N2-acetylphenelzine (N2AcPLZ) is a reasonably potent nonselective inhibitor of monoamine oxidase (MAO) that causes elevation in brain levels of the biogenic amines. In the studies reported here, PLZ (0.05 mmol/kg/day), N2AcPLZ (0.10 mmol/kg/day) or vehicle were administered to male rats for 28 days s.c. with Alzet minipumps, and their effects on GABAergic function were examined. Whole brain concentrations of γ-aminobutyric acid (GABA) were significantly elevated in the PLZ but not in the N2AcPLZ-treated group. PLZ was found to inhibit the anabolic enzyme glutamic acid decarboxylase (GAD) and, to a greater extent, the catabolic enzyme GABA transaminase (GABA-T). The results of these investigations suggest that the free hydra-zine moiety in PLZ is crucial to producing the elevated levels of GABA, probably through inhibition of GABA-T. Despite the considerable increase in whole brain GABA levels in the PLZ-treated rats, there were no significant differences in GABAA or benzodiazepine receptor binding parameters (KD or Bmax) between the groups as measured using 3H-muscimol and 3H-flunitrazepam in radioligand binding assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers RW, Brady RO (1958) The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey. J Biol Chem 234: 296–298.

    Google Scholar 

  • Baker GB, Wong JTF, Yeung JM, Coutts RT (1991) Effects of the antidepressant phenelzine on brain levels of γ-aminobutyric acid (GABA). J Affect Dis 21: 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Breslow MF, Faukhauser MP, Potter RL, Meredith KE, Misiaszek J, Hope DG (1989) Role of γ-aminobutyric acid in antipanic drug efficacy. Am J Psychiatry 146: 353–356.

    PubMed  CAS  Google Scholar 

  • Bristow DR, Martin IL (1990) Biochemical characterization of an isolated and functionally reconstituted γ-aminobutyric acid/benzodiazepine receptor. J Neurochem 54: 751–761.

    Article  PubMed  CAS  Google Scholar 

  • Danielson TJ, Coutts RT, Baker GB, Rubens M (1984) Studies in vivo and in vitro on N-acetylphenelzine. Proc West Pharmacol Soc 27: 507–510.

    PubMed  CAS  Google Scholar 

  • Ito Y, Lim DK, Hoskins B, Ho IK (1988) Bicuculline up-regulation of GABAA receptors in rat brain. J Neurochem 51: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Kimber JR, Cross JA, Horton RW (1987) Benzodiazepine and GABAA receptors in rat brain following chronic antidepressant drug administration. Biochem Pharmacol 36: 4175–4176.

    Article  Google Scholar 

  • Lloyd KG, Zivkovic B, Scatton B, Morselli PL, Bartholini G (1989) The GABAergic hypothesis of depression. Prog Neuropsychopharmacol Biol Psychiatry 13: 341–351.

    Article  PubMed  CAS  Google Scholar 

  • Martin IL, Candy JM (1978) Facilitation of benzodiazepine binding by sodium chloride and GABA. Neuropharmacology 17: 993–998.

    Article  PubMed  CAS  Google Scholar 

  • McKenna KF, Baker GB, Coutts RT (1991) N2-Acetylphenelzine: effects on rat brain GABA, alanine and biogenic amines. Naunyn Schmiedebergs Arch Pharmacol 343: 478–482.

    Article  PubMed  CAS  Google Scholar 

  • McManus DJ, Baker GB, Martin IL, Greenshaw AJ, McKenna KF (1992) Effects of the antidepressant/antipanic drug phenelzine on GABA concentrations and GABA-transaminase activity in rat brain. Biochem Pharmacol 43: 2486–2489.

    Article  PubMed  CAS  Google Scholar 

  • McManus DJ, Greenshaw AJ (1991a) Differential effects of chronic antidepressants in behavioural tests of β-adrenergic and GABAB receptor function. Psychopharmacology (Berl) 103: 204–208.

    Article  CAS  Google Scholar 

  • McManus DJ, Greenshaw AJ (1991b) Differential effects of antidepressants on GABAB and β-adrenergic receptors in rat cerebral cortex. Biochem Pharmacol 42: 1525–1528.

    Article  PubMed  CAS  Google Scholar 

  • Murphy DL, Aulakh CS, Garrick NA, Sunderland T (1987) Monoamine oxidase inhibitors as antidepressants: implications for the mechanism of action of antidepressants and the psychobiology of the affective disorders and some related disorders. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 545–552.

    Google Scholar 

  • Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJS, Sonnewald U, Braestrup C (1991) Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol 196: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Hansen S (1973) Sustained drug-induced elevation of brain GABA in the rat. J Neurochem 21: 1167–1175.

    Article  PubMed  CAS  Google Scholar 

  • Petty F, Kramer GL, Dunnam D, Rush AJ (1990) Plasma GABA in mood disorders. Psychopharmacol Bull 26: 157–161.

    PubMed  CAS  Google Scholar 

  • Philips SR, Boulton AA (1979) The effect of monoamine oxidase inhibitors on some arylalkylamines in rat striatum. J Neurochem 33: 159–167.

    Article  PubMed  CAS  Google Scholar 

  • Popov N, Matthies H (1969) Some effects of monoamine oxidase inhibitors on the metabolism of γ-aminobutyric acid in rat brain. J Neurochem 16: 899–907.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RD, Skolnick P, Seale TW, Paul SM (1986) Demonstration of GABA-barbiturate-receptor-mediated chloride transport in rat brain synaptoneurosomes: functional assay of GABA receptor coupling. Adv Biochem Psychopharmacol 41: 33–49.

    PubMed  CAS  Google Scholar 

  • Sterri SH, Fonnum F (1978) Isolation of organic anions by extraction with liquid anion exchangers and its application to micromethods for acetylcholinesterase and 4-aminobutyrate aminotransferase. Eur J Biochem 91: 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Suranyi-Cadotte BE, Bodnoff SR, Welner SA (1990) Antidepressant-anxiolytic interaction: involvement of the benzodiazepine-GABA and serotonin systems. Prog Neuropsychopharmacol Biol Psychiatry 14: 633–654.

    Article  PubMed  CAS  Google Scholar 

  • Todd KG, Yamada N, Takahashi S, McKenna KF, Baker GB, Coutts RT (1991) Comparison of the effects of 2-phenylethylhydrazine (phenelzine) and some substituted hydrazine MAO inhibitors on monoaminergic and GABAergic mechanisms in rat brain. Proc. 15th Ann Meet Can Coll Neuropsychopharmacol, Saskatoon, Canada, p W-13.

    Google Scholar 

  • Unnerstahl JR, Kuhar MJ, Niehoff DL, Palacios JM (1981) Benzodiazepine receptors are coupled to a subpopulation of γ-aminobutyric acid (GABA) receptors: evidence from a quantitative autoradiographic study. J Pharmacol Exp Ther 218: 797–804.

    Google Scholar 

  • Wong JTF, Baker GB, Coutts RT, Dewhurst WG (1990a) Long-lasting elevation of alanine in brain produced by the antidepressant phenelzine. Brain Res Bull 25: 179–181.

    Article  PubMed  CAS  Google Scholar 

  • Wong JTF, Baker GB, Coutts RT (1990b) A rapid, sensitive assay for y-aminobutyric acid in brain using electron-capture gas chromatography. Res Commun Chem Path Pharmacol 70: 115–124.

    CAS  Google Scholar 

  • Yu PH, Boulton AA (1992) A comparison of the effect of brofaromine, phenelzine and tranylcypromine on the activities of some enzymes involved in the metabolism of different neurotransmitters. Res Commun Chem Path Pathol 16: 141–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

McKenna, K.F., McManus, D.J., Baker, G.B., Coutts, R.T. (1994). Chronic administration of the antidepressant phenelzine and its N-acetyl analogue: effects on GABAergic function. In: Tipton, K.F., Youdim, M.B.H., Barwell, C.J., Callingham, B.A., Lyles, G.A. (eds) Amine Oxidases: Function and Dysfunction. Journal of Neural Transmission, vol 41. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9324-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9324-2_15

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82521-1

  • Online ISBN: 978-3-7091-9324-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics