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Abstract. We present a method for automatic fence insertion in con-
current programs running under weak memory models that provides the
best known trade-off between efficiency and optimality. On the one hand,
the method can efficiently handle complex aspects of program behaviors
such as unbounded buffers and large numbers of processes. On the other
hand, it is able to find small sets of fences needed for ensuring correctness
of the program. To this end, we propose a novel notion of correctness,
called persistence, that compares the behavior of the program under the
weak memory semantics with that under the classical interleaving (SC)
semantics. We instantiate our framework for the Total Store Ordering
(TSO) memory model, and give an algorithm that reduces the fence in-
sertion problem under TSO to the reachability problem for programs
running under SC. Furthermore, we provide an abstraction scheme that
substantially increases scalability to large numbers of processes. Based
on our method, we have implemented a tool and run it successfully on a
wide range benchmarks.

1 Introduction

Most modern processor architectures implement weak (relaxed) memory models
for performance reasons [2,15]. However, this comes at a price since a program
may exhibit behaviors that deviate substantially from its behaviors under the
usual Sequentially Consistent (SC) semantics. The standard way to eliminate
the undesired behaviors is to insert memory fence instructions that typically
prevent reordering of instructions issued before and after the fence. The most
common model corresponds to TSO (for Total Store Ordering) that is adopted
by Sun’s SPARC multiprocessors and x86 multiprocessors [25,26].

Challenge. An important problem in concurrent programming is to find sets of
fences that ensure program correctness without compromising efficiency. Manual
fence placement is time-consuming and error-prone due to complex behaviors
introduced by weak memory models. The challenge then is to develop methods
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for automatic fence placement. A fence insertion algorithm requires an underlying
verification algorithm that checks the correctness of the program for a given set
of fences. This is necessary in order to be able to decide whether the current
set of fences is sufficient, or whether additional fences are needed to achieve
correctness. Designing such an algorithm is hard since we face a crucial trade-off
between two criteria, namely:

• Efficiency. The algorithm needs to be able to carry out efficient analysis of
complex program behaviors that arise due to intricate reorderings of program
events. This complexity is for instance reflected by the fact that standard oper-
ational definitions for weak memory models [25,26] use unbounded store-buffer
semantics, thus giving rise to an infinite state space even in the case where the
original program is finite-state. Furthermore, since we are dealing with concur-
rent programs, the algorithm should scale well when increasing the number of
processes and the number of variables.

• Optimality. The algorithm should derive sets of fences that are as close to
optimal as possible. More precisely, we are required to avoid under-fencing, i.e.,
inserting too few fences since this would result in unsound program behaviors;
and avoid over-fencing, i.e., inserting too many fences since this would result in
a degradation of program performance (see e.g., [3,14,9,13], for descriptions of
the high cost of fences on CPU-intensive concurrent programs).

In this context, identifying “good correctness properties” is crucial since a
given property represents a particular choice in the trade-off between efficiency
and optimality. For instance, at one extreme, we may require that the program
is data race free (Drf) under SC (e.g. [24,22]). However, this will cause over-
fencing, and hence failing the optimality criterion (see §2). In fact, some data
races are in reality not harmful. For example, two racy implementations of a
work-stealing queue [23,19] perform well under TSO without requiring fences.
At the other extreme, we may consider SC properties such as safety and liveness
properties. This would result in smaller sets of fences than in the previous case,
but the verification problem becomes significantly harder (a non-primitive recur-
sive lower-bound) or even undecidable [6,7], thus failing the efficiency criterion.
Between these two extremes, the works in [11,5,9] consider the robustness (called
also stability) property, i.e., checking whether a program generates the same set
of traces à la Shasa and Snir [27] under weak memory and SC semantics. Robust-
ness represents a correctness criterion between Drf property and SC properties
since it is a weaker condition than the former and hence it would generate smaller
sets of fences, while it could be more efficient than the latter since its verification
problem belongs to a lower complexity class for finite-state programs under TSO
(Pspace-Complete [10]). Robustness can be checked through a reduction to
the reachability problem for a set of target programs under SC [9]. However,
checking robustness causes state space explosion (see an explanation in the re-
lated work, §2), and furthermore, robustness may insert unnecessary fences as
demonstrated by our experimental results.
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Contribution. In this paper, we present a tool for automatic fence insertion in
concurrent programs running under TSO that gives a good trade-off between
efficiency and optimality. To this end, we make the following contributions.

• Persistence: We introduce a novel notion of correctness, called persistence,
that as demonstrated by our experimental data provides a good trade-off be-
tween efficiency and optimality. Persistence considers the traces of a program
and extracts two parameters, namely (i) program order: the order in which in-
structions are executed within the same process; and (ii) store order: the order in
which different write operations hit the shared memory. The program is deemed
to be persistent if it generates the same program and store orders under the
TSO and SC semantics. If a program is persistent then it reaches identical sets
of configurations (a configuration is a global state of the program) under TSO
and SC. In particular, if the program is correct wrt. a given safety property
under SC, then it will also be correct wrt. the same property under TSO.

• Pattern: We present an algorithm that automatically reduces the problem of
checking persistence to the problem checking whether a given program exhibits a
certain behavior pattern under SC . Despite the high complexity of the proof, the
definition of the pattern is extremely simple. Crucially, from the efficiency point
of view: (i) we need only to perform one reachability analysis query on a single
target program, and (ii) there is no explosion in the size of the target program,
since it contains the same number of processes, and only two extra variables
compared to the original program (regardless of the number of processes).

• Fence Insertion: We present an algorithm that produces a minimal set of
fences needed to ensure the program is persistent. The set is minimal in the sense
that removing any fence in the set makes the program non-persistent. The algo-
rithm is counter-example-guided, using counter-examples that are produced by
the persistence checking algorithm. The fact that we reduce checking persistence
to reachability analysis of SC programs allows using existing tools for program
verification (we use Spin [16] in the current implementation of our tool).

• Abstraction: We present a general abstraction framework that is compati-
ble with the notion of persistence, in the sense that persistence of the abstract
program implies persistence of the concrete program. We instantiate the frame-
work by defining an abstraction function that allows to reduce the number of
variables, thus significantly limiting the state space explosion problem.

• Tool: We have implemented an open-source and publicly available tool,
called Persist, that we use to evaluate our framework on a wide range of bench-
marks. Persist uses Spin as a backend tool for checking reachability queries for
programs under SC. Since Spin runs on finite-state programs, our experiments
are carried out only on such programs. We do an extensive comparison with
state-of-the-art tools, such as Trencher [9], Memorax [1], Remmex [20] , and
Musketeer [3]. Our data shows that persistence indeed provides a good trade-off
between efficiency and optimality.
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2 Related Work

Fig. 1 shows the relevant correctness criteria ordered according to their strength.
In this paper, we consider the Persistence condition (Per). The strongest condi-
tion is Data Race Freedom (Drf) [24,22] where the program is declared incorrect
in case it contains a trace with a data race. The main drawback of this approach
is over-fencing. In view of this, more precise techniques, based on weaker condi-
tions, have been developed to uncover real violations.

In [24], triangular race freedom (Trf) is introduced where a program is con-
sidered to be correct if the traces of the program under TSO and SC agree on (i)
program order, (ii) store order, and (iii) the source relation (in some works, called
the read-from relation). Condition (iii) records the write operation from which
a given read operation fetches its value. The main limitation of Trf approach
is that it does not come with a method for checking program correctness w.r.t.
Trf. Our approach is a weakening of Trf in the sense that we have removed
the source relation, and therefore using Trf will cause over-fencing compared
to our method. Observe that the pattern for checking persistence (despite the
high complexity of the proof) is similar to the pattern for checking Trf. Hence,
we can remove the read-from relation from TRF without paying a huge cost.

Drf

[24,22]

Trf

[24]

Rob

[27,9]

Per

this paper

SeqCon[21]

Reach[1]

Fig. 1. Correctness criteria

Another weakening of the Trf condition is Robust-
ness (Rob) (known also as stability) [27,11,12,5,9],
where the store order condition is replaced by a
weaker condition, namely variable store order (some-
times called coherence order). The latter considers
the order of memory updates performed on each
variable individually. In [9], a tool (called Trencher)
is provided for exact checking of the robustness cri-
terion. Our approach offers two advantages over this
approach: (i) Efficiency: In [9], the robustness prob-
lem for TSO is reduced to the reachability problem
for a set of target programs under the SC semantics.
However, the number of reachability queries issued, i.e., the size of the set of
target programs, is quadratic in the size of the original program (this number is
given by the number of pairs of instructions that can be reordered). Furthermore,
the reduction triples the number of variables in each target program compared to
the original program. In contrast, we reduce the persistence problem to a single
reachability query for a program under SC which contains only 2 additional
variables compared the original program (regardless of its number of variables
or processes). This means that checking robustness is much more sensitive to the
state space explosion problem than checking persistence (which is also visible
in our experimental results, where we use the same backend tool Spin). (ii)
Optimality: Although the approaches are incomparable in general from the point
of view of optimality (robustness-based analysis may insert fewer or more fences
than persistence-based analysis), the absence of the source relation implies,
in almost all examples, that we insert at most the same number of fences. In fact,
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in several examples, we insert a strict subset of the set of fences inserted by
Trencher. Finally, no abstraction techniques are known for checking robustness.

Tools have been developed for approximate analysis of robustness (e.g.,
[11,12,5,3]). For instance, Musketeer [3] is based on static detection of critical
cycles (that may violate robustness) in the control-flow graph of the program.
The tool scales well to large programs but may cause over-fencing. In all exam-
ples we consider, we insert a subset of the set of fences inserted by Musketeer.

Liu et al. [21] consider even weaker conditions. One of them is Sequential Con-
sistence (SeqCon) (called state-based robustness in [9]), i.e., checking whether
there are any states of the program that are reachable under the weak memory
semantics, but not under SC. The weakest condition is considered in [1], where
the method checks Reach, i.e., whether a given state of the program is reachable
under the weak memory semantics. The latter approach is used to implement
Memorax which is a sound and complete tool for correcting finite-state programs
under TSO wrt. safety properties. In contrast to our approach, checking the con-
ditions SeqCon and Reach have non-primitive recursive complexities even for
finite-state programs (as shown in [6,1]). This is reflected in our experimentation
by the number of cases in which Memorax runs out of time/memory.

Several approximate tools have been developed for checking SC properties
for programs (e.g., [21,8,17,20,4,18]). For instance, Remmex [20] is a state-space
exploration tool with acceleration techniques. Remmex suffers from the state-
space explosion problem as shown by our experimental data (see §11).

3 Overview

program simple vars x,y,z,t procs

process p1

regs $r1 init q1

begin

q1: t=1; goto q2

q2: x=2; goto q2

q2: z=1; goto q3

q3: $r1=x; goto q4

end

process p2

regs $r2 init s1

begin

s1: t=1; goto s2

s2: y=1; goto s3

s3: $r2=t; goto s4

s4: x= $r2; goto s5

end

Fig. 2. A simple running example

We will give an overview of the
main ingredients of our framework,
illustrating the definitions and algo-
rithms through a simple toy example.
We present our model for describ-
ing concurrent programs, and then
introduce the notions of runs and
traces using them to define the notion
of persistence. A non-persistent pro-
gram is said to be fragile. We solve
the problem of checking whether a
given program is persistent (or fragile) in two steps. First, we show that any
fragile program has a run containing a certain fragility pattern. Second, we re-
duce the problem of checking the existence of runs with fragility patterns in a
given program P to the reachability problem under SC for a target programs that
we derive automatically from P . Then, we present our counter-example guided
fence insertion procedure. Finally, we introduce our abstraction technique.

Model. Fig. 2 shows an example of a toy program, named simple, consist-
ing of two concurrent processes (threads), called p1 and p2. Communication
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between processes is performed through four shared variables t, x, y, and
z to which the processes can read and write. The processes have one reg-
ister each, namely $r1 and $r2. The registers and shared variables are al-
lowed to range over infinite domains (here they range over set of integers).

x = 0
y = 0
z = 0
t = 1

t=1x=2x=2z=1

y=1

q3: $r1=x

p1

s3: $r2=t

p2

rd(x
,2)

rd(t
, 1)

Fig. 3. Store buffers and the shared memory of
a program under TSO

The behavior of a process is de-
fined by a list of assembly-like in-
structions, each consisting of a la-
bel and a statement such as a
read or write statement (see §5 for
the full list of statements). For in-
stance, at q1, process p1 performs
a write statement in which it as-
signs the value 1 to the shared
variable t. Notice that there are
two instructions in p1 labeled with q2. This means that, once p1 has executed
the instruction labeled with q1, it may non-deterministically choose to move to
any of the two instructions labeled with q2. This allows to encode conditional
branching, iteration, and non-determinism, all using the same light syntax.

ρ1 :

persis-
tent

wr(t,1)

wr(t,1)

wr(y,1)

ud(t,1)

ud(t,1)

rd(t,1)

wr(x,2)

wr(z,1)

ud(y,1)

rd(x,2)

ud(x,2)

ud(z,1)

ρ2 :

SC

wr(t,1)

ud(t,1)

wr(t,1)

ud(t,1)

wr(y,1)

ud(y,1)

wr(x,2)

ud(x,2)

rd(t,1)

wr(z,1)

ud(z,1)

rd(x,2)

ρ3 :

fragile

wr(t,1)

ud(t,1)

wr(t,1)

wr(y,1)

ud(t,1)

rd(t,1)

wr(x,2)

wr(x,1)

wr(z,1)

ud(y,1)

rd(x,2)

ud(x,2)

ud(x,1)

ud(z,1)

Fig. 4. Runs from configura-
tion d of Fig. 9

To define the runs of the program, we will use
the operational semantics for TSO given in [25,26].
Conceptually, the model adds a FIFO buffer,
called a store buffer, between each process and the
main memory (cf. Fig. 3). The buffer is used to
store the write operations performed by the pro-
cess. A process executing a write instruction in-
serts it into its store buffer and immediately con-
tinues executing subsequent instructions. Memory
updates are performed by non-deterministically
choosing a process and by executing the oldest
write operation in its buffer (the right-most ele-
ment in the buffer). If a process p performs a read
operation on a variable x then there are two possi-
ble scenarios. More precisely, if the buffer contains
some write operations on x, then the read value
must correspond to the value of the most recent
such a write operation (the one that lies closest to
the entry of the buffer). Otherwise, the value is
fetched from the memory. Essentially, this means
that a read operation on a variable x may overtake a sequence of write operations
stored in its own buffer provided that all these operations concern variables that
are different from x. For example, in the given configuration of Fig. 3, p1 can read
the value 2 from x, and p2 can read the value 1 from t. A fence means that the
buffer of the process must be flushed before the program can continue beyond
the fence. The store buffers of processes are unbounded since there is a priori no
limit on the number of write operations that can be issued by a process before a
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memory update occurs. For instance, in the program of Fig. 2 the loop labeled
by q2 in process p1 may generate an unbounded number of write operations, and
hence create an unbounded number of elements in the buffer of p1.

Runs. Consider the program of Fig. 2. In Fig. 4 we depict three typical runs
ρ1, ρ2, ρ3 of the program. A run consists of a sequence of events. We define the
notion of an event formally in §5. In this section, it is sufficient to think of an
event as an instruction executed by the process. The runs start from the initial
configuration d of the program (depicted in Fig. 9). A configuration represents
the (global) state of the program. In the configuration d, the processes are about
to execute the instructions labeled by q1 and s1, and the values of all the shared
variables and registers are equal to 0, while the store buffers are empty.

We describe ρ1 below. To simplify the presentation, we identify an event with
the operation that the process performs. For instance, we write the first step
of process p1 in ρ1 as wr(t, 1) since p1 will perform a write operation in which
it assigns 1 to x. First, three write events are issued by the processes, namely
wr(t, 1) by p1, and wr(t, 1), wr(y, 1) by p2. The new values are stored inside
the corresponding buffers. Next, the two update events ud(t, 1) and ud(t, 1) are
performed by the processes after which the value of t in the memory will be
equal to 1, and the read event rd(t, 1) can be performed by p2, where $r2 will be
assigned the value 1. After the next three events wr(x, 2),wr(z, 1), ud(y, 1), the
buffer of p1 contains two write events wr(x, 2) and wr(z, 1), which means that p1
can read the value 2 for x from the buffer. Finally, the last two update events
will be performed and both buffers will now be empty.

wr(t,1)

wr(x,2)

wr(z,1)

rd(x,2)

wr(t,1)

wr(y,1)

rd(t,1)

po

po
so

po

po

po

so

so

so

Fig. 5. The trace
of ρ1 and ρ2 in
Fig. 4

Traces. The trace of a run π, records (i) the program or-
der, i.e., the order of the read and write events executed
by each process in π. The program order of ρ1 in Fig. 4
is given by wr(t, 1)wr(x, 2)wr(z, 1)rd(x, 2) for p1 and by
wr(t, 1)wr(y, 1)rd(t, 1) for p2. (ii) the store order is the se-
quence of memory updates performed during the run. This
is equal to ud(t, 1)ud(t, 1)ud(y, 1)ud(x, 2)ud(z, 1) for ρ1. The
trace of ρ1 is depicted in Fig. 5. Arrows labeled by po in-
dicate the program order, e.g., the arrow from wr(y, 1) to
rd(t, 1). Arrows labeled by so indicate the store order. For
instance, the arrow from wr(y, 1) to wr(x, 2) means that the
event ud(y, 1) corresponding to wr(y, 1) occurs before the
event ud(x, 2) corresponding to wr(x, 2).

Persistence. A run is Sequentially Consistent (SC) if every write event is imme-
diately followed by the corresponding update. Intuitively, this means that write
events are atomic. An example is the run ρ2 in Fig. 4. A run π is persistent if
there is an SC run π′ such that the traces of π and π′ are identical, otherwise
we say that π is fragile. For instance, in Fig. 4, the run ρ1 is persistent since its
trace is identical to that of ρ2 (namely the trace shown in Fig. 5). We argue that
the run ρ3 in Fig. 4 is fragile. If not, there is an SC run ρ, with a trace identical
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to the one in Fig. 6. From the equality of store orders of ρ and ρ3 and the fact
that the update events, ud(x, 2), ud(x, 1), and ud(z, 1), occur in that order in
ρ3, it follows that the corresponding write events, wr(x, 2), wr(x, 1), and wr(z, 1),
will occur in the same order in ρ. From the equality of program orders it follows
that rd(x, 2) will occur after wr(z, 1) (and hence also after wr(x, 1)) in ρ. Then
ρ contains the sequence wr(x, 2)wr(x, 1)wr(z, 1)rd(x, 2) which is not possible.

wr(t,1)

wr(x,2)

wr(z,1)

rd(x,2)

wr(t,1)

wr(y,1)

rd(t,1)

wr(x,1)

po

po

po

po

po

po

so

so

so

so

so

Fig. 6. The trace
of ρ3 in Fig. 4

A program is persistent if all runs from its initial configu-
ration are persistent, otherwise it is fragile. In the persistence
problem, we check whether a given program is persistent or
fragile. Notice that a persistent program reaches the same
set of configurations under TSO and SC, and hence it sat-
isfies the same safety properties under SC and TSO (see §6,
paragraph on Safety Properties).

Patterns. We reduce the persistence problem to the problem
of checking the existence of a certain type of runs, called runs
of type � (see Theorem 1). A run of of type � is defined with
respect to one of the processes, called the pivot of the run (the other processes are
called fringe processes). Fig. 7 shows an example of such a run for the program
of Fig. 2, ρ∗, where the pivot is p1 and the (only) fringe process is p2. A run π
of type � is the concatenation π1 · π2 · π3 · π4 of four parts. In addition to being
SC, π satisfies a number of conditions. We do not place any constraints on the
first part π1 (except that is it SC). The second part π2, consists of two events
performed by the pivot, namely a write event e1 followed by the matching update
event u1. In our example, p1 writes the value 1 to the variable z in π2. The third
part π3 (which is empty in our example) consists only of events performed by the
pivot, although it is not allowed to perform any write, update, atomic-read-write,
or fence events. The fourth part π4, consists of two events performed by the
fringe process, namely a write event e2 followed by the matching update event
u2. Furthermore, the variable updated here should be different from the variable
updated in π2. In our example, p2 writes the value 1 to the variable x (which
is different from z). Finally, there should be a read event e of the pivot (the
event corresponding to the instruction labeled q3 in our example), called the
complementary event of π, such that the following properties hold: (i) e should
be enabled after π1 ·π2 ·π3. In our example, the event labeled q3 is enabled after
π1 · wr(z, 1)ud(z, 1). (ii) In e, the process reads a value from the same variable
as the one updated in π4. In our example, this variable is x. (iii) The value read
during e (i.e., the value of the read variable in the memory after π1 · π2 · π3)
should be different from the value assigned to it in π4. In our example, the value
of x in the memory after π1 ·wr(z, 1)ud(z, 1) is equal to 2 (which is different form
the value 1 assigned to x in π4).

The proof of existence of runs of type � is highly non-trivial. However,
once done, it allows to define a surprisingly simple pattern for detecting fragile
runs. More precisely, we can derive the fragile run π1 · e1 · π3 · e · e2 · u2 · u1,
which we call the witness. In the above example, the witness is given by
π1 · wr(z, 1)rd(x, 2)wr(x, 1)ud(x, 1)ud(z, 1).
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ρ∗ : type
�

π1 :

wr(t,1)

ud(t,1)

wr(t,1)

ud(t,1)

wr(y,1)

ud(y,1)

rd(t,1)

wr(x,2)

ud(x,2)

π2 :

wr(z,1)

ud(z,1)

π3 :
ε

π4 :

wr(x,1)

ud(x,1)

rd(x,2)

Fig. 7. Run of type �
from d of Fig. 9

Pattern Detection. Given a program P we generate a new
target program Q such that P contains a witness iff Q can
reach a given set of states under SC. The program Q will
run in three phases 0, 1, 2, and find the existence of a
witness (as described above). Recall that such a witness
is derived from a type � run π = π1 · π2 · π3 · π4 which is
defined wrt. pivot. In phase 0 (see Fig. 10),Q simulates π1,
and hence all the processes will simulate their moves in P .
At the end of phase 0 (see Fig. 11), one of the processes
will non-deterministically decide to play the role of the
pivot. At the same time, it records the variable on which
it performs a write event in π2 (in the above example, this
variable is z). In our construction we do this by assigning a
special value c1 to the variable z. In phase 1 (see Fig. 12),
Q simulates π3 in which only the pivot is active. At the
end of phase 1 (see Fig. 13), the pivot ensures the existence
of the complementary event. This is done by (i) choosing
an enabled read event, (ii) ensuring that the involved variable is different from
the one that was updated during π2 (at the end of phase 0). This can be done by
checking that its value is different from c1. (iii) It records the read event of the
complementary event by copying the value of the variable x to a new variable
new and announcing the variable x to the fringe processes by assigning to it
a new value c2. Finally, in phase 2 (see Fig. 14), a fringe process verifies the
existence of π4, by finding the (only) variable whose value is c2 and check that
it can indeed assign to it a different value from the one that was assigned by the
complementary event (by comparing with the value stored in new).

An important aspect of our scheme is that Q contains only two additional
variables compared to P , namely the variable new, and a variable with a small
domain that we use to record the current simulation phase. This holds regardless
of the number of variables in P . Thus, the verification problem for the target
program is as efficient as that for the source program (when run under SC).

Fence Insertion. A naive way to find the minimal set of fences is to simply try out
all combinations. Obviously, such an algorithm would not work in practice due
to the large number of possible combinations. Instead, we use counter-examples
analysis, where we use witnesses provided by our persistence detection algorithm.
A witness of the form shown above is fragile since complementary event overtakes
the event e1. Therefore, inserting a fence somewhere along e1 · π3 · e2 · u2 · u1

is both necessary and sufficient to disable the witness. This allows to derive a
set of fences by repeatedly calling the pattern detection algorithm, each time
inserting a new fence, until the program becomes persistent. Notice that when
the program becomes persistent the pattern detection algorithm declares that no
witnesses exists any more. The derived set is optimal since each of the inserted
is necessary to eliminate a witness, and hence removing any of them would make
the program fragile. In the program of Fig. 2, our algorithm would put a fence
after the second instruction labeled by q2 in p1, making the program persistent.
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Abstraction. We develop an abstraction framework, called observation abstrac-
tion, that exploits the fact that persistence is not sensitive to the source relation.
A process needs only to know the value of a variable in its own buffer or in the
memory. It does not need to figure out the process (or instruction) that produced
this value. The idea is to reason about the memory view of each process p: Each
process can only observe the memory changes due to its own instructions on
shared variables or the changes caused by the other processes over the set vari-
ables that p can read from. We abstract the rest of the processes, in a way that
p has at least the same sequences of memory views as in the original program
P . This ensures that the persistence of the abstract program implies persistence
of P . We instantiate our framework by defining an abstraction function, called
Flattening (see Fig. 15), that can be used for efficient checking of persistence.

4 Preliminaries

We use N to denote the set of natural numbers. For sets A and B, we use
f : A �→ B to denote that f is a function that maps A to B. For a ∈ A
and b ∈ B, we use f [a ←↩ b] to denote the function f ′ where f ′(a) = b and
f ′(a′) = f(a′) for all a′ �= a. Let A be a finite set. We use |A| to denote its size.
We use A∗ (resp. A+) to denote the set of words (resp. non-empty words) over
A; and ε to denote the empty word. Consider a word w = a1a2 · · ·an ∈ A∗. We
define |w| := n and last (w) := an. For i : 1 ≤ i ≤ n, we define w[i] := ai. For
a ∈ A, we write a ∈ w if a appears in w, i.e., a = w[i] for some i : 1 ≤ i ≤ |w|.
For B ⊆ A, we define w 	 B := ai1ai2 · · · aim to be the maximal subword of w
such that aij ∈ B for all j : 1 ≤ j ≤ m, i.e., we keep the elements that belong
to B; and define w ⊗B := i1i2 · · · im, i.e., it gives the sequence of indices of the
elements that belong to B.

5 Concurrent Programs

〈prog〉 ::= program 〈progid〉
vars 〈var〉∗ procs 〈proc〉∗

〈proc〉 ::= process 〈procid〉 regs 〈reg〉∗
init 〈label〉 begin 〈inst〉∗ end

〈inst〉 ::= 〈label〉 : 〈stmt〉 ; goto 〈label〉
〈stmt〉 ::= 〈var〉= 〈exp〉 | 〈reg〉 = 〈var〉

| 〈reg〉= 〈exp〉 | fence
| arw( 〈var〉 , 〈exp〉 , 〈exp〉 )
| skip | assume 〈exp〉

〈exp〉 ::= 〈fun〉 ( 〈reg〉∗ )

Fig. 8. Syntax of a concurrent program

We define the syntax and the semantics
we use for concurrent processes commu-
nicating through shared memory. More-
over, we define SC computations as a
subclass of TSO ones. Finally, we intro-
duce the reachability problem.

Syntax. The syntax of a program is
given in Fig. 8. In the following, we as-
sume a program with name P , a set
of shared variables X, and a set of
processes ProcSet. Each process p ∈
ProcSet has a list of registers Rp and
a list of assembly-like instructions Ip. Each process starts from a statement with
initial label initp. We let Qp be the set of labels that occur in the instructions of
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process p, and assume w.l.o.g. that the sets of labels and also the sets of regis-
ters of the different processes are disjoint. We define the sets R := ∪p∈ProcSetRp,
I := ∪p∈ProcSetIp, and Q := ∪p∈ProcSetQp. Sometimes, we represent a program
P by a tuple 〈X,ProcSet,Q, I, init〉, where X is the set of instructions, ProcSet
is the set of processes, Q is the set of labels, I is the set of instructions, and
init : ProcSet �→ Q is mapping such that init(p) = initp for all p ∈ ProcSet.

The registers and shared variables range over some (potentially) infinite do-
main V . Here, we assume w.l.o.g. that V is the set of integers. An instruction ins
is of the form q1 : s; goto q2 , where q1, q2 are labels, and s is a statement. After

the program has executed the statement s it jumps to an instruction labeled
with q2. If several instructions are labeled with q2, the process chooses one of
them non-deterministically. If none exists, the process terminates. We assume
that a program comes with a set F of functions. Our method is not dependent
on the particular set of functions that occur in the programs, and therefore we
will not specify the set precisely in the grammar. The set may include all the
standard functions, such as addition, subtraction, multiplication, division, etc.
An expression e is either a constant (a member of V ), register $r, or of the form
f(e1, . . . , en) where f ∈ F is a function and e1, . . . , en are expressions. A state-
ment s is one of the following forms: (i) wr (write statement): x = e writes the
value of the expression e to the shared variable x. This value will be stored in
the buffer of the process. (ii) rd (read statement): $r = x reads the value of the
shared variable x (either from the buffer of the process or from the memory), and
stores it in the register $r. (iii) arw (atomic-read-write statement): arw(x, e1, e2)
checks atomically whether the value of the shared variable x is equal to the
value of e1; if true it assigns the value of e2 to x, otherwise the execution of the
instruction is blocked. (iv) fn (fence statement): flushes the buffer of the pro-
cess. (v) skip statement: is the empty statement. (vi) asgn (assign statement):
$r = e assigns the value of the expression e to the register $r. (vii) asm (assume
statement): assume e checks whether e evaluates to true. If not, the execution
of the instruction is blocked. We use source (ins), stmt (ins), and target (ins), to
denote q1, s, and q2 respectively. We classify instructions according to the forms
of their statements. First, for a process p, and i ∈ {wr, rd, arw, fn, skip, asgn, asm},
we define Iip to be the set of instructions in Ip with an i statement. For instance,
I
wr
p consists of the instructions ins ∈ Ip with write statements, i.e., stmt (ins) is
of the form x = e for some x and e. Furthermore, for i ∈ {wr, rd, arw}, and a
variable x ∈ X we define I

i,x
p to be the set of instructions in I

i
p that operate

on the variable x. For instance, Iwr,xp consists of the instructions ins ∈ Ip such
that stmt (ins) is of the form x = e for some e. In the program of Fig. 2, the
instruction labeled with q1 is a member of Iwr,tp1

.

d :
q1

s1

x=0 y=0

z=0 t=0

$r1 = 0

$r2 = 0

ε

ε

Fig. 9. Initial configuration d

Configurations. To define configurations, we in-
troduce the following concepts. A label definition
q : ProcSet �→ Q is a function such that q(p) ∈ Qp

for each p ∈ ProcSet. Intuitively, for a process
p ∈ ProcSet, q(p) gives the label of the instruc-
tion that p will execute in its next step. A register
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state is a function r : R �→ V . For a register $r ∈ R, the value of r($r) is the con-
tent of $r. A buffer state is a function b : ProcSet �→ (X× V )

∗
. The value of b(p)

is the content of the buffer belonging to p. This buffer contains a sequence of write
operations, where each write operation is defined by a pair, namely a variable x
and a value v that is assigned to x. In our model, messages will be appended to
the buffer from the left, and fetched from the right. A memory state is a function
mem : X �→ V that defines the value of each variable in the memory. A configura-
tion c is a tuple

〈
q, r, b,mem

〉
where q is a label definition, r is a register state, b

is a buffer state, andmem is a memory state. We use LabelOf (c), BuffersOf (c),
RegsOf (c), and MemoryOf (c) to denote q, r, b, and mem respectively. We de-
fine EmptyBuffer to be the buffer state such that EmptyBuffer(p) = ε for all
processes p ∈ ProcSet. We say that c is plain if BuffersOf (c) = EmptyBuffer.
The initial configuration cinit is defined by 〈qinit , rinit ,EmptyBuffer,mem init 〉
where rinit ($r) = 0 for all $r ∈ R, qinit (p) = initp for all p ∈ ProcSet, and
meminit (x) = 0 for all x ∈ X. In other words, to start with, each process is
in the initial label, all buffers are empty, and all registers and shared variables
have value 0. We use C to denote the set of all configurations. For a configura-
tion c and an expression e, we define the evaluation c(e) of e in c inductively by
c($r) := RegsOf (c) ($r), and c(f(e1, . . . , en)) := f(c(e1), . . . , c(en)) (we regard
a constant expression as a function with zero arguments). Fig. 9 illustrates an
initial configuration d of the program in Fig. 2.

Events. We introduce the notion of events that describe two aspects of process
behavior, namely the internal actions of a process and its interaction with the
memory. The former consists of fence, skip, assign, and assume events, while
the latter consists of write, read, and atomic-read-write events. For these three
types of events we will also record the variable involved together with its value.
Formally, we define the set of events Δ as follows. Let p ∈ ProcSet be a process.
For i ∈ {fn, skip, asgn, asm}, we define the set Δi

p := I
i
p, i.e., for internal events,

we define the set simply to be the set of instructions. For a variable x ∈ X,
a value v ∈ V , and i ∈ {wr, rd, arw}, we define Δi,x,v

p := I
i,x
p × {v}, i.e., the

event is a pair including the instruction (whose statement operates on x) and
the used value v. We define the sets Δi,x

p := ∪v∈V Δ
i,x,v
p , Δi

p := ∪x∈XΔ
i,x
p , Δp :=

∪i∈{wr,rd,arw,fn,skip,asgn,asm}Δi
p, and Δ := ∪p∈ProcSetΔp. For an event e ∈ Δ of the

form ins or the form 〈ins, i〉, we define source (e) := source (ins), stmt (e) :=
stmt (ins), and target (e) := target (ins). Together with the above sets of events
(that are induced by the instructions of the processes), we define an additional
type of events, namely update events as follows. For a process p ∈ ProcSet, a
variable x ∈ X and value v ∈ V , we define an event udp(x, v). We will use this
event in the semantics to update the memory using the oldest message (x, v)
in the buffer of process p. We define the sets Δud,x,v

p := {udp(x, v)}, Δud,x
p :=

{udp(x, v) | v ∈ V }, Δud
p := ∪x∈XΔ

ud,x
p , and Δud := ∪p∈ProcSetΔ

ud
p . Furthermore,

we define Δ•
p := Δp ∪Δud

p and Δ• := Δ ∪Δud. In Fig. 2, let ins1 (resp. ins2) be
the instruction labeled by q1 (resp. s3) in p1 (resp. p2). Then, 〈ins1, 1〉 ∈ Δwr,t,1

p1
,

and 〈ins2, 1〉 ∈ Δrd,t,1
p2

. Furthermore, udp1(x, 2) ∈ Δud,x,2
p1

.
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Transition Relation. We define the transition relation−→⊆ C×Δ•×C as follows.

For configurations c =
〈
q, r, b,mem

〉
, c′ =

〈
q′, r′, b

′
,mem ′

〉
, p ∈ ProcSet, and

e ∈ Δ•
p, we write c

e−→ c′ to denote that one of the following conditions holds:

• skip: e ∈ Δskip
p , q(p) = source (e), q′ = q [p ←↩ target (e)], r′ = r, b

′
= b, and

mem ′ = mem . The process jumps to a statement with the target label, while
the register, buffer, and memory contents remain unchanged.

• write: e ∈ Δwr,x,v
p , stmt (e) is of the form x = e with c(e) = v, q(p) =

source (e), q′ = q [p ←↩ target (e)], r′ = r, b
′
= b

[
p ←↩ (x, v) · b(p)], and

mem ′ = mem .
• update: e ∈ Δud,x,v

p , q′ = q, r′ = r, b = b
′ [
p ←↩ b

′
(p) · (x, v)

]
, and mem ′ =

mem [x ←↩ v].
• read: e ∈ Δrd,x,v

p , stmt (e) is of the form $r = x, q(p) = source (e), q′ =

q [p ←↩ target (e)], r′ = r [$r ←↩ v], b
′
= b, mem ′ = mem , and one of the

following conditions holds:
- read-own-write: There is an i : 1 ≤ i ≤ |b(p)| s.t. b(p)[i] = (x, v), and
there are no 1 ≤ j < i and v′ ∈ V s.t. b(p)[j] = (x, v′). If there is a write
on x in the buffer of p then we consider the most recent of such a write
(the left-most one in the buffer). This operation should assign v to x.

- read-memory: (x, v′) �∈ b(p) for all v′ ∈ V and mem(x) = v. If there is no
write operation on x in the buffer of p then the value v of x is fetched
from the memory.

• fence: e ∈ Δfn
p , q(p) = source (e), q′ = q [p ←↩ target (e)], r′ = r, b(p) = ε,

b
′
= b, and mem ′ = mem. A fence operation may be performed by a process

only if its buffer is empty.
• arw: e ∈ Δarw,x,v

p , stmt (e) is of the form arw(x, e1, e2) with c(e2) = v, q(p) =

source (e), q′ = q [p ←↩ target (e)], r′ = r, b(p) = ε, b
′
= b, mem(x) = c(e1),

and mem ′ = mem [x ←↩ v]. The arw operation is performed by a process only
if its buffer is empty. The operation checks whether the value of x is equal
to the evaluation of e1 in c. In such a case, it changes that value to v.

• assume: e ∈ Δasm
p , stmt (e) is of the form asm e with c(e) = true, q(p) =

source (e), q′ = q [p ←↩ target (e)], r′ = r, b
′
= b, and mem ′ = mem. The

instruction can be performed only if e evaluates to true in c.
• assign: e ∈ Δasgn

p , stmt (e) is of the form $r = e, q(p) = source (e), q′ =

q [p ←↩ target (e)], r′ = r [$r ←↩ c(e)], b
′
= b, and mem ′ = mem . The content

of $r is updated to the value of e.

A event e ∈ Δ• is said to be enabled from a configuration c if there is a
configuration c′ with c

e−→ c′. If e is enabled from c, then we use e(c) to denote

the unique c′ such that c
e−→ c′. We define −→:= ∪e∈Δ•

e−→, and use
∗−→ to

denote the reflexive transitive closure of −→.

Runs. A run π in P is a sequence of events e1e2 · · · en ∈ (Δ•)∗. We generalize the
notion of enabledness to runs, and say that π is enabled from a configuration c
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(or simply π is a run from c) if c0
e1−→ c1

e2−→ · · · en−→ cn for some configurations
c0, c1, . . . , cn with c0 = c. In such a case, we define π(c) := cn (notice that cn
is unique given the configuration c and the run π). We write c

π−→ c′ to denote

that π(c) = c′. Notice that, for configurations c and c′, we have that c
∗−→ c′ iff

c
π−→ c′ for some run π. For a run π, we define the relation match (π) ⊆ N × N

such that match (π) (j, k) (1 ≤ j < k ≤ |π|) holds if and only if there is a process
p ∈ ProcSet and � ∈ N where

(
π ⊗Δwr

p

)
[�] = j, and

(
π ⊗Δud

p

)
[�] = k. In other

words ej is the �th write operation performed by p, and ek is the (matching)
�th update operation performed by p. We use Π to denote the set of all runs,
and use Π(c) to denote the set of runs from c. For a set Π ′ ⊆ Π , we define
Π ′(c) := Π(c) ∩Π ′, i.e., it is the subset of runs in Π ′ that are enabled from c.
For a set of runsΠ ′ ⊆ Π and a set of eventsΔ′ ⊆ Δ, we useΠ ′(Δ′) := Π ′∩(Δ′)∗,
i.e., it is the subset of π′ that uses only events from Δ′. For instance, Π

(
Δrd

p

)

is the set of all runs consisting only of read events performed by p, Π
(
Δrd

p

)
(c)

is the subset of the latter enabled from c, and Π
(¬Δrd

p

)
is the set of all runs

that do not contain read events performed by p. We say that π is complete if
|π	Δwr| = |π	Δud|, i.e., the numbers of write and update events in π are equal.
We use ΠComplete (c) to denote the set of runs from c that are complete. Notice
that if c is plain and π ∈ ΠComplete (c) then π(c) is plain.

Fig. 4 depicts different runs from the configuration d of Fig. 9 in the program
simple of Fig. 2. All these runs are complete. To simplify the presentation of the
runs in Fig. 4, we represent an event in Δwr,x,v by the triple wr(x, v), and an event
in Δrd,x,v by the triple rd(x, v). This does not introduce any ambiguity, since each
instruction in the program simple has a unique statement. For instance, the event
wr(t, 1) corresponds to the process p1 performing the event labeled by q1.

SC Semantics. We will define SC runs as special cases of TSO runs. For a process
p ∈ ProcSet, a run π ∈ Π is said to be Sequentially Consistent (or SC for short)

wrt. p if whenever π[j] ∈ Δwr,x,v
p then 1 ≤ j < |π| and π[j+1] ∈ Δ

ud,x,v
p . In other

words, any write operation of the process p should be immediately followed by
the matching update operation from the same process. We use ΠSC

p to denote the
set of runs that are SC wrt. p. We say that π is SC if it is SC wrt. all processes
p ∈ ProcSet. We use ΠSC to denote the set of SC runs. We say that π is singly
TSO wrt. p ∈ ProcSet if π ∈ ΠSC

r for all processes r ∈ ProcSet − {p}, i.e., π is
SC wrt. all processes except (possibly) p. We use ΠSinglyTSO

p to denote the set
of runs that are singly TSO wrt. p. In Fig. 4, the run ρ2 is SC, while ρ1 is not
singly TSO wrt. p1 or p2 (it is not SC wrt. p1 or p2).

Reachability Problem. An instance of the reachability problem is defined by a
program and a finite set of label definitions Final. The question is whether
there is a configuration c such that cinit

∗−→ c for some configuration c with
LabelOf (c) ∈ Final. Recall that cinit

∗−→ c is equivalent to whether cinit
π−→ c

for some run π ∈ Π (cinit ). In the SC reachability problem, we restrict the pro-

gram to SC runs, and ask whether there is a configuration c s.t. cinit
π−→ c for

some c with LabelOf (c) ∈ Final and π ∈ ΠSC (cinit ).
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6 Persistence

We formulate the persistence problem by first introducing our notion of traces,
and then comparing the set of traces of the program under TSO and SC. We
explain the relation between persistence and correctness wrt. safety properties.

Traces. For a run π, we define the program order ProgOrder (π) : ProcSet �→
Δ∗ by ProgOrder (π) (p) := π 	 (

Δwr
p ∪Δrd

p ∪Δarw
p

)
for each p ∈ ProcSet. In

other words it extracts, for each process p, the sequence of write, read, and
atomic-read-write events performed by the process. We define the store order by
StoreOrder (π) := π 	 (

Δud ∪Δarw
)
, i.e., it extracts the sequence of update and

atomic-read-write events of all processes from π. Observe that, in the store order
definition, we keep the two events that modify the memory. We define Trace (π)
as 〈ProgOrder (π) , StoreOrder (π)〉. Fig. 5 depicts a trace.

Persistence. Consider a plain configuration c and a complete run π ∈
ΠComplete (c). We say that π is persistent from c if there is an SC run π′ ∈ ΠSC (c)
with Trace (π) = Trace (π′); otherwise we say that π is fragile from c. We use
ΠPersistent (c) and ΠFragile (c) to denote the set of persistent and fragile runs from
c respectively. A plain configuration c is said to be persistent if each complete
run from c is persistent from c (i.e., ΠPersistent (c) ⊆ ΠComplete (c)); otherwise it
is called fragile. An instance of the persistence problem defined on a program P
asks whether the initial configuration cinit is persistent or not. In Fig. 4, the run
ρ1 is persistent from the configuration d (of Fig. 9), while ρ3 is fragile from d.

Safety Properties. We can show that if a program is persistent then it is strongly
persistent. This means that, for any plain configuration c and run π, it is the

case that cinit
π−→ c iff cinit

π′−→ c from some π′ ∈ ΠSC. In other words, c is
reachable from cinit under TSO iff it is reachable under SC. It is well-known
that checking safety properties can be expressed as reachability of sets of (plain)
configurations. This implies that a persistent program satisfies the same safety
properties under SC and TSO.

7 Fragility Pattern

We perform the first step in solving the persistence problem. We show that the
persistence problem can be reduced to searching for runs of a special form More
precisely, for a given plain configuration c, there is a fragile run from c iff there
is another run from c that will follow a certain fragility pattern.

Fix a program P = 〈X,ProcSet,Q, I, init〉. For a plain configuration c, a pro-
cess p ∈ ProcSet, a variable x ∈ X, and a value v ∈ V , we define Π�

p,x,v (c) to be
the set of runs π such that π = π1 · π2 · π3 · π4, and the following conditions are
satisfied: (i) π ∈ ΠSC (c). (ii) π2 = e1 · u1, where e1 ∈ Δwr,y

p and u1 ∈ Δud,y
p for

some y �= x. (iii) π3 ∈ Π
(
Δp −

(
Δwr

p ∪Δud
p ∪Δarw

p ∪Δfn
p

))
, i.e., π3 consists only

of events performed by p excluding write, update, atomic-read-write, and fence
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events. (iv) π4 = e2 · u2, where e2 ∈ Δwr,x,v′
r and u2 ∈ Δud,x,v′

r for some r �= p
and v′ �= v. (v) There is an event e ∈ Δrd,x,v

p , called the complementary event
of π, such that π1 · π2 · π3 · e ∈ Π (c), i.e., if we replace π4 by e, then it results
in a run from c. We call the process p the pivot of π, and call the rest of the
processes the fringe processes of π. In §3, we motivate why ρ∗ ∈ Π�

p1,x,2
(d). We

define Π� (c) := ∪p∈ProcSet ∪x∈X ∪v∈V Π
�
p (c), and call Π� (c) the set of runs of

type � from c. We can show:

Theorem 1. Π� (c) = ∅ iff ΠFragile (c) = ∅.
In other words, to check whether c is fragile, we need only to check whether
there is a run of type � from c. Although a run π of type � is SC, its existence
together with the complementary event e show the fragility of c. More precisely,
we define the witness run Witness (π) := π1 · e1 · π3 · e · e2 · u2 · u1, and observe
that Witness (π) ∈ ΠFragile (c). The run Witness (π) is TSO since e overtakes e1.
However, it is not persistent since there is no SC run with the same program
and store order. In §3, we give the witness run corresponding to ρ∗.

Theorem 1 holds for any program respecting the syntax of §5. In particular,
the program may contain any number of variables, and the variables may range
over unbounded data domains (see §3, Model).

8 Pattern Detection

We perform the second step in solving the persistence problem. We translate
the persistence problem for programs running under TSO to the SC reachability
problem. We exploit Theorem 1 which shows that the persistence problem is
reducible to the problem of checking whether the initial configuration has a type
� run. Consider an instance of the persistence problem, defined by a program
P = 〈X,ProcSet,Q, I, init〉 and its initial configuration cinit . We will translate
the problem of whether P has a run in Π� (cinit ) to an instance of the SC reach-

ability problem defined on a new program Q =
〈
X

Q,ProcSetQ,QQ, IQ, initQ
〉
.

We define ProcSetQ := ProcSet, and initQ := init , i.e., Q uses the same set
of processes as P and the processes start from identical initial labels. Each
process p in Q will simulate the corresponding process in P . Recall that a
run π ∈ Π�

p,x,v (c) is of the form π = π1 · e1 · u1 · π3 · e2 · u2, and it is de-
fined in terms of a pivot p, and a complementary event e. We know that π
induces a witness (fragile run) Witness (π) = π1 · e1 · π3 · e · e2 · u2 · u1. A
run of Q is divided into three phases: 0, 1, 2, where each phase will accom-
plish a particular task in the simulation of Witness (π). To carry out the sim-
ulation we add two new constants, c1 and c2 to the domain V , and add two
new variables, ph with domain {−1, 0, 1, 2}, and new with domain V to the
set of variables. In other words, we define X

Q := X ∪ {ph, new}. Furthermore,
we define Q

Q := Q ∪ {q′ | q ∈ Q} ∪ {finalp | p ∈ ProcSet} ∪ Q
tmp, and define

Final := ∪p∈ProcSet {c | LabelOf (c) (p) = finalp}. Intuitively, for each label q in
P , we create a copy q′ (that will be used to simulate the moves of the pivot).
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Furthermore, we provide each process with an additional label that marks its
“accepting state”. Finally, Qtmp contains a set of “temporary labels”, each of
which is either of the form q.i or q′.i, where q ∈ Q, and i ∈ N. To simplify
the definition of Q, we will extend the set of expressions (see §5) by allowing
the use of shared variables in expressions. Since the program Q runs under the
SC semantics, the evaluation c(x) of a shared variable x in a configuration c is
straightforward (it is given by MemoryOf (c) (x)).

q1: arw(ph,0,-1); goto q1.1

q1.1: s; goto q1.2

q1.2: ph=0; goto q2

Fig. 10. Phase 0

Phase 0. Phase 0 corresponds to simulating π1.
During this phase, the processes will run the same
code as in P . A process needs to make sure that
the program is currently running in phase 0. This
is accomplished as follows. For each process p ∈
ProcSet, and each instruction q1: s; goto q2 in Ip,

we add the instructions of Fig. 10 to I
Q
p . First, the process changes the phase to

−1 (thus blocking the moves of all other processes). In the next step, the process
simulates the given instruction, after which it puts the phase back to 0 (thus
unblocking the rest of the processes).

q1: arw(ph,0,-1); goto q1.3

q1.3: y=c1; goto q1.4

q1.4: ph=1; goto q’2

Fig. 11. Change to phase 1

At any point where a process p is about to exe-
cute a write event (on a variable y), it may decide
to declare the event to be e1. In this case, p will
play the role of the pivot for the rest of the run,
while deeming the other processes to become fringe
processes. This signals the end of phase 0, and the
phase is changed to 1. At the same time, we assign the value c1 to y. The value
of y will not be changed in the rest of the run, and y will be the only variable
whose value is equal to c1. Notice that, by definition of a type � run, y will not
be used again in the rest of the run and therefore it is safe to change its value
to c1. To carry out the above steps, we add, for each write instruction ins ∈ Ip,

of the form q1: y=e; goto q2 the instructions shown in Fig. 11 to I
Q
p .

q’1: assume ph=1; goto q’1.1

q’1.1: s; goto q’2

Fig. 12. Phase 1

Phase 1. The purpose of phase 1 is to simu-
late the π3. Since π3 consists only of events per-
formed by the pivot, only this process is active
during phase 1. Furthermore, the pivot only per-
forms read, skip, assignment, and assume events.
For each instruction in I

rd
p ∪ I

skip
p ∪ I

asgn
p ∪ I

asm
p , of the form q1: s; goto q2 , we

add the instructions of Fig. 12 to I
Q
p . Notice that, since only p is active during

this phase, we need not lock the variable ph.
At any point where the pivot is about to execute a read event, it may

decide to verify the existence of the complementary event e. Recall that
e ∈ Δrd,x,v

p , where x �= y. For each read instruction ins ∈ I
rd,x
p , of the form

q1: $r=x; goto q2 , we add the instructions shown in Fig. 13 to I
Q
p . The in-

struction at q’1.2 checks that the read variable is different from y. Recall that
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y is the only variable whose value is c1. At q’1.3, we store the current value of
x in new (this will be used in phase 2). At q’1.4, the value c2 is stored in x.

q’1: assume ph=1; goto q’1.2

q’1.2: assume !(x=c1); goto q’1.3

q’1.3: new=x; goto q’1.4

q’1.4: x=c2; goto q’1.5

q’1.5: ph=2; goto q’2

Fig. 13. Change to phase 2

Notice that x is now the only variable whose
value is c2. By this assignment, the pivot
has declared (i) that it was about to per-
form a read on x; and (ii) that the value it
was about to read is stored in new. At this
point, the pivot changes the phase to 2. This
is the last instruction executed by the pivot.
Observe that the process does not execute
the instruction ins itself, but it marks its existence through the instructions of
Fig. 13.

q1: assume ph=2; goto q1.5
q1.5: assume z=c2; goto q1.6

q1.6: assume !(new=e); goto finalp

Fig. 14. Phase 2

Phase 2. In phase 2, only the fringe pro-
cesses are active. The purpose of this phase
is to verify the existence of the event e2.
This event is performed by a fringe pro-
cess and it should write a value different
from c2 to x. A process that is about to
execute a write event, may verify that this event corresponds to e2. The process
recognizes the variable x, since x is the only variable carrying the value c2. For
each write instruction of the form q1: z=e; goto q2 in I

wr
p , we add the instruc-

tions shown in Fig. 14 to I
Q
p . The test z = c2 ensures that z and x are identical.

The test !(new = e) ensures that the current instruction assigns a value different
from the value of x during the complementary event. In such a case, a witness
has been found and the process moves to the accepting label finalp.

Remarks. Notice that Q contains only two additional variables, namely new and
ph, compared to P ; and that we increase the variable domain V by two elements,
namely c1 and c2.

9 Fence Insertion

In this section we describe our fence insertion procedure that finds a minimal
set of fences sufficient for making the program persistent. The algorithm builds
a set of fences successively using fragile runs generated by the pattern detection
algorithm. First, we define the fence insertion operation, and then show how to
use a type � run generated by the pattern detection algorithm of §8 to derive a
set of fences such that the insertion of at least one element of the set is necessary
in order to eliminate the run from the behavior of the program. Based on that,
we introduce the fence insertion algorithm.

Fence Insertion. We define the operation of inserting a fence in a program.
Intuitively, we identify the instruction after which we insert the fence. For a
program P = 〈X,ProcSet,Q, I, init〉 and an instruction f ∈ I, we use P ⊕ f to
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denote the program we get by inserting a fence instruction just after f in P .
Formally, let f ∈ I be of the form q1 : s; goto q2 . Then, P ⊕ f is the program we

get by replacing f by the following two instructions (where q′ �∈ Q is a unique new

label): q1 : s; goto q′ , and q′ : fn; goto q2 (recall from §5 that fn is the fence

statement). For a set F = {f1, . . . fn} ⊆ I, we define P ⊕ F := P ⊕ f1 · · · ⊕ fn.
We say F is minimal wrt. P if (i) P ⊕ F is persistent, and (ii) P ⊕ (F \ {f}) is
fragile for all f ∈ F . That is, removing any fence from F makes P fragile.

Fence Inference. Let p ∈ ProcSet, and let π be a type � run generated by apply-
ing an arbitrary SC reachability analysis algorithm on the program Q defined
in §8. Recall from §7, that from π, we can derive a new run Witness (π) of the
form π1 ·e1 ·π3 ·e ·e2 ·u2 ·u1, then Witness (π) ∈ ΠFragile (c), where e overtakes e1.
Let π3 be of the form e′1e′2 · · · e′n, and define NewFences(π) := {e1, e′1, e′2, . . . , e′n}.
Intuitively, inserting a fence after one of the instructions in NewFences(π) is both
necessary and sufficient to prevent e from overtaking e1, and hence eliminating
the run π from the behavior of the program.

Algorithm 1. Fence Insertion.

input : A concurrent program P
output: A minimal set of fences

1 W ← {∅};
2 while true do
3 Pick and remove a set F from

W;
4 if ∃π : π ∈ Π�

p (cinit ) in
P ⊕ F then

5 N ← NewFences(π);
6 foreach f ∈ N do
7 F ′ ← F ∪ {f};
8 if

∃F ′′ ∈ W : F ′′ ⊆ F ′

then discard F ′ else
W ← W ∪ {F ′}

9 else
10 return F ;

Algorithm. We present our fence inser-
tion algorithm (Algorithm 1). It takes
a concurrent program P and returns a
minimal set of fences that is sufficient to
make P persistent. The algorithm uses
a set of sets of fences, namely W for
sets of fences that have been partially
constructed (but not yet large enough
to make the program persistent). During
each iteration, a set F is picked and re-
moved from W . We use the construction
of §8, together with an SC reachability
analysis algorithm, to check whether the
set F is sufficient to make the program
persistent. If yes, we return F as a possi-
ble set of minimal fences. If no, we com-
pute the set of fences N such that insert-
ing a member of N is sufficient and nec-
essary to eliminate the generated type �
run π. For each f ∈ N we add F ′ = F ∪ {f} back to W unless there is already a
subset of F ′ in the set W .

Theorem 2. If each call to the pattern detection algorithm (line 4) returns,
then Algorithm 1 terminates and returns a minimal set of fences wrt. P.

In particular, Theorem 2 implies that Algorithm 1 terminates when P is a finite-
state program.

In the program of Fig. 2, our algorithm would insert a single fence, replacing
the instruction q2. z=1; goto q3 in p1 by the instructions q2. z=1; goto q5

and q5. fn; goto q3 .
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10 Observation Abstraction

In this section, we present a general abstraction framework, called observa-
tion abstraction, that is compatible with the notion of persistence (compat-
ibility means that persistence of the abstract program implies persistence of
the concrete program). The abstraction considers a process p and captures the
sequences of events that can be observed from p. We instantiate observation
abstraction by defining an abstraction function, namely Flattening, whose effi-
ciency is demonstrated in the experimental results (see §11). Let us fix a program
P = 〈X,ProcSet,Q, I, init〉 and a process p ∈ ProcSet. Let R := ProcSet \ {p}.

Notation. We define ReadFromp :=
{
x ∈ X | (Δrd,x

p ∪Δarw,x
p

) �= ∅}, i.e., it is the
set of shared variables on which p may perform read or atomic-read-write events.
We define a new type of events, namely MemEvent(x, v), where x ∈ X and
v ∈ V , that we use to abstract update and atomic-read-write events. The event
records changes in the state of the memory (changing the value of x to v), while
hiding the identity of the process performing the event. For a variable x ∈ X,
a value v ∈ V , an event e ∈ Δarw,x,v ∪ Δud,x,v, and a process p ∈ ProcSet, we
will write [e]p to describe “how much of e can be observed by p”. Formally: (i)
[e]p := e if e ∈ Δp, i.e., we keep the event if it is performed by p (p can observe

its own events). (ii) [e]p := MemEvent(x, v) if e ∈ Δarw,x,v
r ∪ Δud,x,v

r , for some
r �= p and x ∈ ReadFromp. If the event is performed by another process on a
variable in ReadFromp then p can observe the change in memory although it
cannot see the process making the change. (iii) [e]p := ε if e ∈ Δarw,x

r ∪ Δud,x
r ,

for some r �= p and x �∈ ReadFromp. The event is not observed by p in case
it is performed by another process on a variable not in ReadFromp. For a run

π = e1e2 · · · en ∈ (
Δarw,x ∪Δud,x

)∗
, we define [π]p := [e1]p [e2]p · · · [en]p.

Framework. In addition to (the concrete program) P with initial configuration

cinit , we consider an abstract programAp =
〈
X

Ap ,ProcSetAp ,QAp , IAp , initAp

〉
,

with initial configuration c
Ap

init . We assume that the following conditions hold: (i)
X

Ap = X, i.e., P and Ap operate on the same set X of shared variables. (ii) The

process p is in ProcSetAp . (iii) Ip = I
Ap
p , i.e., the process p executes the same code

in P and Ap. We say that Ap is an observation abstraction of P wrt. p, denoted

P �p Ap, if for every run π ∈ Πp (cinit ) in P , there is a run π′ ∈ Πp

(
c
Ap

init

)
in

Ap such that the following two conditions are satisfied: (i) ProgOrder (π) (p) =
ProgOrder (π′) (p). (ii) [StoreOrder (π)]p = [StoreOrder (π′)]p. In other words, the
programs P and Ap agree on the “parts of runs” that are observable by p: on the
one hand, p observes all events it performs itself; on the other hand, it observes
modifications of the memory performed by other processes provided that they
concern variables from which it can read (in the latter case, the actual identity
of the process performing the event is not relevant).

The next theorem shows that persistence can be established by analyzing the
abstract programs.
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Theorem 3. For every p ∈ ProcSet, let Ap be an abstract program such that
P �p Ap. If Ap is persistent for all p ∈ ProcSet then P is persistent.

process p1
regs init s
begin

q1. t=1; goto q2

q2. skip; goto q2

q2. skip; goto q3

q3. skip; goto q4
end

Fig. 15. Flattening ab-
straction of the pro-
gram of Fig. 2 wrt. p2

Flattening. We define a family of functions that build
observation abstractions Ap of P wrt. p for k ∈ N. Flat-
tening keeps all processes in P applying abstraction in-
dividually on each process. Although the number of pro-
cesses remains the same, the abstraction simplifies the
behavior of each process, again limiting the state explo-
sion problem. The precision of the abstraction increases
with increasing the value of k. More precisely, we keep
the behavior of a process r during its first k steps af-
ter which we replace each statement, except write and
atomic-read-write statements on variables in ReadFromp,
by the empty statement. Flattening abstraction is pre-
cise in the sense that it does not add extra fences (com-
pared to the set of fences that would be added to the concrete program). In our
experiments, no additional fences are added when applying this abstraction.

11 Experimental Results

Tool. We have implemented our techniques from §8-§10 in an open-source tool
called Persist. The syntax of the input language of Persist is defined by the gram-
mar of Fig. 8 in §5. Persist uses Spin [16] as backend model-checker to solve the
SC reachability queries for programs under SC. Since Spin is a finite-state model
checker, all the programs in our experiments are finite-state. We compare our
method with state-of-the-art tools1: Trencher [9] (a sound and complete tool
for robustness analysis of finite-state programs under TSO, that uses Spin as
backend tool), Memorax [1] (a sound and complete tool for the correctness anal-
ysis of finite-state programs under TSO wrt. safety properties), Remmex [20] (a
tool based on state-space exploration with acceleration, for correctness analysis
of programs under TSO wrt. to safety properties), and Musketeer [3] (a static
analysis tool for correctness analysis of programs under weak memory models
wrt. robustness). We perform the comparisons based on two aspects, namely the
number of fences (and their placement) and the running time. The experiments
are performed on an Intel x86-32 Core2 2.4 Ghz machine and 4GB of RAM. To
insert the fences,Memorax and Remmex require a safety property as an additional
input which is not always given; while Persist, Trencher, and Musketeer are fully
automatic. Notice that both persistence and robustness guarantee SeqCon.

In the following, we present two sets of results. The first set concerns the com-
parison of Persist (without the abstraction) with the other tools (see Table 1).
The second set shows the scalability of Persist (with/without abstraction) com-
pared to Musketeer and Trencher when increasing the number of processes (see

1 Except Dfence [21] which requires a special manual specification encoding for each
example.
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Fig. 16). In all experiments, we set up the time out to 2400 seconds, and k = 2
for abstraction. Our examples are from [21,9,1,20,3].

Table 1. Experimental results. Per, Tre, Mus, Mem, and
Rem stand for Persist, Trencher, Musketeer, Memorax,
and Remmex, respectively. The columns #P, #F, and
#T give the number of processes, number of fences, and
running time in seconds, respectively. If a tool runs out
of time (resp. memory), we put “TO” (resp. “OM”) in
the #T column, and • in #F column. We use “−” when
a tool is not tested due to a missing specification.

Program #P
Per Tre Mus Mem Rem

#F #T #F #T #F #T #F #T #F #T
SimDekker 4 4 4 4 163 8 1 • OM • OM
Dekker 4 8 14 • TO 16 783 • OM • OM
Peterson 4 4 223 • TO • TO • OM • OM
LamBak 3 6 104 • TO 18 110 • OM 6 372
LamBak 4 8 286 • TO • TO • OM • OM
Dijkstra 4 8 30 • TO • TO • OM • OM
Dc-Lock 6 0 7 0 139 0 1 • TO 0 5
SpinLock 2 0 1 0 1 0 1 0 1 0 1
TSpinLock 2 0 1 0 1 0 1 • OM 0 4
InlinePgsql 8 0 8 0 426 • TO • OM 0 42
Burns 5 9 119 • TO • TO • OM • TO
Szymaski 2 8 3 8 642 11 1 3 1 3 4
Szymaski 4 16 88 • TO • TO • OM • TO
LamFast2 2 8 6 4 48 15 1 4 136 4 6
LamFast2 3 12 10 • TO • TO • OM 6 108
CLH Lock 4 4 176 4 674 • TO • OM • OM
Parker 6 1 76 1 425 3 1 • OM • OM
Pgsql 6 7 26 7 260 7 1 • OM • TO
AltenatingBit 2 4 2 4 5 5 1 0 4 0 3
IncSequence 6 0 21 0 194 0 1 • OM • TO
TaskSchedule 10 0 5 0 418 0 1 • TO • OM
NBW W WR 2 0 18 1 595 6 1 • OM • TO
NBW W 5R 6 0 3 0 514 0 1 • OM • TO
SeqLock 4 0 63 0 364 0 1 • OM • TO
write+r 5 0 2 4 7 4 1 • OM • TO
r+detour 5 0 1 3 3 3 1 • OM • TO
r+detours 5 0 1 3 1 3 1 • OM • TO
write+r+co 6 0 7 4 38 4 1 • OM • TO
sb+detours 6 2 3 5 3 5 1 • OM • TO
sb+detour+co 6 0 1 4 3 4 1 • OM • TO
Cilk WSQ 2 2 3 2 107 3 1 − − − −
CL WSQ 2 1 2 1 796 1 1 − − − −
FIFO iWSQ 2 1 2 1 354 1 1 − − − −
LIFO iWSQ 2 1 7 1 558 1 1 − − − −
Anchor iWSQ 2 1 2 1 20 1 1 − − − −

Performance of Per-
sist without abstraction.
The results are given
in Table 1. Below, we
summarise the main
observations: (i) Persist
manages to return for all
the benchmarks. Trencher
and Musketeer fail to
answer for 8 out of 35
examples within 2400 sec-
onds. Memorax (Remmex)
manages to return for only
4 (9) out of 30 examples
within 2400 seconds. For
the comparison among
tools, we compute the
average of the ratio of
the running times over
examples where the tools
terminate. On average
Persist is 51 times faster
than Trencher and 2.48
times faster than Muske-
teer. (ii) Persist returns 54
fences while Musketeer re-
turns 119 fences for all the
examples where Musketeer
terminates within 2400
seconds (and thus, Persist
inserts 54% less fences
in total). Furthermore,
Persist returns 44 fences
while Trencher returns 62
fences for all the examples
where Trencher terminates within 2400 seconds (and thus, Persist inserts 30%
less fences in total).

Scalability wrt. the number of processes. We compare the scalability of Trencher,
Musketeer, Persist, and our abstraction Flattening) while increasing the number
of processes in several examples. In all these examples, no additional fences
are added due to flattening abstraction (compared to the case of Persist without
abstraction). The results are given in Fig. 16. We observe that: (i) Persist without
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Fig. 16. Persist with/without abstraction compared with Trencher and Musketeer. The
x axis is number of processes, the y axis is running time in seconds.

abstraction always scales better than Trencher for all the examples. Furthermore,
Persist without abstraction scales better than Musketeer in 4 out of 8 examples
(Partial Dekker, Burns, Dijkstra, Szymanski). (ii) Persist with the abstraction
always performs better than Persist without the abstractions while inserting no
extra fences. (iii) Persist with the abstraction outperformsMusketeer in 4 out of 8
examples (Partial Dekker, Burns, Dijkstra, Szymanski) while having comparable
running time for the rest.

In all the reported results (Table 1 and Fig. 16), except Lamport Fast 2 with
two processes (LamFast2), the set of fences returned by Persist is a subset of
the ones returned by Trencher and Musketeer. Hence, Persist presents a good
trade-off between efficiency and optimality.

12 Conclusion, Discussion, and Future Work

RobPer

PoVsoopen

Poopen

SeqCon

Fig. 17. Relevant cor-
rectness criteria

We have presented a framework for automatic fence in-
sertion under TSO that provides an excellent trade-off
between efficiency and optimality. We have implemented
our framework in a tool and evaluated it on a wide range
of benchmarks. The correctness criteria of Fig. 1, namely
Data Race Freedom (Drf), Triangular Race Freedom
(Trf), Robustness (Rob), Persistence (Per), Sequential
Consistence (SeqCon), and state Reachability (Reach)
can be seen as “stability conditions”, in the sense that
they measure how stable the behaviors of the program is
under TSO compared to SC. Only a small number of stability conditions are
relevant, since each condition corresponds to relaxing one of three parameters:
program order, source, and (variable) store order. A stability condition should
imply that the program under SC and TSO have the same reachable (control)
states, and that they satisfy the same safety properties (see §1, Persistence;
and §6, Safety Properties). We believe that our work is an important step in this
investigation. There are several open and hard questions to consider in future
work (see Fig. 17). This includes studying two remaining important stability con-
ditions, namely PoVso where a program is considered to be correct if the traces
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of the program under TSO and SC agree on (i) program order, and (ii) variable
store (coherence) order. PoVso gives an entirely different stability condition
compared to persistence (in fact, PoVso is a weakening of both robustness and
persistence). Checking PoVso (e.g., through finding appropriate patterns) is an
important (and difficult) open problem. Notice that, if persistence and PoVso
were equivalent, then robustness would be stronger than persistence which is
not the case (they are incomparable). Another open problem is checking the
condition Po, a weakening of PoVso, where the program is considered if its
TSO and SC traces need only to agree on program order. Finally, it is important
to develop frameworks that allow checking the different stability conditions for
other weak memory models, as done in [4].
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