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Abstract. For distributed applications to take full advantage of cloud
computing systems, we need middleware systems that allow developers
to build elasticity management components right into the applications.

This paper describes the design and implementation of ElasticRMI,
a middleware system that (1) enables application developers to dynam-
ically change the number of (server) objects available to handle remote
method invocations with respect to the application’s workload, without
requiring major changes to clients (invokers) of remote methods, (2) en-
ables flexible elastic scaling by allowing developers to use a combination
of resource utilization metrics and fine-grained application-specific in-
formation like the properties of internal data structures to drive scaling
decisions, (3) provides a high-level programming framework that handles
elasticity at the level of classes and objects, masking low-level platform
specific tasks (like provisioning VM images) from the developer, and (4)
increases the portability of ElasticRMI applications across different pri-
vate data centers/IaaS clouds through Apache Mesos [B].
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1 Introduction

Elasticity, the key driver of cloud computing, is the ability of a distributed
application to dynamically increase or decrease its use of computing resources,
to preserve its performance in response to varying workloads. Elasticity can
either be explicit or implicit.

Implicit vs. Explicit Elasticity. Implicit elasticity is typically associated with
a specific programming framework or a Platform-as-a-Service (PaaS) cloud. Ex-
amples of frameworks providing implicit elasticity in the domain of “big data an-
alytics” are map-reduce (Hadoop [I3] and its PaaS counterpart Amazon Elastic
Map Reduce [10]), Apache Pig [2], Giraph [12], etc. Implicit elasticity is handled
by the PaaS implementation and is not the responsibility of the programmer.
Despite being unable to support a wide variety of applications and computa-
tions, each of these systems simplifies application development and deployment,
and employs distributed algorithms for elastic scaling that are optimized for its
programming framework and application domain.
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Explicit Elasticity, on the other hand, is typically associated with Infrastructure-
as-a-Service (IaaS) clouds and/or private data centers, which typically provide elas-
ticity at the granularity of virtualized compute nodes (e.g., Amazon EC2) or
virtualized storage (e.g., Amazon Elastic Block Store (EBS)) in a way that is agnos-
tic of the application using these resources. It is the application developer’s or the
system administrator’s responsibility to implement robust mechanisms to moni-
tor the application’s performance at runtime, request the addition or removal of
resources, and perform load-balancing, i.e., redistribute the application’s workload
among the new set of resources.

Programmable Elasticity. To optimize the performance of new or existing dis-
tributed applications while deploying or moving them to the cloud, engineering
robust elasticity management components is essential. This is especially vital for
applications that do not fit the programming model of (implicit) elastic frame-
works like Hadoop, Pig, etc., but require high performance (high throughput
and low latency), scalability and elasticity — the best example is the class of dat-
acenter infrastructure applications like key-value stores (e.g., memcached [22],
Hyperdex [23]), consensus protocols (e.g., Paxos [15]), distributed lock managers
(e.g., Chubby [7]) and message queues. Elasticity frameworks which rely on ex-
ternally observable resource utilization metrics (CPU, RAM, etc.) are insufficient
for such applications (as we demonstrate empirically in Section[H). A distributed
key value store, for example, may have high CPU utilization when there is high
contention to update a certain set of “hot keys”. Relying on CPU utilization to
simply add additional compute nodes will only degrade its performance further.
Hence, there is an emerging need for a elasticity framework that bridges the gap
between implicit and explicit elasticity, allowing the use fine grained applica-
tion specific metrics (e.g., size of a queue/heap, number of aborted transactions
or average number of attempts to acquire certain locks) to build an elasticity
management component right into the application without compromising (1) se-
curity, by revealing application-level information to the cloud service provider,
and (2) portability across different cloud vendors.

Why RMI?. Despite being criticized for introducing direct dependencies across
nodes through remote object references, Remote Method Invocation (RMI) and
Remote Procedure Call (RPC) remain a popular paradigm [3] for distributed
programming, because of their simplicity. Their popularity has led to the devel-
opment of Apache Thrift [3] with support for RPC across different languages,
and the design of cloud computing paradigms like RAMCloud [16] with support
for low-latency RPC. However, high-level support for elasticity is limited in ex-
isting RPC-like frameworks; and such support is vital to engineering efficient
distributed applications and migrating existing applications to the cloud.

Contributions. This paper makes the following technical contributions:

1. ELASTICRMI — A framework for elastic distributed objects in Java:
(a) with the same simplicity and ease of use of the Java RMI, handling
elasticity at the level of classes and objects, while supporting implicit
and explicit elasticity. (Section [2))
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Fig. 1. ELASTICRMI — Overview

(b) that enables application developers to dynamically change the number
of (server) objects available to handle remote method invocations with
respect to the application’s workload, without requiring any change to
clients (invokers) of remote methods. (Section [3)

(c) enables flexible elastic scaling by allowing developers to use a combina-
tion of resource utilization metrics and fine-grained application-specific
information to drive scaling decisions. (Section [3)

2. A runtime system that handles all the low-level mechanics of instantiating
elastic objects, monitoring their workload, adding/removing additional ob-
jects as necessary and load balancing among them. (Section [])

3. Performance evaluation of ELASTICRMI using elasticity metrics defined by
SPEC [24] and using four existing real world applications — Marketcetera fi-
nancial order processing, Paxos consenus protocol, Hedwig publish/subscribe
system and a distributed coordination service. (Section [])

2 ElasticRMI — Overview

Figure[Millustrates the architecture of ELASTICRMI. In designing ELASTICRMI,
our goals are (1) to retain the simple programming model of Java RMI, and
mask the low level details of implementing elasticity like workload monitoring,
load balancing, and adding/removing objects from the application developer. (2)
require minimal changes, if any, to the clients of an object (3) make ELASTICRMI
applications as portable as possible across different IaaS cloud implementations.

2.1 Elastic Classes and Object Pools

An ErasTicRMI application consists of multiple components (implemented as
classes) interacting with each other. The basic elasticity abstraction in ELAS-
TICRMI is an elastic class. An elastic class is also a remote class, and (some)
of its methods may be invoked remotely from another JVM. The key difference
between an elastic and a regular remote class is that an elastic class is instanti-
ated into a pool of objects (referred to as elastic object pool), with each object
executing on a separate JVM. But, the presence of multiple objects in an elastic
object pool is transparent to its clients, because the pool behaves as a single
remote object. Clients can only interact with the entire object pool, by invoking
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its remote methods. The interaction between a client and an elastic object pool
is unicast interaction, similar to Java RMI. The processing of the method invo-
cation, i.e., the method execution happens at a single object in the elastic object
pool chosen by the ELASTICRMI runtime, and not the client. ELASTICRMIs
runtime can redirect incoming method invocations to one of the objects in the
pool, depending on various factors and performance metrics (Section [ describes
load balancing in detail). The runtime automatically changes the size of the
pool depending on the pool’s “workload”. ELASTICRMI is different from certain
frameworks where the same method invocation is multicast and consequently
executes on multiple (replicated) objects for fault-tolerance.

2.2 Shared State and Consistency

In Java RMI, the state of a remote (server) object is a simple concept, because it
resides on a single JVM and there is exactly one copy of all its fields. Clients of
the remote object can set the value of instance fields by calling a remote method,
and access the values in subsequent method calls. In ELASTICRMI, on the other
hand, the entire object pool should appear to the client as a single remote object
— thereby necessitating coordination between the objects in the pool to consis-
tently update the values of instance fields. For consistency, we employ an external
in-memory key-value store (HyperDex [23] in our implementation) to store the
state (i.e., public, private, protected and static fields) of the elastic remote object
pool. The key-value store is not used to store local variables in methods/blocks
of code and parameters in method declarations. Local variables are instantiated
on the JVM in which the object resides. The key-value store is shared between
the objects in the pool, and executes on separate JVMs.

2.3 Stubs and Skeletons

ELAsTICRMI modifies the standard mechanisms used to implement RPCs and
Java RMI, as illustrated by Figure[ll The ELASTICRMI pre-processor analyzes
elastic classes to generate stubs and skeletons for client-server communication.
As in Java RMI, a stub for a remote object acts as a client’s local representative
or proxy for the remote object. The caller invokes a method on ELASTICRMI’s
local stub which (1) initiates a connection with the remote JVM, serializes and
marshals parameters, waits for the result of the method invocation and un-
marshals the return value/exception before returning it to the sender, and (2)
performs load balancing among the objects in the elastic pool as necessary. The
stub is generated by the ELASTICRMI preprocessor and is different from the
client application, to which the entire object pool appears as a single object,
i.e., the existence of a pool of objects is known to the stub but not to the client
application. In the remote JVM, each object in the pool has a corresponding
skeleton, which in addition to the duties performed in regular Java RMI, can
also perform dynamic load balancing based on the CPU utilization of the object
and redirect all further method invocations to other objects in the pool after
ErasTicRMI decides to shut it down in response to decreasing workload.
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2.4 Instantiation of Object Pools in a Cluster

An elastic class can only be instantiated by providing a minimum and maximum
number of objects that constitute its elastic object pool. Obviously, instantiat-
ing all objects in the pool on separate JVMs on the same physical machine may
degrade performance. Hence, ELASTICRMI attempts to instantiate each object
in a virtual node in a compute cluster. Virtual nodes can be obtained either (1)
from TaaS clouds by provisioning and instantiating virtual machines, or (2) from
a cluster management/resource sharing system like Apache Mesos [5]. Our im-
plementation of ELASTICRMI uses Apache Mesos [5] because it supports both
clusters of physical nodes (in private data centers) or virtual nodes (from IaaS
clouds). Mesos can also be viewed as a thin resource-sharing layer that manages
a cluster of physical nodes/virtual machines. It divides these nodes into “slices”
(called resource offers or slave nodes [5]), with each resource offer containing a
configurable reservation of CPU power (e.g., 2 CPUs at 2GHz), memory (e.g.,
2GB RAM), etc. on one of the nodes being managed. Mesos implements the
“slice” abstraction by using Linux Containers (http://1xc.sourceforge.net)
to implement lightweight virtualization, process isolation and resource guaran-
tees (e.g., 2CPUs at 2GHz) [5]. While instantiating an elastic class, the ELAS-
TICRMI runtime requests Mesos for a specified number of slave nodes, instanti-
ating an object on each slave node.

Mesos aids in portability of ELASTICRMI applications, just like the JVM
aids the portability of Java applications. Mesos can be installed on private data
centers and many public cloud offerings (like Google Compute Engine, Amazon
EC2, etc.). As long as Mesos is available, ELASTICRMI applications can be
executed, making them portable across different cloud vendors.
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Fig. 2. ELASTICRMI — Server Side

2.5 Automatic Elastic Scaling

The key objective of ELASTICRMI is to change the number of objects in the
elastic pool based on its workload. The “workload” of an elastic object can have
several application-specific definitions, and consequently, ELASTICRMI allows
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programmers to define the workload of an elastic class and specify the condi-
tions under which objects should be added or removed from the elastic pool.
This can be done by overriding select methods in the ELASTICRMI framework,
as discussed in detail in (the next) Section Bl During the lifetime of the elas-
tic object, the ELASTICRMI runtime monitors a elastic object pool’s workload
and decides whether to change its size either based on default heuristics or by
applying the programmer’s logic by invoking the overridden methods discussed
above.

If a decision has been made to increase the size of the pool, the ELASTICRMI
runtime interacts with the Mesos master node to request additional compute
resources. If the request is granted, ELASTICRMI runtime instantiates the ad-
ditional object, and adds it to the pool (See Figure 2l for an illustration). If the
decision is to remove an object, ELASTICRMI communicates with its skeleton
to redirect subsequent remote method calls to other objects in the pool. Once
redirection starts, ELASTICRMI sends a SHUTDOWN message to the object. The
object acknowledges the message, and waits for all pending remote method invo-
cations to finish execution or throw exceptions indicating abnormal termination.
Then the object notifies the ELASTICRMI runtime that it is ready to be shut-
down. ELASTICRMI terminates the object and relinquishes its slice to Mesos.
This slice is then available to other elastic objects in the cluster, or for subse-
quent use by the same elastic object if a decision is made in the future to increase
the size of its pool.

3 Programming with ElasticRMI

This section illustrates the use of ELASTICRMI for both implicit and explicit
elasticity through examples, along with an overview of how to make such de-
cisions with a global view of the entire application. Our implementation also
includes a preprocessor similar to rmic which in addition to generating stubs and
skeletons, converts ELASTICRMI programs into plain Java programs that can
be compiled with the javac compiler.

3.1 ElasticRMI Class Hierarchy

A distributed application built using ELASTICRMI consists of interfaces declar-
ing methods and classes implementing them. The key features of ELASTICRMI
API (Figure [3) are:

— java.elasticrmi iS the top-level package for programming ELASTICRMI server
classes.

— An elastic interface is one that declares the set of methods that can be in-
voked from a remote JVM (client). All elastic interfaces must extend ELASTI-
CRMTI’s marker interface — java.elasticrmi.Elastic, either directly or indirectly.

— The Elasticobject class implements all the basic functionalities of ELASTI-
CRMI. An application-defined class becomes elastic by implementing one or
more elastic interfaces and by extending Elasticobject.
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interface Elastic extends Remote { } //marker interface used by preprocessor
//0Optionally implemented by the application
abstract class Decider extends UnicastRemoteObject implements Elastic {
abstract int getDesiredPoolSize(ElasticObject o);
+
abstract class ElasticObject extends UnicastRemoteObject {
ElasticObject() //Default constructor
ElasticObject(Decider d) //Consult d for scaling decisions

void setMinPoolSize(int s) //Set min pool size

void setMaxPoolSize(int s) //Set max pool size

void setBurstInterval(float ival) //Make scaling decisions every ’ival’ ms
void setCPUIncrThreshold(float t) //Add objects when CPU util > t

void setCPUDecrThreshold(float t) //Remove objects when CPU until < t

void setRAMIncrThreshold(float t) //Add objects when RAM util > t

void setRAMDecrThreshold(float t) //Remove objects when RAM until < t

float getAvgCPUUsage() //Get CPU util averaged over burst interval

public float getAvgRAMUsage() //Get RAM util averaged over burst interval
int getPoolSize() //Get pool size

//Returns average # of calls to each remote method over the burst interval
HashMap<String,float> getMethodCallStats() {...}

//Called by the runtime to poll each object about changes to the size of
//the pool. Can return positive or negative integers
abstract int changePoolSize();

}
Fig. 3. A snapshot of the ELASTICRMI server-side API.
class CachelImplicit class CacheExplicitl extends ElasticObject {

extends ElasticObject { CacheExplicit1() {

CacheImplicit() { setMinPoolSize(5); setMaxPoolSize(50);
setMinPoolSize(5); setBurstInterval (5x60%x1000); //5mins
setMaxPoolSize(50); setCPUIncrThreshold(85); setRAMIncrThreshold(70);

} setCPUDecrThreshold(50); setRAMDecrThreshold(40);

}
} }
(a) Implicit elasticity (b) Explicit elasticity using coarse-grained metrics.

Fig. 4. Example of two distributed cache classes implemented in ELASTICRMI

3.2 Programming with Implicit Elasticity

EvraAsTICRMI supports implicit elastic scaling, using average CPU utilization
across the objects in an elastic pool as the default coarse-grained metric. A time
interval, referred to as the burst interval (default 60s) is used to decide whether
to change the size of elastic object pool. ELASTICRMI measures the average
CPU utilization of each object in the elastic pool every 60s — objects are added
(in increments of 1 object) when the average utilization exceeds 90% and re-
moved when average utilization falls below 60%. Figure Hal shows an example
of a distributed cache class (e.g., a web cache, content/object cache) that relies
on ELASTICRMI’s implicit elasticity mechanisms. The programmer simply im-
plements a cache store based on some well-known algorithm and specifying the
minimum and maximum size of the pool, without worrying about adapting to
new resources and load balancing.
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3.3 Programming with Explicit Elasticity

EvrasTICRMI also allows programmers to explicitly define the workload of an
elastic class and specify the conditions under which objects should be added or
removed from the elastic pool. Workload definitions can either be coarse-grained
or fine-grained.

Coarse-Grained Metrics. A programmer can override the default burst inter-
val, and the average CPU utilization thresholds used for changing the number
of objects in the pool by calling the appropriate methods (setBurstintervai(...),
setCPUIncrThreshold(...) and setCPUDechhreshold(...)) in java.elasticrmi.ElasticObject
which is available in all elastic classes since they extend Eiasticobject (see Fig-
ure [3]).

Figure @hl shows an example of a cache class that changes the CPU and mem-
ory (RAM) utilization thresholds that trigger elastic scaling. The core ELASTI-
CcRMI API includes specific methods to set CPU and memory thresholds because
they are commonly used for elastic scaling — if both CPU and RAM thresholds
are set, the runtime interprets them using a logical OR, i.e., in the example
shown in Figure [dh] the ELASTICRMI runtime increases the size of the pool by
in increments of 1 object every five minutes, either if average CPU utilization
exceeds 85% or if average memory utilization exceeds 70% across the JVMs in
the elastic object pool.

Fine-grained Metrics. ELASTICRMI provides additional support, through the
changePoolsize method (see Figure B)) which can be overridden by any elastic class.
The runtime periodically (every “burst interval”) invokes changePoolsize to poll
each object in the elastic object pool, about desired changes to the size of the
pool. The method returns an integer — positive or negative corresponding to
increasing or decreasing the pool’s size. The values returned by the various ob-
jects in the pool are averaged to determine the number of objects that have to
be added/removed. The logic used to decide on elastic scaling is left to the devel-
oper, and it may be based on (1) parameters of the JVM on which each object
resides, (2) properties of shared instance fields of the elastic object, or of data
structures used by the object, e.g., number of pending client operations stored
in a queue, and (3) metrics computed by the object like average response time,
throughput, etc. ELASTICRMI allows classes to use only a single decision mech-
anism for elastic scaling, i.e., if changePooisize is overridden, then scaling based on
CPU/Memory utilization is disabled.

Figure [ illustrates the use of changePooisize to make scaling decisions. The
CcacheExplicit2 class is implemented to use metrics specific to distributed object
caches, e.g., avglockAcgFailure (which measures the failure rate of acquiring write
locks to ensure consistency during a put operation on the cache) and avgLockAcqLatency

(which measures the average latency to acquire write locks) to make decisions
about changing the size of the elastic object pool. In Figure Bl the cacheExpiicit2
class does not add new objects to the pool when there is a lot of contention. When
the failure rate for acquiring write locks (avgLockAcqFailure is greater than 50%) or
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public class CacheExplicit2 extends ElasticObject {
float avgLockAcqFailure, avgLockAcqlLatency
public int changePoolSize() {
HashMap<String, float> sMap;
sMap = getMethodCallStats();

float putLatency = sMap.get("put").getLatency();
float getLatency = sMap.get("get").getLatency();
if (putLatency > 100 || putLatency > 3xgetLatency) {
if (avglLockAcqFailure > 50) return O0;
if (avgLockAcqlLatency >= 0.8*putlLatency) return 0; else return 2;
¥
}
}

Fig. 5. A distributed cache class which relies on ELASTICRMI’s explicit elasticity sup-
port using fine-grained application-specific metrics.

when the predominant component of putLatency iS avgLockAcqLatency, no additional ob-
jects are added to the pool because there is already high contention among objects
serving client requests to acquire write locks. When these conditions are faise, the
size of the pool is increased by two — controlling the number of objects added is
another feature of changePool1size.

Making Application-Level Scaling Decisions. The mechanisms described above
involve makes scaling decisions local to an elastic class, and may not be optimal
for applications using multiple elastic classes (where the application contains
tiers of elastic pools). ELASTICRMI also supports decision making at the level
of the application using the pecider class. It is the developer’s responsibility to
ensure that elastic objects being monitored communicate with the monitoring
components, either by using remote method invocations or through message
passing. The ELASTICRMI runtime assumes responsibility for calling changePoo1size
method of the monitoring class to get the desired size of each elastic object pool,
and determines whether objects have to be added or removed. Due to space lim-
itations, we refer the reader to our tech report for additional details [20].

4 The ElasticRMI Runtime

The runtime (1) handles shared state among the objects in an elastic object
pool, (2) instantiates each object of a pool, (3) performs load balancing, and (4)
is responsible for fault-tolerance.

4.1 Shared State and Consistency

The objects in the elastic object pool coordinate to update the state of its in-
stance fields (public, private, protected) and static fields. For consistency, we use
HyperDex [23], a distributed in-memory key-value store (with strong consis-
tency). Using an in-memory store provides the same data durability guarantees
as Java RMI which stores the state of instance fields in RAM in a single Java
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virtual machine heap. HyperDex is different from the distributed cache in the
examples of Section [3] which is used for illustration purposes only. The ELASTI-
CRMI preprocessor translates reads and writes of instance and static fields into
get(...) and put(...) method calls of HyperDex.

Figure [@ shows a

simple elastic class

class C1 class C1lProcessed {

(abstracted by store void bar () {

) and ELASTICRMT’s y
runtime (abstracted ?
by Emur). For wvari-
able x, cisx is used
as the key in store.
For synchronized meth-
ods, ELASTICRMI uses a lock per class named after the class — the example in
Figure [6] uses a lock called rc1-.

If an elastic class has an instance or static field f, a method call on f is
handled as follows:

ERMI.unlock("C1");
}

.. |
¢t and how it is extends ElasticObject { | void foo() {
transformed by the int x, z; | int x=Store.get("C1$x");
| if (x==5)
ELasTICRMI prepro- void foo() { | Store.put("Ci$z", 10);
cessor to insert calls if(x = B) z = 10; Ly
3} | void bar() {
to HyperDex synchronized | while (!ERMI.lock("C1")) ;
|
|
|
|

}

Fig. 6. Handling shared state through an in-memory store
(HyperDex [23] here)

— If f is a remote or elastic object, the method invocation is simply serialized
and dispatched to the remote object or pool as the case may be.

— Else, if m is synchronized. the method call is handled as in Figure [ but the
runtime acquires a lock on f through HyperDex. In this case, ELASTICRMI
guarantees mutual exclusion for the execution of f.m(...) with respect to
other methods of f.

— Else, (i.e., m is neither remote, elastic nor synchronized), f.m(...) involves
retrieving f from HyperDex and executing m(...) locally on an object in
the elastic object pool, and storing f back into HyperDex after m(...) has
completed executing.

EvLAsTICRMI aims to increase parallelism and hence the number of remote
method executions per second when there is limited or no shared state. In-
creasing shared state increases latency due to the network delays involved in
accessing HyperDex. Having shared state and mutual exclusion through locks
or synchronized methods further decreases parallelism. However, we note that
this is not a consequence of ELASTICRMI, but rather dependent on the needs
of the distributed application. If the developer manually implements all aspects
of elasticity by using plan Java RMI and an existing tool like Amazon Cloud-
Watch+Autoscaling, he still has to use something like a key-value store to handle
shared state. ELASTICRMI cannot and does not attempt to eliminate this prob-
lem — it is up to the programmer to reduce shared state.
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Note that ELASTICRMI does not guarantee a transactional (ACID) execution
of m(...) with respect to other objects in the pool, and using synchronizea does not
provide ACID guarantees either in RMI or in ELASTICRMI.

4.2 Instantiation of Elastic Objects

An elastic class can only be instantiated by providing a minimum (> 2) and max-
imum number of objects that constitute its elastic object pool (see Figure [3).
During instantiation, if the minimum number of objects is k, ElasticRMI’s run-
time creates k objects on k new JVM instances on k virtual nodes (Mesos slices),
if k& virtual nodes are available from Mesos [5]. If only | < k are available, then
only [ objects are created. Under no circumstance does ELASTICRMI create two
or more JVM instances on the same slice obtained from Mesos. Then, ELASTI-
CRMI instantiates the HyperDex on one additional Mesos slice, and continues to
monitor the performance of the HyperDex over the lifetime of the elastic object.
ErasTicRMI may add additional nodes to HyperDex as necessary. ELASTI-
CRMI also enables administrators to be notified if the utilization of the Mesos
cluster exceeds or falls below (configurable) thresholds, enabling the proactive
addition of computing resources before the cluster runs out of slices.

4.3 Load Balancing

Unlike websites or web services, where load balancing has to be performed on
the server-side, ELASTICRMI has the advantage that both client and server pro-
grams are pre-processed to generate stubs and skeletons respectively. Hence, we
employ a hybrid load balancing model involving both stubs and skeletons — note
that all load balancing code is generated by the pre-processor, and the program-
mer does not have to handle any aspect of it explicitly. Please also note that this
section describes the simple load balancing techniques used in ELASTICRMI,
but we do not claim to have invented a new load balancing algorithm.

On the server side, the runtime, while instantiating skeletons in an elastic
object pool, assigns monotonically increasing unique identifiers (uid) to each
skeleton, and stores this information in HyperDex. The skeleton with the lowest
uid is chosen by the runtime to be the leader of the elastic object pool, called the
sentinel. This is similar to leader election algorithms that use a so-called “royal
hierarchy” among processes in a distributed system. The sentinel, in addition to
performing all the regular functions (forwarding remote method invocations) to
its object in the pool, also helps in load balancing. The client stub created by
the ELASTICRMI preprocessor (see Section 2.4]) has the ability to communicate
with the sentinel to invoke remote methods. While contacting the sentinel for
the first time, the stub on the client JVM requests the identities (IP address and
port number) of the other skeletons in the pool from the sentinel.

For load-balancing on the client-side, the stub then re-directs subsequent
method invocations to other objects in the object pool either randomly or in
a round-robin fashion. If an object has been removed from the pool after its
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identity is sent to a stub, i.e., if the sending itself fails, the remote method in-
vocation throws an exception which is intercepted by the client stub. The stub
then retries the invocation on other objects including the sentinel. If all attempts
to communicate with the elastic object pool fail, the exception is propagated to
the client application.

For load-balancing on the server side, the sentinel is also responsible for collect-
ing and periodically broadcasting the state of the pool — number of objects, their
identities and the number of pending invocations — to the skeletons of all its mem-
bers. We use the JGroups group communication system for broadcasts. If the sen-
tinel notices that any skeleton is overloaded with respect to others, it instructs the
skeleton to redirect a portion of invocations to a set of other skeletons. To decide
the number of invocations that have to be redirected from each overloaded skeleton,
our implementation of the sentinel uses the first-fit greedy bin-packing approxima-
tion algorithm (See http://en.wikipedia.org/wiki/Bin_packing_problem).
As mentioned in the previous paragraph, client-side load balancing occurs at the
stub while server-side load balancing involves skeletons and the sentinel which mon-
itor the state of the JVM and that of the elastic object pool to redirect incoming
method invocations.

4.4 Fault Tolerance

Existing RMI applications implement fault tolerance protocols on top of Java
RMTI’s fault- and fault tolerance model, where objects typically reside in main
memory, and can crash in the middle of a remote method invocation. le want
to preserve it to make adoption of ELASTICRMI easier. In short, ELASTICRMI
does not hide/attempt to recover from failures of client objects, key-value store
(HyperDex) or the server-side runtime processes and propagates corresponding
exceptions to the application. However, ELASTICRMI attempts to recover from
failures of the sentinel and from Mesos-related failures. Sentinel failure triggers
the leader election algorithm described in 3] to elect a new sentinel, and mesos-
related failures affect the addition/removal of new objects until Mesos recovers.

5 Evaluation

In this section, we evaluate the performance of ELASTICRMI, using metrics
relevant to elasticity. Due to space limitations, we refer the reader to our tech
report for additional details [20].

5.1 Elasticity Metrics

Measuring elasticity is different from measuring scalability. (Recall that) Scala-
bility is the ability of a distributed application to increase its “performance” pro-
portionally (ideally linearly) with respect to the number of available resources,
while elasticity is the ability of the application to adapt to increasing or de-
creasing workload; adding or removing resources to maintain a specific level of
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“performance” or “quality of service (QoS)”[24]. Performance/QoS is specific to
the application — typically a combination of throughput and latency. A highly
elastic system can scale to include newer compute nodes, as well as quickly pro-
vision those nodes. There are no standard benchmarks for elasticity, but the
Standard Performance Evaluation Corporation (SPEC) has recommended elas-
ticity metrics for IaaS and Paa$S clouds [24].

Agility. This metric characterizes the ability of a system provisioned to be as

close to the needs of the workload as possible [24]. Assuming a time interval

[t,t'], which is divided into N sub-intervals, Agility maintained over [t,t'] can be
N

. N
defined as: ;{(Z Excess(i) + Z Shortage())
=0 =0

where (1)Excess(i) is the excess capacity for interval i as determined by
Cap prov(i) — Req min(i), when Cap prov(i) > Req min(i) and zero other-
wise. (2) Shortage(i) is the shortage capacity for interval ¢ as determined by
Req min(i) — Cap prov(i), when Cap prov(i) < Req min(i) and zero otherwise.
(3) Req min(i) is the minimum capacity needed to meet an application’s quality
of service (QoS) at a given workload level for an interval i. (4) Cap prov(i) is
the recorded capacity provisioned for interval 4, and (5) N is the total number
of data samples collected over a measurement period [t,t], i.e., one sample of
both Fzcess(i) and Shortage(i) is collected per sub-interval of [t,t'].

Elasticity measures the shortage and excess of computing resources over a
time period. For example, a value of elasticity of 2 over [t,t'] when there is no
excess means that there is a mean shortage of 2 “compute nodes” over [t,t']. For
an ideal system, agility should be as close to zero as possible — meaning that
there is neither a shortage nor excess. Agility is a measurement of the ability
to scale up and down while maintaining a specified QoS. The above definition
of agility will not be valid in a context where the QoS is not met. It should be
noted that there is ongoing debate over whether Shortage and Excess should
be given equal weightage[24] in the Agility metric, but there are disagreements
over what the weights should be otherwise.

Provisioning Interval. Provisioning Interval is defined as the time needed to
bring up or drop a resource. This is the time between initiating the request to
bring up a new resource, and when the resource serves the first request.

5.2 ElasticRMI Applications for Evaluation and Workloads

We have re-implemented four existing applications using ELASTICRMI to add
elasticity management components to them. This does not involve altering the
percentage of shared state or the frequency of accesses (reads or writes) to said
state.
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Fig. 7. Elasticity Benchmarking of Marketcetera order routing, Hedwig, Paxos and
DCS. We compare the ELASTICRMI implementation of these applications with two
other systems described in Section 5.4l



Elastic Remote Methods 157

Marketcetera [11] Order Routing. Marketcetera is an NYSE-recommended al-
gorithmic trading platform. The order routing system is the component that
accepts orders from traders/automated strategy engines and routes them to var-
ious markets (stock/commodity), brokers and other financial intermediaries. For
fault-tolerance, the order is persisted (stored) on two nodes. The workload for
this system is a set of trading orders generated by the simulator included in the
community edition of Marketcetera [I1].

Apache Hedwig [T])]. Hedwig is a topic-based publish-subscribe system designed
for reliable and guaranteed at-most once delivery of messages from publishers
to subscribers. Clients are associated with (publish to and subscribe from) a
Hedwig instance (also referred to as a region), which consists of a number of
servers called hubs. The hubs partition the topic ownership among themselves,
and all publishes and subscribes to a topic must be done to its owning hub. The
workload for this system is a set of messages generated by the default Hedwig
benchmark included in the implementation.

Pazos [15]. Paxos is a family of protocols for solving consensus in a distributed
system of unreliable processes. Consensus protocols are the basis for the state
machine approach to distributed computing, and for our experiments we im-
plement Paxos using a widely-used specification by Kirsch and Amir [I5]. The
workload for this system is the default benchmark included in 1ivpaxos [21].

DCS. DCS is a distributed co-ordination service for datacenter applications,
similar to Chubby [7] and Apache Zookeeper [25]. DCS has a hierarchical name
space which can be used for distributed configuration and synchronization. Up-
dates are totally ordered. The workload for this system is the default benchmark
included in Apache Zookeeper [25].

5.3 Workload Pattern

To measure how well the system adapts to the changing workload, we use two
patterns shown in Figures [7a] and These two patterns capture all common
scenarios in elastic scaling which we have observed by analyzing real world ap-
plications. The abrupt pattern shown in Figure [7al has all possible scenarios
regarding abrupt changes in workload — gradual non-cyclic increase, gradual
decrease, rapid increases and rapid decrease in workload. A cyclic change in
workload is shown by the second pattern in Figure[Thl So, together the patterns
in Figures [7al and [Th] exhaustively cover all elastic scaling scenarios we observed.
Note however, that although the pattern remains the same for varying the work-
load while evaluating all the four systems, the magnitude differs depending on
the benchmark used, i.e., the values of points A and B in Figures [Tal and [7h] are
different for the four systems depending on the benchmark. Point A, for example,
is 50,000 orders/s for Marketcetera, 75,000 updates/s for DCS, 24,000 consensus
rounds/s for Paxos and 30,000 messages/s for Hedwig. We set Point B at 20%
above Point A — note that the specific values of Points A and B are immaterial
because we are only measuring adaptability and not peak performance.
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5.4 Overprovisioning and CloudWatch

We compare the ELASTICRMI implementation of the applications in Section
with the existing implementations of the same applications in two deployment sce-
narios — (1) Overprovisioning and (2) Amazon AutoScaling + CloudWatch [4][I].
The overprovisioning deployment scenario is similar to an “oracle” —the peak work-
load arrival rate i.e., point A for the abruptly changing workload and point B for
the cyclic workload are known a priori to the oracle; and the number of nodes re-
quired to meet a desired QoS (throughput, latency) at A and B respectively is
determined by the oracle through experimental evaluation. The oracle then pro-
visions the application on a fixed set of nodes — the size of which is enough to
maintain the desired QoS even at the peak workload arrival rate (A and B respec-
tively). In a nutshell, the over provisioning scenario can be described as “knowing
future workload patterns and provisioning enough resources to meet its demands”.
Overprovisioning is the alternative to elastic scaling — there are going to be excess
provisioned resources when the workload is below the peak (A and B), but provi-
sioning latency is zero because all necessary resources are always provisioned. In
the CloudWatch scenario, we use a monitoring service — Amazon CloudWatch to
collect utilization metrics (CPU/Memory) from the nodes in the cluster and use
conditions on these metrics to decide whether to increase or decrease the number
of nodes. The ELASTICRMI implementation of the above applications, however,
uses a combination of resource utilization and application-level properties specific
to Marketcetera, DCS, Paxos and Hedwig respectively to decide on elastic scaling.
Since ELASTICRMI and CloudWatch are two different systems, we also compare
the ELASTICRMI implementation of the four applications with another version,
referred to as ElasticRMI-CPUMem in Figure[7l where no application-level prop-
erties are used but only the the conditions based on CPU/Memory utilization in
CloudWatch are used.

N
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(a) Provisioning latency — Abrupt Work-(b) Provisioning latency — Cyclic Workload
load

Fig. 8. Provisioning latency in seconds for ElasticRMI and Overprovisioning (which is
always 0). Provisioning latency for Amazon CloudWatch is not plotted because it is in
several minutes and hence well above that of both ElasticRMI and Overprovisioning.
You can see repeating patterns corresponding to the cyclic workload.

5.5 Agility Results

In this section, we compare the Agility of the ElasticRMI implementation of all
four systems against Overprovisioning, CloudWatch and ElasticRMI-CPUMem.
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Marketcetera Order Routing. The relevant QoS metrics for the order routing
subsystem are order routing throughput, which is the number of orders routed
from traders to brokers/exchanges per second and order propagation latency,
which is the time taken for an order to propagate from the sender to the re-
ceiver. We compare the elasticity of the three deployments of the order routing
system described in Section 5.4l The results are illustrated in Figure[ll Figures[Zd
and plot the agility over the same time period as in Figures [7al and [7H] for
all the four deployments. From Figures [fd and [7dl we observe that the agility of
EvrAsTICRMI is better than CloudWatch, ElasticRMI-CPUMem and overprovi-
sioning. Ideally, agility must be zero, because agility is essentially a combination
of resource wastage or resource under-provisioning. We observe that for abruptly
changing workloads, agility of ELASTICRMI is close to 1 most of the time, and
increases to 5 during abrupt changes in workload. We also observe that the
the agility of ELASTICRMI oscillates between 0 and a positive value frequently.
This proves that the elastic scaling mechanisms of ELASTICRMI perform well
in trying to achieve optimal resource utilization, i.e., react aggressively by try-
ing to push agility to zero. In summary, the average agility of ELASTICRMI for
abruptly changing workload is 1.37. As expected, the agility of overprovisioning
is the worst, up to 24x that of ELASTICRMI. This is not surprising, because its
agility does reach zero at peak workload, when the agility of ELASTICRMI is 5,
thus illustrating that overprovisioning optimizes for peak workloads. The average
agility of overprovisioning is 17.2 for the cyclical workload and 24.1 for abruptly
changing workload. CloudWatch performs much better than overprovisioning,
but it is less agile than ELASTICRMI. Its agility is approximately 3.4x that of
ELAsTICRMI on average for abruptly changing workloads, and it does not oscil-
late to zero frequently like ELASTICRMI. The agility of ElasticRMI-CPUMem
is approximately equal to CloudWatch and is 3.02x that of ELASTICRMI on
average — this is in spite of ElasticRMI-CPUMem and CloudWatch being dif-
ferent systems. having different provisioning latencies. This is because the same
conditions are used to decide on elastic scaling and because the provisioning
latency of CloudWatch is well within the sampling interval of 10 minutes used
in Figure[7

Figure [Zdl shows that the agility of ELASTICRMI is again better than that
of CloudWatch and overprovisioning for cyclic workloads. We also observe that
as in the case of abrupt workloads, the agility of ELASTICRMI tends to de-
crease to zero more frequently than the other two deployments. Figure also
demonstrates the oscillating pattern in the agility of overprovisioning — the initial
agility is high (and comes from Fzcess), and as the workload increases, Fxcess
decreases, thereby decreasing Agility and bringing it to zero corresponding to
Point B. Then Fxcess increases again as the workload decreases thereby increas-
ing Agility. This repeats three times. As expected, the agility of ElasticRMI-
CPUMemn is similar to that of CloudWatch.

Hedwig. The relevant QoS metrics for Hedwig are also throughput and latency
— the number of messages published per second and time taken for the message
to propagate from the publisher to the subscriber. Figures [Zel and [ illustrate
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the agility corresponding to our experiments with Hedwig. From Figures[7d and
[, we observe similar trends as in the case of Marketcetera order processing.
ErAsTICRMI has lower agility values than the other two deployments, and the
agility of ELASTICRMI tends to oscillate between zero and a positive value. The
agility values of CloudWatch are more than 4.5x that of ELASTICRMI, on av-
erage for abrupt workloads and 3x that of ELASTICRMI for cyclic workloads.
As expected, the agility of over provisioning is the highest, and is worse than the
values observed for Marketcetera in the case of cyclic workloads. We also observe
a similar oscillating trend in the agility values of the overprovisioning deploy-
ment as in Marketcetera, but the agility values oscillate more frequently because
Req min(i) — the minimum capacity needed to maintain QoS under a certain
workload changes more erratically than Marketcetera due to the replication and
at-most once guarantees provided by Hedwig for delivered messages.

Pazos. The relevant QoS metrics for Paxos are the number of consensus rounds
executed successfully per second, and the time taken to execute a consensus
round. Figures [7g and [7hl illustrate the agility corresponding to our experiments
with Paxos. From Figures [7g] and [7ll, we observe similar trends to Hedwig and
Marketcetera. The agility of CloudWatch in this case is 6.6x than of ELAS-
TICRMI, on average for abrupt workloads and 2.2x that of ELASTICRMI for
cyclic workloads. We also observe that the agility of ELASTICRMI returns to
zero (the ideal agility) most frequently among the three deployments.

D(CS The relevant QoS metrics for DCS are the number of updates to the hierar-
chical name-space per second and the end-to-end latency to perform an update
as measured from the client. Figures [Tl and [7]] illustrate the agility correspond-
ing to our experiments with DCS. From Figures [71 and [7]] we observe that the
agility of CloudWatch in this case is 7.2x than of ELASTICRMI, on average for
abrupt workloads and 3.2x that of ELASTICRMI for cyclic workloads.

5.6 Provisioning Latency

Figures [Ral and [RH plot the provisioning latency of ELASTICRMIfor both abrupt
and cyclic workloads. We observe that the provisioning latency of ELASTICRMI
is less than 30 seconds in all cases, which compares very favorably to the time
needed to provision new VM instances in Amazon CloudWatch (which is in
the order of several minutes, and hence omitted from Figure B]). Provisioning
latency is zero for the overprovisioning scenario, and that is the main purpose of
overprovisioning — to have resources always ready and available. Also, we observe
that as the workload increases, provisioning interval also increases, due to the
overhead in determining the remote method calls that have to be redirected
and also due to increasing demands on the resources of the sentinel object in
ErasTicRMTI’s object pools.
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6 Related Work

J-Orchestra [819] automatically partitions Java applications and makes them into
distributed applications running on distinct JVMs, by using byte code transfor-
mations to change local method calls into distributed method calls as neces-
sary. The key distinctions between J-Orchestra and ELASTICRMI are that (1)
J-Orchestra tackles the complex problem of automatic distribution of Java pro-
grams while ELASTICRMI aims to add elasticity to already distributed programs
and (2) ELASTICRMI partitions different invocations of a single remote method.

Self-Replicating Objects (SROs) [I7] is a new elastic concurrent programming
abstraction. An SRO is similar to an ordinary .NET object exposing an arbitrary
API but exploits multicore CPUs by automatically partitioning its state into a
set of replicas that can handle method calls (local and remote) in parallel, and
merging replicas before processing calls that cannot execute in replicated state.
SRO also does not require developers to explicitly protect access to shared data;
the runtime makes all the decisions on synchronization, scheduling and split-
ting/merging state. Live Distributed Objects (LDO) [19] is a new programming
paradigm and a platform, in which instances of distributed protocols are mod-
eled as live distributed objects. Live objects can be used to represent distributed
multi-party protocols and application components. Shared-state and synchro-
nization between the objects is maintained using Quicksilver [I§], a group com-
munication system. Automatic scaling is not supported and must be explicitly
implemented by the programmer using the abstractions provided by LDO.

Quality Objects (QuO) [6] is a seminal framework for providing quality of ser-
vice (QoS) in network-centric distributed applications. When the requirements
are not being met, QuO provides the ability to adapt at many levels in the
system, including the middleware layer responsible for message transmission. In
contrast to QuO, ELASTICRMI attempts to increase quality of service by chang-
ing the size of the remote object pool, and does not change the protocols used
to transmit remote method invocations.

7 Conclusions

We have described the design and implementation of ELASTICRMI and have
demonstrated through empirical evaluation using real-world applications that it
is effective in engineering elastic distributed applications. OQur empirical eval-
uation also demonstrates that relying solely on externally observable metrics
like CPU/RAM /network utilization decreases elasticity, as demonstrated by the
high agility values of CloudWatch. We have shown that our implementation
of ELASTICRMI reduces resource wastage, and is sufficiently agile to meet the
demands of applications with dynamically varying workloads. Through an im-
plementation using Apache Mesos, we ensure portability of ELASTICRMI appli-
cations across Mesos installations, whether it is a private datacenter or a public
cloud or a hybrid deployment between private data centers and public clouds.
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We have demonstrated that ELASTICRMI applications can use fine-grained ap-
plication specific metrics without revealing those metrics to the cloud infrastruc-
ture provider, unlike CloudWatch.
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