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Abstract Feature models (FMs) are a popular formalism to describe the
commonality and variability of a set of assets in a software product line
(SPL). SPLs usually involve large and complex FMs that describe thousands
of features whose legal combinations are governed by many and often complex
rules. The size and complexity of these models is partly explained by the large
number of concerns considered by SPL practitioners when managing and
con�guring FMs. In this chapter, we �rst survey concerns and their separation
in FMs, highlighting the need for more modular and scalable techniques. We
then revisit the concept of view as a simpli�ed representation of an FM. We
�nally describe a set of techniques to specify, visualize and verify the coverage
of a set of views. These techniques are implemented in complementary tools
providing practical support for feature-based con�guration and large scale
management of FMs.
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1 Introduction

In many application domains, such as avionics, telecommunications or au-
tomotive, organizations build software-intensive systems that are similar to
each other. Rather than re-developing each system from scratch, these orga-
nizations reuse common software artifacts on a large scale.

The paradigm of software product line (SPL) engineering has emerged to
support the modeling and development of software system families rather
than individual systems. It aims at e�ciently producing and maintaining
multiple similar software products. This is analogous to the automotive in-
dustry, where the focus is on creating a single production line, out of which
many customized but similar variations of a car model are produced. The
key principle is to institutionalise reuse throughout the development process
to obtain economies of scale and scope [53]. To achieve reuse, SPL engineer-
ing is usually separated in two complementary phases: domain engineering
and application engineering. Domain engineering starts with domain anal-
ysis, which documents commonality (i.e., common parts of products) and
variability (i.e., di�erences between products). Reusable assets that satisfy
these descriptions are then modelled and implemented. During application
engineering, the required assets are selected and possibly extended to derive,
as quickly and e�ciently as possible, an appropriate product. To be success-
ful, the investments required to develop the reusable artifacts during domain
engineering must be outweighed by the bene�ts of deriving the individual
products during application engineering [25]. Domain analysis is therefore a
crucial phase.

To date, feature modeling has been recognized as one of the most pop-
ular domain analysis techniques. Introduced in the 1990's and now widely
adopted, feature models (FMs) are a simple formalism whose main purpose
is to document variability in terms of features, i.e., domain abstractions or
functionalities relevant to stakeholders [19]. The main concepts of the lan-
guage are features and relationships between features. FMs have been given a
formal semantics [59] which opened the way for safe and e�cient automation
of various, otherwise error-prone and tedious tasks such as consistency check-
ing, FM merging and product counting. A repertoire of such automations can
be found in [12].

A particular type of automation is feature-based con�guration (FBC). FBC
is an interactive process during which one or more stakeholders select and
discard features to build a speci�c product. Traditionally, FBC systems sup-
port FM modelling, analysis and con�guration. Currently, FBC techniques
and tools facilitate the work of stakeholders in various ways, including: de-
cision veri�cation and propagation [47, 38, 22]; auto-completion [21, 38];
scheduling of con�guration tasks [23, 20, 35]; and alternative representations
of FMs [15, 17].

FMs, and therefore FBC, are becoming increasingly large and complex.
FMs are not only used to describe variability in software designs, but also
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variability in di�erent contexts, at di�erent times in the development, and
in di�erent parts of the system [41, 57, 50, 32, 20]. Consequently, the list of
concerns that may be considered in an FM is very comprehensive [64, 9, 34]
ranging from hardware description [41], organizational structure [57], business
to implementation details [50]. Concerns are related in numerous ways and
there can be thousands of features whose legal combinations are governed by
many and often complex rules.

Furthermore, it has been observed that maintaining a single large FM
for the entire system may not be feasible [54, 26]. With FMs being increas-
ingly complex, describing various concerns of an SPL and handled by several
stakeholders (or even di�erent organizations), managing them with a large
number of related features is intuitively a problem of separation of concerns
(SoC) [61, 11]. The sought bene�ts are indeed similar to the ones of soft-
ware engineering disciplines, i.e., reduced complexity, improved reusability
and simpler evolution [61]. A possible way to achieve SoC is then to rely on
views, i.e., simpli�ed representations of an FM tailored for a speci�c stake-
holder, role, or task [36]. Views facilitate the decision-making process in that
they only focus on those parts of the FM that are relevant for a given concern.

In this chapter, our goal is to give a clear overview of existing approaches
in the �eld and state-of-the-art techniques for separating concerns in FMs.
The intended audience is domain analysts or SPL practitioners working with
FMs with an interest for FBC. In the �rst part of this chapter, we present a
review of SoC in FMs. SoC has spawned much research on FM separation,
composition and analysis. Here, we reuse some material presented in [36]
and focus on concerns and their separation in FMs and FBC. We highlight
the need for more modular and scalable techniques and revisit the concept
of views. In the second part of this chapter, we focus on the creation of
consistent views and the generation of alternative visualisations for FBC. We
present and compare two techniques to synthesize visualisations of an FM.
We also report on the progress made in developing tool support for SoC and
multi-view FBC.

The rest of this chapter is organised as follows. Section 2 re-examines
the basics of FMs and introduces our working example. Section 3 presents
the general problem of SoC in FM and reviews existing works in the �eld.
Section 4 describes a set of SoC techniques to specify, automatically generate,
and check multiple views. Section 5 presents the tools supporting it.
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2 Background

2.1 Feature-based Con�guration

Schobbens et al. [59] de�ned a generic formal semantics for a wide range of
FM dialects. In essence, an FM d is a hierarchy of features (typically a tree)
topped by a root feature. An FM is informally de�ned as follows.

De�nition 1 (FM (adapted from [59])). An FM d is a tuple (N, r, λ,DE,
Φ) where N denotes the set of features. r ∈ N the root of the feature tree.
λ : N → N × N denotes the cardinality 〈i..j〉 attached to a feature, where i
(resp. j) is the minimum (resp. maximum) number of children (i.e. features
at the level below) required in a product (aka con�guration). For convenience,
common cardinalities are denoted by Boolean operators, as shown in Table 1.
DE ⊆ N × N denotes the decomposition edges, i.e., the parent-child rela-
tionship. Additional constraints that crosscut the tree (Φ ∈ B(N)) can also be
added and are de�ned, without loss of generality, as a conjunction of Boolean
formulae.

The semantics of an FM is the set of con�gurations (also called products),
denoted JdK, where each con�guration is a combination of selected features.
The full syntax and semantics as well as bene�ts, limitations and applications
of FMs are extensively discussed elsewhere [59, 12].

Table 1 FM decomposition operators

Concrete
syntax

Decomposition
operator

and: ⋀ 

Cardinality ⟨n..n⟩

or: ⋁ 

⟨1..n⟩

xor: ⨁ 

⟨1..1⟩ ⟨i..j⟩

f

g
h

generalized 
cardinality

f

g
h

f

g
h

X
f

g
h

⟨i..j⟩
f

g
h

optional

⟨0..1⟩

FBC tools use FMs to pilot the con�guration of customisable products.
These tools usually render FMs in an explorer-view style [55, 47], as shown
in the upper part of Table 1. The tick boxes in front of features are used
to capture decisions, i.e. whether the features are selected or not. We now
illustrate the FM abstract syntax more concretely on our working example.



Separating Concerns in Feature Models 5

2.2 Working Example

Audi is a German car manufacturer. Nowadays, Audi o�ers 12 di�erent model
lines, each available in di�erent body styles, each broken down in di�erent
models. This paper will focus on the Audi A3, with the sportback body style.
An example of its con�gurator in action is shown in Fig. 1. The two FMs in
Fig. 2 are samples reverse engineered from the car con�gurator1 for the A3
and RS3 models.

Fig. 1 Screenshot of Audi A3 con�gurator.

Although similar, these models show very di�erent options to customers.
The features hidden by the con�gurator appear in light grey. This, however,
does not indicate that the value of these features is not set. It rather means
that customers cannot manually set their values. In Fig. 2a for instance, none
of the Engine features are available. Yet, the RS3 has a Quatro drive train
and a Petrol engine. This practice resembles the inactivation of features in
operating systems con�gurators such as those used for Linux and eCos [13].
The isolation of visible from hidden features is thus a �rst possible criterion
to separate concerns.

1 Reverse engineered from http://configurator.audi.co.uk/ on January 20th, 2012.
Some labels were shortened for conciseness.

http://configurator.audi.co.uk/
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Equipment

Exterior

Engine

Audi A3

Engine
Trim Line

Standard
Sport

X

Black
Engine and drive train

Fuel

Petrol
Diesel

X

Gearbox

Automatic
Manual

X

Drive train

Front-wheel drive
Quatro

X

Exterior
Black styling package

Equipment

Audio and Communiction

Audio systems

Concert radio
Symphony radio

X

Sound package
Telephone

Mobile telephone Bluetooth interface
Mobile telephone Bluetooth and voice control

Speakers
Bose

Other
USB connection

X

iPod connection
CD changer

Black ⇒ Black styling package
(Sport⋁Black) ⇒ ¬Concert radio

Crosscutting constraints

(a) Sample FM for the Audi RS 3

Equipment

Exterior

Engine

Audi A3

Engine
Trim Line

Standard
Sport

X

Black
Engine and drive train

Fuel

Petrol
Diesel

X

Gearbox

Automatic
Manual

X

Drive train

Front-wheel drive
Quatro

X

Exterior
Black styling package

Equipment

Audio and Communiction

Audio systems

Concert radio
Symphony radio

X

Sound package
Telephone

Mobile telephone Bluetooth interface
Mobile telephone Bluetooth and voice control

Speakers
Bose

Other
USB connection

X

iPod connection
CD changer

(b) Sample FM for the Audi A3

Fig. 2 Two FMs of Audi A3 model line

The second criterion is determined by the steps in the con�guration pro-
cess. As Fig. 1 shows, the con�guration follows a number of steps starting
from 1. Model, going through 5. Equipment, and ending at 6. Your Audi.
This decomposition is illustrated in Fig. 2 by the coloured areas. In contrast
to the �rst criteria, these views are used to progressively disclose the options.

The Audi con�gurator, like many others (e.g. Linux and eCos [66]), rely
on ad hoc solutions that usually do not come with a proof of completeness
and correctness, and can hardly be reused from one domain to the other. A
general and formal foundation for separation of concerns in FBC is neces-
sary. This paper proposes a retrospective on this SoC in FBC and discusses
the complementary combination of views and slices to achieve �exible and
reliable SoC. Without delving into formal developments, it provides a frame
of reference to specify, verify and visualize concurrent concerns on an FM.
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3 Concerns and Their Separation: Retrospective

Amajor limitation of current FM languages is that they are found not to scale
well when applied to realistic SPLs. In real projects it has been reported that
maintaining a single large FM for the entire system may not be feasible [26].

Firstly, FMs are increasingly larger with possibly thousands of features
related by numerous complex constraints. As an extreme case, the variability
model of Linux exhibits 6000+ features [60]. Secondly, various concerns of
an SPL, handled by several stakeholders (or even di�erent organizations),
should be properly modeled and managed. As a result, FMs quickly become
too complex to be understood and managed by practitioners. In FBC context,
it is very hard for a practitioner to consider thousands of con�guration options
as a whole.

The principle of SoC points to an e�ective way to manage the size and
complexity of FMs. On the one hand, several FMs may be originally separated
and combined, for instance, when engineers describe the variability of mod-
ular systems (e.g., software components or services [5]), when independent
suppliers describe the variability of their di�erent products in software supply
chains [22, 33], or when a multiplicity of SPLs must be combined [32, 26].
On the other hand, it may be the intention of an SPL practitioner to modu-
larize the variability description of the system according to di�erent criteria
or concerns such as external vs. internal variability [54, 50, 7], abstraction
layers [41], or views tailored for a speci�c stakeholder [36].

The problem of SoC in FMs has been extensively reported in the literature
but there is no consensus on how best to separate and compose these concerns.
In this paper, we focus on the separation of concern problem. This section
highlights key achievements in this domain with a particular emphasis on
views, which have been repeatedly advocated as a means to solve scalability
and con�guration issues.

3.1 Variability modelling

Dealing with real-world problems implies dealing with multiple stakehold-
ers with di�erent and often inconsistent perspectives. Viewpoint-based ap-
proaches have been around for nearly two decades and address exactly those
issues. They mainly support the identi�cation, structuring, reconciliation and
co-evolution of heterogeneous requirements [28, 51]. They have been studied
mostly by the requirements engineering (RE) community. They are more
concerned with the identi�cation and reconciliation of viewpoints than with
the speci�cation and generation of viewpoint- (or concern-) speci�c views on
an artifact like the FM in our case. Viewpoint-based RE techniques are not
speci�c to SPLE. Still, viewpoint-based techniques can be used upstream of
variability modelling to help build a consistent FM from heterogeneous view-
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points. More speci�c to variability modelling, Grünbacher et al. [31] outline
the challenges that arise when heterogeneous stakeholders are involved in the
modelling of large FMs.

The identi�cation of stakeholders is also a problem studied in RE [29]. We
refer the reader to [30] for a general introduction to stakeholder identi�ca-
tion and ways to structure and trace their contributions. Directly related to
feature modelling, Bidian et al. [14] identify stakeholder pro�les through the
tasks appearing in goal models which are subsequently linked to the features
realising them.

3.2 View speci�cation

Early attempts to manage the complexity of FMs [40, 41] were mainly con-
cerned with separating user-oriented from technical features. For this, simple
techniques were used, namely annotation and layering of the FM, but those
remained informal and were not used to generate views or for con�guration.
In OVM [53], a similar distinction was proposed between internal and external
variability, but had the same limitations as the aforementioned approaches.

Zhao et al. [67] group features according to stakeholder pro�les and other
typical concerns. A major limitation is that they do not display decomposition
operators in views, which greatly simpli�es the problem at the expense of
completeness. Features in views are physically duplicated and mapped to
features of the FM. The resulting links are represented as constraints between
the views and the FM.

Researchers developed SoC techniques for FMs that re�ect organisational
structures and tasks. Reiser et al. [56] address the problem of representing
and managing FMs in SPLs that are developed by several companies, as
is common for example in the automotive industry. They propose to use
several FMs and structure them hierarchically. This way, each of them can be
managed separately by one of the partner companies. Local changes are then
propagated to other FMs through the hierarchy. Hierarchical decomposition
in SPLs was also studied by Thompson et al. [62], although not in relation
to FMs.

Clarke et al. [18] introduce a formal theory of views for FMs, where a
view is de�ned as a disjoint set of features and abstractions. An abstraction
encapsulates a set of features hidden behind a label meaningful to the user.
They formally de�ne compatibility properties between views and their recon-
ciliation, i.e. combination. To preserve the genericity of their mathematical
model, the authors reason exclusively in terms of features independently of
the structure and constraints imposed by the FM. As a result, they do not
discuss the concrete speci�cation, rendering, and con�guration of views on
an FM.
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3.3 Con�guration

Reiser et al. [56] along with Mannion et al. [44] discuss how multiple views
a�ect the structure of the FM and con�guration with a particular focus on
decision propagation and con�ict resolution [44]. Unlike other approaches
that only consider the selection/deselection of features, they address changes
to the structure of views that are propagated back to the original FM. To
resolve con�icts that can happen during the merge of concurrent changes,
they propose a list of con�ict resolution rules within views. They thus focus
on resolving con�icts among changes to the content of the FM rather than
con�icts between con�guration decisions.

Batory et al. [10] have worked on multi-dimensional SoC where a dimension
is a set of features addressing a particular concern. They use a so-called
�origami matrix� to describe the relationships between features across the
dimensions. Their approach does not aim to generate views but rather to
compose features (described separately) along each dimension.

Czarnecki et al. [23] have introduced multi-level staged con�guration as
a way of organizing FBC as a sequence of stages. This idea was later for-
malised [20] and extended [35] to deal with arbitrarily complex con�guration
processes (not only purely sequential ones). Mendonça et al. [46, 48] suggest
con�guration spaces (similar to views) as a means to support collaborative
product con�guration. They also provide algorithms to automatically gen-
erate a con�guration plan out of an FM and a set of con�guration spaces.
Although these and related [50, 63] approaches are automatable and readily
applicable to con�guration, they remain limited to a single �tyrannical� de-
composition scheme [61] (e.g., stages or work�ow activities) which must be
decided in advance.

Over the years, various interactive FBC environments have been devel-
oped (e.g. [8, 55, 45, 42]). Based on formal semantics, these tools use solvers
(e.g. SAT, BDD and CSP) to propagate decisions throughout the FM and
ensure the global consistency of the �nal product. Commercial FBC tools
(e.g. [55, 42]) also o�er integration with popular modelling environments like
IBM Rational or Simulink. Traditionally, FBC tools assume that there ex-
ists a single monolithic FM and do not account for con�guration processes
that are distributed among various stakeholders who have speci�c concerns
and who intervene at di�erent moments [48, 46]. Without the appropriate
support, FBC can become very cumbersome and error-prone, e.g., if a single
stakeholder has to make decisions on behalf of all others [48].
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4 Separating Concerns in Feature Models

4.1 Views

4.1.1 Basic de�nition

Separating concerns requires the ability to specify the parts of the FM that
are of interest and the person(s) who can con�gure it. In order to achieve
this, the FM can be augmented with a set V of views, each of which consists
of a set of features. Formally, a multi-view FM is de�ned as follows:

De�nition 2 (Multi-view FM [36]). A multi-view FM m is a tuple
(N, r, λ,DE, Φ, V ) where V = {v1, v2, . . . , vn} is the multiset of views such
that:

• N, r, λ,DE,Φ conform to De�nition 1;
• ∀vi ∈ V • vi ⊆ N ∧ r ∈ vi.

Therefore, for any concern that requires only partial knowledge of the FM,
such as a pro�le, a view can be de�ned. We also consider that the root is part
of each view. V is a multiset to account for duplicated sets of features.

4.1.2 View speci�cation

We distinguish between two ways of specifying views. With extensional def-
initions, the features that appear in a view are enumerated, or tagged so
as to indicate the view to which each of the features belongs. A drawback
is that the process of enumerating and tagging can be time-consuming and
error-prone without appropriate tool support.

With intensional de�nitions, the features in a view are de�ned according
to a query de�ned on the FM. For instance, the tree structure of the FM can
be exploited by languages like XPath to specify the views. A major drawback
of intensional de�nitions is that textual languages may not be as intuitive as
graphical approaches for casual users. Furthermore, it is harder to maintain
consistency between the FM and the textual expressions when the diagram
evolves without proper tool support.

Having said that, extensional and intensional de�nitions can be used to-
gether in practice. Textual expressions corresponding to intensional speci�ca-
tions could be generated from a graphical view de�nition tool. Conversely, it
is possible to generate feature tags from textual expressions and link them to
the features in the expression. These links can then be used to trace changes
from the FM back in the expression. This allows us to overcome the limita-
tions of both extensional and intensional de�nitions. In the following discus-
sions, we refer to features contained in views irrespective of the speci�cation
method.
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4.1.3 View coverage

An important property that should be guaranteed by an FBC system is
that all con�guration questions are eventually answered [20]. In a multi-view
context, one may consider enforcing the following condition.

De�nition 3 (Su�cient coverage condition [36]). For a view v of a
multi-view FM m the su�cient coverage condition is:⋃

v∈V
v = N

Intuitively, this means that all the features appear in at least one view,
hence no feature can be left undecided.2 Although su�cient, this is not a nec-
essary condition because some decisions can usually be deduced from others.

A necessary condition can be de�ned in terms of propositional de�neabil-
ity [43]. It is necessary to ensure that the decisions on the features that do not
appear in any view can be inferred from (i.e. are propositionally de�ned by)
the decisions made on the features that are part of the view. In the following
de�nition, de�nes(F, f) denotes the propositional de�nably of f by F .

De�nition 4 (Necessary coverage condition [36]). For a view v of a
multi-view FM m the necessary coverage condition is:

∀f /∈
⋃
v∈V

v • de�nes(
⋃
v∈V

v , f)

de�nes can be evaluated by translating the FM into an equivalent propo-
sitional formula (done in linear time [58]) and by applying the SAT-based
algorithm described in [43]. Although this check is NP complete in theory,
it is not expected to be a problem in practice, since SAT solvers can handle
FMs with thousands of features.

Features in N \
⋃

v∈V v that do not satisfy the above condition will have
to be integrated in existing views, or extra constraints will have to be added
to determine their value.

In application domains such has operating systems, features such as those
used for calculating the boot entry to use are hidden from users [13], and
may not be visible in any view. In such cases, the veri�cation of the necessary
condition determines whether the value of the hidden features can be derived
from the features in the views.

However, in cases such as the Audi con�gurator (Section 2.2), these two
conditions are too strict. Assuming that a view only contains the features
relevant to a customer, it will naturally not contain the hidden features. In
this particular case, some hidden features might not be decided upon. Some

2 Note that the complete view coverage is usually assumed by mutli-view approaches
(e.g. [48]).
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existing con�gurators, such as the one of Linux, nullify these features. In this
context, the necessary coverage condition has to be adapted such that one
only checks features that are neither in

⋃
v∈V v nor in the nulli�ed features.

4.2 Visualisation

Although views are abstract, they have to be made concrete to be used during
FBC. A concrete view is called a visualisation. A visualisation strives to �nd
a compromise between not showing in a view features that do not belong to
the view, and showing features that do not belong to the view but indirectly
provide context for features that should be shown. In Fig. 4.2, for instance,
feature Y is in the view (darker area), but its parent feature A is not.

To tackle this problem of view rendering, we have observed the practice of
developers (see [37] for more details about the case study and our experience
with PloneMeeting) and discussed with them alternative visualisations. Our
discussions included the relative merits of the approaches suggested in [67,
48], and the �ltering mechanisms provided by tools such as pure::variants [55],
and kernel con�gurators for operating systems (e.g. xconfig for Linux and
configtool for eCos [27]). These tools provide simple �ltering or search
mechanisms that are similar to views on an FM. In these cases, a �lter is a
regular expression on the FM. Any feature matching the regular expression
is displayed typically without any control on the location of the feature in
the hierarchy. Interestingly, all these approaches produce purely graphical
modi�cations (e.g. by greying out irrelevant features) whereas cardinalities
are not recomputed.

The main outcome of our investigation is a set of four complementary
visualisations o�ering di�erent levels of details, as depicted in Fig. 3. The
darker area de�nes a speci�c view of the FM, called v. These views were built
to present information on a need-to-know basis. The amount of information
displayed can be regulated, while providing enhanced control over access
rights. For instance, there is always a standardised con�guration menu that
can display the position of the feature in the hierarchy and hide unavailable
options. On the other hand, in a critical application, features outside a view
may have to be protected as trade secrets. Therefore, visualisations not only
can provide convenient representations of a view, but they can also restrict
the information a stakeholder can access.

Fig. 3 illustrates the alternative visualisations of FM views we propose:

• The greyed visualisation is a mere copy of the whole FM except that the
features that do not belong to the view are greyed out (e.g. A, B, DO
and DB). Greyed features are only displayed but cannot be manually
selected/deselected.
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X

V
E
A

Y
O
B

DY
DO
DB

D

v

X

V
E
A

Y
O
B

DY
DO
DB

D

V
E
A

Y

DY

D

V
E
Y

DY

D

Greyed Pruned Collapsed

O

O⟨0..2⟩

⟨3..3⟩ ⟨3..3⟩ ⟨2..4⟩

Fig. 3 Three alternative visualisations of FM views: greyed, pruned and
slice/collapsed [36].

• In the pruned visualisation, features that are not in the view are pruned
(e.g. B, DO and DB) unless they appear on a path between a feature in
the view and the root, in which case they are greyed out (e.g. A).

• In the collapsed visualisation, all the features that do not belong to the
view are pruned. A feature in the view whose parent or ancestors are
pruned is connected to the closest ancestor that is still in the view. If no
ancestor is in the view, the feature is directly connected to the root (e.g.
Y and O).

• The slice visualisation is similar to the collapsed visualisation except that
it takes cross-tree constraints into consideration. Consequently, decom-
position operators might be altered to preserve the correctness of these
constraints.

Generating visualisations, from an FM and a view, is a form of FM trans-
formation.

De�nition 5 (View visualisation). The visualisation of a view v is the
transformation of the original FM into a new FM dtv = (N t

v, r, λ
t
v, DE

t
v, Φ),

where t, the type of visualisation, can take one of four values: g (greyed), p
(pruned), c (collapsed), and s (slice).

The greyed visualisation is the simplest case because there is no transfor-
mation beyond the greying of each feature f 6∈ v (i.e. dgv = d). The transfor-
mations for the pruned and collapsed visualisations, on the other hand, �lter
nodes, remove dangling decomposition edges and adapt the cardinalities ac-
cordingly.

4.2.1 Pruned visualisation

Np
v , the set of features in this visualisation, is the subset of N limited to

features that are in v or have a descendant in v. The de�nition uses DE+,
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the transitive closure of DE. Based on Np
v , we remove all dangling edges, i.e.

those not in Np
v ×Np

v to create DEp
v .

Transformation 1 (Pruned visualisation [36]) The transformations ap-
plied to the FM to generate the pruned visualisation are:

Np
v = {n ∈ N |n ∈ v ∨ ∃f ∈ v • (n, f) ∈ DE+}

DEpv = {DE ∩ (Np
v ×Np

v )}
λpv(f) = (mincardpv(f),maxcard

p
v(f))

In order to compute the new cardinalities λpv(f),mincard
p
v(f) andmaxcard

p
v(f)

are de�ned as follows:

mincardpv(f) = max(0, λ(f).min− |orphanspv(f)|)
maxcardpv(f) = min(λ(f).max, |children(f)| − |orphanspv(f)|)

where orphanspv(f) = children(f) \Np
v i.e., the set of children of f that are

not in Np
v . λ(f).min and λ(f).max represent the minimum and maximum

values of the original cardinality, respectively. For the minimum, the di�er-
ence between the cardinality and the number of orphans can be negative in
some cases, hence the necessity to take the maximum between this value and
0. The maximum value is the maximum cardinality of f in d if the number of
children in v is greater. If not, the maximum cardinality is set to the number
of children that are in v.

4.2.2 Collapsed visualisation

The set of features N c
v of this visualisation is simply the set of features in v.

The consequence on DEc
v is that some features have to be connected to their

closest ancestor if their parent is not part of the view.

Transformation 2 (Collapsed visualisation [36]) The transformations ap-
plied to the FM to generate the collapsed visualisation are:

Nc
v = v

DEcv = {(f, g)|f, g ∈ v ∧ (f, g) ∈ DE+ ∧ @f ′ ∈ v • ((f, f ′) ∈ DE+ ∧ (f ′, g) ∈ DE+)}
λcv(f) = (mincardcv(f),maxcard

c
v(f))

The computation of cardinalities λcv(f) is slightly more complicated than
in the pruned case. Formally, mincardcv(f) and maxcard

c
v(f) are de�ned as

follows:
mincardcv(f) =

∑
minλ(f).min(ms_min

c
v(f))

maxcardcv(f) =
∑
maxλ(f).max(ms_max

c
v(f))

where

ms_mincv(f) = {mincardcv(g)|g ∈ orphanscv(f)} ] {1|g ∈ children(f) \ orphanscv(f)}
ms_maxcv(f) = {maxcardcv(g)|g ∈ orphanscv(f)} ] {1|g ∈ children(f) \ orphanscv(f)}

The multisets ms_mincv(f) and ms_maxcv(f) collect the cardinalities of
the descendants of f . The left part of the union3 recursively collects the

3 ] is the union on multisets.
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cardinalities of the collapsed descendants whereas the right side adds 1 for
each child that is in the view. The λ(f).min minimum values of the multiset
are then summed to obtain the minimum cardinality of f . The maximum
value is computed similarly.

4.2.3 Slice visualisation

We revisit here a technique called slicing that, given an FM (typically large),
produces a new, smaller FM containing only a subset of features of the input
FM. We show that the slicing can be used to synthesize visualisations.

The overall idea behind FM slicing is similar to program slicing [65]. Pro-
gram slicing has been successfully applied in computer programming and
aims at simplifying or abstracting programs by focusing on selected aspects
of semantics. Program slicing techniques usually proceed in two steps: the
subset of elements of interest (e.g. a set of variables of interest and a pro-
gram location), called the slicing criterion, is �rst identi�ed ; then, a slice
(e.g. a subset of the source code) is computed. In the context of FMs, we
de�ne the slicing criterion as a set of features considered to be pertinent by
an SPL practitioner while the slice is a new FM (see Transformation 3).

Slicing semantics. The major preoccupation for an SPL practitioner is the
legal combination of features (con�gurations) de�ned by an FM. The same
observation applies when decomposing the FM into smaller concerns. We
want to guarantee semantic properties of smaller parts, i.e., in terms of set
of con�gurations. Nevertheless, several FMs, yet with di�erent hierarchies,
can represent a given set of con�gurations. Therefore, the semantics of the
slicing operator is de�ned both in terms of set of con�gurations and feature
hierarchy (see Transformation 3).

Transformation 3 (Slice visualisation [4]) We de�ne slicing as an op-
eration on FM, denoted ΠNs

v
(d) = dsv where Ns

v is a set of features, called
the slicing criterion, and dsv is a new FM, called the slice.

The result of the slicing operation is a new FM, dsv, such that:

• Feature hierarchy: Features of the hierarchy include the slicing criterion
of the original FM while features are connected to their closest ancestor if
their parent feature is not part of the slice FM. It corresponds to the feature
hierarchy de�ned for the collapsed visualisation (see Transformation 2).

• Con�guration semantics: The valid con�gurations, JdsvK, one could in-
fer from a slice are actually the valid con�gurations of the original FM,
when looking only at the slicing criterion features Ns

v . Formally, the pro-
jected4 set of con�gurations is de�ned as JdsvK = JdK |Ns

v
.

4 For two given sets A and B, we note A |B the projection of A on B such that:

A |B
4
= {a′ | a ∈ A ∧ a′ = a ∩B} = {a ∩B| a ∈ A}
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It should be noted that the hierarchy of the slice FM corresponds to the
hierarchy de�ned for the collapsed visualisation (see the right hand side of
Fig. 3). In the following, we will describe an algorithm to synthetize auto-
matically such visualisations.

Automated slice synthesis. Our previous experience has shown that syn-
tactic strategies have severe limitations to accurately represent a given set of
con�gurations (as expected by Transformation 3), especially in the presence
of cross-tree constraints [2]. The same observation applies for the slicing op-
eration so that we reason directly at the semantic level. The key idea of the
proposed algorithm is to (i) compute the propositional formula representing
the projected set of con�gurations, and then to (ii) apply satis�ability tech-
niques to construct a complete FM (including variability information and
cross-tree constraints) using the formula. A major di�erence with previous
works [24, 60] that propose to synthetize FMs from propositional formulae
is that the feature hierarchy of the resulting FM can be determined and
computed (see Transformation 3).

Formula Computation. Let dsv = ΠNs
v
(d). The propositional formula φs

corresponding to dsv can be de�ned as follows:

φs ≡ ∃ f1, f2, . . . fm′ φ

where f1, f2, . . . fm′ ∈ (N \Ns
v ) = Nremoved and φ is the encoding of d as

a propositional formula. The propositional formula φs is obtained from φ by
existentially quantifying out variables in Nremoved. Intuitively, all occurrences
of features that are not present in any con�guration of dsv are removed by
existential quanti�cation5 in φ.

From formula to FM. From the propositional formula φs, several FMs can
be synthesized [60]. In our case, though, we already know what the resulting
hierarchy is. Our algorithm exploits this information. We �rst compute the
hierarchy, we then set the variability information (mandatory/optional, Xor
and Or-groups) and �nally the constraints (bi)-implies/excludes/others.

Mandatory and feature groups. At this step, all features, except root, are
considered optional. We compute the binary implication graph, noted BIGs,
of the formula φs over N

s
v .

BIGs is a directed graph G = (V,E) formally de�ned as:

V = Ns E = {(fi, fj) | φs ∧ fi ⇒ fj}

We use BIGs to identify biimplications and thus set mandatory features
together with their parents. For feature groups, we reuse the prime implica-
tions method proposed in [24], so that we can identify Or- and Xor-groups.
An important issue is that a feature may be candidate to several feature
groups (which is not allowed by FMs). Therefore some feature groups are

5 Existential quanti�cation is de�ned as the substitution of a Boolean variable ft to True
and False values. Formally: ∃ft φ =def φ |ft ∨ φ |f̄t where φ |ft (resp. φ |f̄t) denotes the
assignment of ft to True (resp. False) value in φ.
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dismissed so that FMs are well-formed. We use the original FM to retrieve
initial feature groups (see details in [1]).

Constraints. The set of implies constraints can be deduced by removing
edges of BIGs that are already expressed (e.g. parent-child relations). For
the purpose of conciseness, some implies constraints can be transformed into
equivalence relations (e.g., A⇒ B∧B ⇒ A can be transformed into A⇔ B).
Similarly, excludes constraints are produced by computing the binary exclu-
sion graph of φs over Ns

v . Excludes constraints that were not chosen to be
represented as an Xor-group are added. When adding constraints, we con-
trol that the constraint is not already induced by the FM. At this end, it
should be noted that the FM may still be an over approximation of φs

6.
Using standard propositional logics techniques, we can calculate the comple-
ment between the current set of con�gurations represented by the FM and
the expected set of con�gurations of the slice FM. The complement can be
recovered, for instance, as a conjunction of propositional constraints.

4.2.4 Properties and Comparison

We now discuss properties of the slicing technique and the transformations
described above regarding their ability to produce visualisations.
Semantic preservation. It is important to demonstrate that the visu-

alisations preserve a form of semantic equivalence with the original FM. We
de�ne the semantic equivalence in terms of the set of con�gurations character-
ized by the original FM and the projected set of con�guration characterized
by the collapsed visualisation.

Accuracy of visualisations. As demonstrated in [36] for FMs without con-
straints, the greyed and pruned visualisations preserve the semantic equiva-
lence. Using the syntactical transformations though, the semantic equivalence
in the collapsed visualisation does not hold. Take the simple counter-example
shown in Fig. 4a and the collapsed visualisation of view v depicted in Fig. 4c.
A valid con�guration of the collapsed visualisation would be {W,R, S}. How-
ever, that con�guration is not valid in the FM since R and S must not appear
together in a con�guration. This shows that the transformation that produces
the collapsed visualisation does not preserve the semantics of the FM: The
collapsed visualisation is an under-constrained FM. This is, however, not a
limitation in practice. When FBC is assisted by a solver, the solver preserves
the global consistency of the FM. It thereby prevents possible errors induced
by the under-constrained model presented in the collapsed visualisation. In
the counter-example in Fig. 4c for instance, the selection of R in the view
will automatically entail the deselection of S, even though the recomputed
cardinality does not enforce that propagation.

6 In [24], the authors characterized the limited expressiveness of FMs compared to propo-
sitional logic.



18 Hubaux and Acher et al.

Using the slicing technique, the collapsed visualisation respects by con-
struction the semantic equivalence. It exactly corresponds to Transforma-
tion 3 that speci�es the relationship between the original FM and the slice
FM. For example, the slicing is able to enforce that R and F features are
mutually exclusive (see Fig. 4d).

W

B

R

S

A

C

E

F
D

E ⇒ D 
R ⇒ E 
D ⇒ ¬F 
S ⇒ (F ⋀ ¬E)

Crosscutting constraints

(a) Original FM

X

W

B

R
S

A

C

E
F

X

D

E ⇔	
  R
D ⇔ E
F ⇔ S 

Crosscutting constraints

(b) Corrected FM

W

R

F

(c) Collapsed view (trans-
formation)

X
W

R

F

(d) Collapsed view (slicing)

X
W

R

S

(e) Corrective capabilities
(slicing)

Fig. 4 Collapsed visualisations (transformation and slicing).

Assumptions about input FMs. In [36], the correctness of transformations
for the three kinds of visualisations has been shown for FMs without cross-
tree constraints. The reason is that arbitrary cross constraints can have an
in�uence on the visualisations. By reasoning directly at the semantic level,
the slicing technique is applicable to any kind of FMs, including arbitrary
propositional constraints. However, the slicing technique does not support
generic < i..j > cardinality.

Corrective capabilities. Due to the presence of constraints, an input FM
may contain anomalies, for example, dead features, false optional features,
or redundancies (see [12]). The slicing algorithm ensures, by construction,
that there is no dead feature, correctly detect mandatory features and avoids
redundancy of constraints. Therefore the slicing operator can be used as an
automated technique to correct anomalies of FMs while preserving the original
set of con�gurations and feature hierarchy. Two examples are given in Fig. 4b
and Fig. 4e. Moreover the corrective modi�cations applied to the original FM
can be detected and reported to SPL practitioner so that they can understand
the anomalies.

Impact on other kinds of visualisation. Another application of the cor-
rective property is that the slicing technique can be used to produce more
accurate greyed and pruned visualisations (e.g. by correcting wrong cardinal-
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ities). For the greyed visualisation, the slicing is �rst applied on the original
FM, using the whole set of features as slicing criterion (see Fig. 4e for a
corrected FM) while some features are then greyed out. For the pruned vi-
sualisation, the slicing is �rst applied on the original FM, using the set of
features Np

v of De�nition 1 as slicing criterion. Features are then greyed out
in line with the de�nition of pruned visualisation.
Performance. Synthesizing views at the semantic level, though more

powerful, has a cost. Satis�ability techniques that reason over propositional
formula are used and can be realized using either satis�ability (SAT) solvers
or binary decision diagrams (BDDs) [24, 60].

BDD-based implementation. A BDD can be seen as a compact representa-
tion of a propositional formula. BDDs are known to e�ciently compute the
existential quanti�cation of a propositional formula in at most polynomial
time with respect to the sizes of the BDDs involved. Moreover, as shown
in [24], BDDs can be used to synthesize an FM in polynomial time regard-
ing the size of the BDD representing the input propositional formula. The
primary limitation of a BDD-based implementation is related to the space
complexity: (i) as shown in [21], computing the BDD of an FM containing
more than 2000 features is intractable ; (ii) from our experiments, the syn-
thesis of FMs has practical limits (up to 8007 features) mainly due to the
cost of computing Or-groups.

SAT-based implementation. BDDs do not scale for very large FMs (e.g.
Linux FM that has more than 6000 features). In [60], She et al. proposed to
rely on SAT solvers (rather than BDDs as in [24]) and reported that the use of
SAT solvers is signi�cantly more scalable. As SAT solvers require the formula
to be in conjunctive normal form (CNF). To avoid the exponential explosion
of disjunctive clauses, we developed speci�c techniques and some heuristics to
determine the order in which existential quanti�cation should be applied [4].
Using the slicing technique on generated and real-world FMs, we found that:
(i) computing the propositional formula is almost instantaneous for all FMs of
SPLOT (less than one second, whatever the size of the slicing criterion is); (ii)
the SAT-based implementation scales for a number of features (#features)
lesser than 10000 whatever the size of the slicing criterion is, but not for the
Linux FM; (iii) the order in which the features are existentially quanti�ed
is of prior importance: We observe scalability issues when quantifying �rst
the features that are at the top of the feature hierarchy for #features ≥
2000 ; (iv) for very large FMs (#features ≥ 5000), the computation time is
inadequate for an interactive use of the slice operator (up to 20 minutes).
Summary and comparison. On the one hand, the slicing technique

is more general (i.e., applicable to any kind of FMs and propositional con-
straints) and accurate than the syntactical transformations. In particular the
collapsed visualisation is no longer an under-approximation of the projected

7 Janota et al. reported that the BDD-based algorithm proposed in [24] scales up only for
FMs with 300/400 features [39], but did not use the heuristics proposed in [21] that reduce
the size of BDDs.
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set of con�gurations (see example in Fig. 4). On the other hand, some limi-
tations remain: Lack of support for generalized cardinality, and performance
issues. As a result, a tradeo� should be found when producing collapsed vi-
sualisations. In this case, the slicing or the syntactical transformations can
be chosen on demand, i.e., regarding the kind of visualisations, the num-
ber of features, the presence of cross-tree constraints, etc. For other kinds of
visualisations (greyed, pruned), anomalies can be �rst corrected, the syntac-
tical transformations being applied afterwards. The consistency of the FM
for under-constrained collapsed views can be maintained by reasoning about
the complete FM in the back-end.

5 Tool support

Armed with these de�nitions, we now present two complementary tools that
support view management. The �rst tool has been developed in the context
of FBC while the second tool targets the large scale management of FMs
through a dedicated language. They both support view speci�cation with
two similar solutions (i.e., XPath and a speci�c textual notation) and can be
connected together.

5.1 View Creation and Visualisation in SPLOT

The tool support developed for multiview FBC builds upon SPLOT [49].
To provide e�cient interactive con�guration, SPLOT relies on a SAT solver
(SAT4J) and a BDD solver (JavaBDD). Their reasoning abilities enable er-
ror detection and decision propagation. SPLOT was chosen because it o�ers
robust support for FBC, it is easy to extend, and the existing repository of
FMs is an excellent testbed for multiview FMs. All our extensions to SPLOT
are available online.8 The three extensions supporting multiview FBC are
brie�y introduced below.

The �rst extension enables view creation with XPath expressions. An on-
line evaluator checks that the XPath expression is correct and shows the re-
sults of its evaluation. Moreover, the completeness of the views can be checked
interactively and the features that are not covered, if any, are returned.

The actual con�guration of a view is provided by the second extension.
The extension allows stakeholders to select (1) the view to con�gure and
(2) the visualisation. In Fig. 5, the view of the Engine is selected and the
pruned visualisation is activated. Note the greyed Exterior, Equipment and
BlackStylingPackage features that can neither be selected nor deselected.

8 http://www.splot-research.org/extensions/fundp/fundp.html

http://www.splot-research.org/extensions/fundp/fundp.html
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The stakeholder can switch freely from one visualisation to another as she
con�gures her view without loosing the decisions that were already made.
This way, we dynamically combine the advantages of the three visualisations
and leave complete freedom to the stakeholder to choose the one(s) that
best �t(s) her preferences. The table on the right monitors the status of the
current con�guration. Basically, it tells what features have been selected or
deselected, and which decisions were propagated. As explained in Section 4.2,
the solver reasons about the full FM and not only about an individual view.
Thereby, the decision to select or deselect a feature in the view is propagated
in the complete model�keeping the global con�guration consistent.

Fig. 5 Con�guration view of the Engine with the greyed visualisation in SPLOT.

The third extension provides basic support for multi-user concurrent con-
�guration. At the time being, it only enables synchronous con�guration. To
prevent con�icting decisions, a con�guration session manager is used. Its role
is (1) to maintain a mutual exclusion on the con�guration engine so that only
one user can commit a decision at a time, and (2) to notify all users about a
decision and about the results of the propagation.
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5.2 Slicing and FAMILIAR

As seen in the previous sections, the slicing operator can be used to pro-
duce collapsed visualisations. The operator is part of FAMILIAR (for FeA-
ture Model scrIpt Language for manIpulation and Automatic Reasoning) a
domain-speci�c language for large scale management of FMs [3].

Fig. 6 Slicing example and interoperability in the FAMILIAR environment.

Examples of the syntax of the slicing operator are given in Fig. 6. The
set of features that constitutes the slicing criterion can be speci�ed either
by inclusion (keyword: including) or exclusion (keyword: excluding). Inten-
tional de�nitions of views can be speci�ed in the style of XPath. O�-the-shelf
SAT solvers (i.e., SAT4J) and BDD library (i.e., JavaBDD) are internally
used. The slicing operator produces a new FM that can be manipulated us-
ing variables. FAMILIAR also includes functions for composing FMs, editing
FMs (e.g., renaming and removal of features), reasoning about FMs (e.g.,
validity, comparison of FMs) and their con�gurations (e.g., counting or enu-
merating the con�gurations in an FM). FAMILIAR comes with an Eclipse-based
environment that is composed of textual editors, an interpreter that executes
FAMILIAR scripts, and an interactive front-end. The FMs can be serialized in
di�erent formats (SPLOT, FeatureIDE, a subset of TVL, etc.).
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Thanks to the integration with SPLOT, we can realize scenarios in which
an FM is �rst corrected using the slicing operator of FAMILIAR and then used
in the FBC web environment.

6 Conclusion

Feature models (FMs) are widely used to represent the valid combination
of features supported by a family of systems in a given domain. In real
variability-intensive systems, many concerns have to be considered. These
concerns are related in a variety of ways and there can be thousands of fea-
tures whose legal combinations are governed by many and often complex
rules. It has been observed that con�guring or maintaining a single large FM
may not be feasible [54, 26]. Views (as a simpli�ed representation of an FM
tailored for a speci�c stakeholder, role or task) have been repeatedly identi�ed
as a possible solution to the scalability and con�guration issues of FMs.

In this chapter, we reviewed concerns and their separation in FMs, revis-
iting the concept of view, and discussing the major results in the literature.
Then, we delved into the three speci�c problems of multi-view FMs: The
speci�cation of a view, the coverage of a set of views, and the visualisation of
a view. Finally, we presented two tools that provide support for these three
problems.

Several avenues for future work can be envisaged. The three alternative
visualisations were developed to provide more �exibility to the con�guration
environment and more precise contextual information to the user. That im-
provement is, however, limited to tree-like representations of FMs. Recent
advances deviate from the traditional explorer-like representations [15, 17],
while others recommend dedicated con�guration interfaces [52, 16]. Under-
standing the most suitable interfaces for multi-view will require qualitative
user studies. More generally, we plan to study further the practical usage and
applicability of the proposed techniques in various domains (e.g., operating
systems [13, 66] and video surveillance [6]).
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