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Abstract. Most of the approaches in multi-view categorization use early
fusion, late fusion or co-training strategies. We propose here a novel
classification method that is able to efficiently capture the interactions
across the different modes. This method is a multi-modal extension of the
Rocchio classification algorithm — very popular in the Information Re-
trieval community. The extension consists of simultaneously maintaining
different “centroid” representations for each class, in particular “cross-
media” centroids that correspond to pairs of modes. To classify new data
points, different scores are derived from similarity measures between the
new data point and these different centroids; a global classification score
is finally obtained by suitably aggregating the individual scores. This
method outperforms the multi-view logistic regression approach (using
either the early fusion or the late fusion strategies) on a social media
corpus - namely the ENRON email collection - on two very different
categorization tasks (folder classification and recipient prediction).

1 Introduction

Multi-modal (or multi—vie) learning has been intensively studied since a long
period. It relates to the problem of learning from multiple set of features. As
suggested by |1], the multi-modal learning takes its justification from the fact
that a high consensus of two independent hypotheses results in a low gener-
alization error. These last years, several new methods have been proposed for
the semi-supervised and the unsupervised settings (for semi-supervised multi-
view learning, see the survey in [2]). However, few has been done in the fully
supervised setting.

Actually, as pointed out by [3], in a fully supervised setting, multi-modal
learning usually performs worse than learning on the union of all modes. In this
setting, the standard approaches are the early fusion (EF) method and the late
fusion (LF) method. The former consists of directly learning from a common
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global view which is made from the union of all mono-views while the latter
proposes to combine the decisions of different single-view based classifiers. On
the one hand, the principle of the EF strategy is to directly learn the combi-
nation of all the features that minimizes a loss function. The drawback of this
approach is to combine artificially different data sources (with possibly different
semantics), hence increasing the dimension of the feature space, which could re-
sult in a higher variance of the generalization error. On the other hand, the goal
of LF strategy is to obtain a consensus among independent specialized classi-
fiers leading to a lower generalization error. The drawback of this approach lies
in its inability to detect interactions; in other words, it miss the opportunity
to capture correlations between different views which may also lead to a lower
generalization error and a better understanding of the underlying data.

In this work, we propose a novel multi-modal (MM) framework that tries to
exploit the best of the two strategies, while avoiding their drawbacks. It offers
the EF’s advantage of capturing interactions across the different modes while,
in the meantime, owning the LF’s advantage of learning a weighted combination
of the input scores in order to, first, detect a high consensus among the hypothe-
ses and, second, have a better understanding of interactions between views. To
achieve this goal, we propose to extend the standard “Rocchio” classification
algorithm (see [4]) to the multi-modal case by computing “cross-modal” scores
that measure the interaction between pairs of modes. In a nutshell, the “Rocchio”
classification algorithm builds prototypes (centroids) for each class and classifies
a new instance by linearly combining the similarity of this instance with the class
prototypes. In the same vein, we propose in this work to extend the notion of
(mono-modal) class prototype by defining for each class: (1) one (mono-modal)
centroid per mode (which corresponds to the prototypes defined in the standard
“Rocchio” classification algorithm) and (2) two “cross-modal” centroids per pair
of modes. While simple centroids aim at focusing on the mono-modal aspects
of the data, “cross-modal” centroids bias one mode by using the other one and
hence take into account the multi-modal aspects of the data. When classifying a
new input, it is compared with these different centroids (mono- and cross-modal)
using a similarity function (for instance, the cosine or any similarity measure of
information retrieval). These similarity scores form then the inputs of a linearly
weighted LF process.

This novel MM framework is benchmarked on a social media corpus — namely
the ENRON corporate email data set — on two different tasks: a foldering task
and a recipient proposal task. For the foldering task, we consider the seven
mailboxes selected by [5]. These mailboxes have been intensively benchmarked
due to their public availability. Our framework is compared to EF and LF which
constitute the state-of-the art for these tasks on this data set (see for instance
the recent work of [6]). For the recipient proposal task, we evaluate the proposed
framework on three mailboxes among the ones having the largest amount of
messages.

We show that, thanks to the introduced cross-modal scores, our MM frame-
work outperforms the state-of-the-art on this public data set for both tasks.
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To summarize, the main contributions of this paper are the following;:

— It introduces a new competitive framework which can be used for classifica-
tion in case of multi-modal inputs.

— It proposes to compute cross-modal centroids which reflect the multi-modal
aspects of the data.

— It shows on various mailboxes of the ENRON data set that the proposed
method outperforms established methods, i.e. the EF and the LF, on folder-
ing and recipient proposal tasks.

2 Problem Statement

More concretely, the multi-modal classification problem may be formalized as
follows: We have at our disposal a collection of N, data instances represented by
M different data matrices X(™) of size Ny x N(m), where N{™ is the number
of features associated with the mode m € M (the set of modes {1,...,M}).
The vector xg.”) denotes the row d of X(™ and xEZL) denotes the entry (7, ) of

the same matrix. X is the matrix obtained by concatenating the different X (™)
matrices in an ascending mode order, i.e. X = [X(MX®)  XIMD] The vector
X((;.) denotes the row d of this matrix.

For learning, we have a set of labeled multi-modal data instances £ =
{xgl:),yd},d € [1,Ngl,ya € C,x((i:) € X. C is the set of the different labels:
{c1,...,¢ic} and X the set of multi-modal data instances.

We want to design a model M, € M (the set of multi-modal models) for
each class ¢ € C and a multi-modal classification function F' : X x M —
R. The predicted class of an unlabeled multi-modal point xq(:.) will be § =
argmaXCF(xS;.), M,).

One way to solve the problem consists of learning the classification models
M.’s directly in the feature space which consists of the union of all modes. In
this case, we are using an early fusion (EF) approach. However, as suggested
by [7], in order to achieve good performance, each mode should be normalized
separately before combination. This is mostly to make features comparable with
respect to the range of values across the different modes and features.

Another standard approach consists of learning separately the different clas-
sification models M[™"’s for each mode m. After learning, the decision function
consists of a linear combination of the different scores obtained on each mode m.

y = argmax, Z aZ”F(Xq(]:L)v M;") 1)
m

The weights o attributed to the different modes for each class are generally
tuned on a independent validation set. This method is called late fusion (LF)
as opposed to early fusion. Note that most of the proposed and widely used
learning to rank systems are based on the linear combination of features |8, |9].

The advantage of the early fusion lies in its ability to capture relations be-
tween features across different modes. Furthermore, it avoids the supplementary
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task of tuning hyper-parameters needed in the case of a late fusion approach.
However, the early fusion suffers from combining artificially into one vector space
multiple sources having different semantics. Furthermore, the level of sparsity
may change across modes. Indeed, for instance, image features are dense, while
bag-of-words document vectors are sparse and social-media participant vectors
are binary sparse vectors. Another drawback of the early fusion method is to in-
crease drastically the dimension of the feature space which results in increasing
the variance of the generalization error. Hence, the late fusion strategy which
consists of combining different expert models results generally in a lower vari-
ance. Its drawback is its inability to capture any possible combination of features
across different modalities that may result in a better prediction.

In the remainder, we introduce a new framework which takes a decision based
on a linear combination of multiple experts and therefore is LF-based. However,
while the standard LF does not take into account the interactions across the
multiple modes, this framework proposes to exploit the multi-modal aspects of
the data. The proposed classification procedure, inspired by the trans-media
relevance feedback in information retrieval [10], consists of the following steps:
(1) off-line modeling of each class with a representative centroid per mode m
obtained after aggregating all the mode m portion of the data instances, (2) off-
line modeling of each class with two representative centroids per pair of modes
(i.e. (m)[m’] and (m’)[m]) obtained after aggregating the mode m portion of the
nearest neighbors computed through the mode m’ portion of the data instances,
(3) defining similarity scores between unlabeled data points and the different
centroids, (4) late (linear) fusion of the obtained scores in order to get a global
membership score for each class and (5) applying a simple argmax function on
global scores computed for each class in order to predict the class .

3 Multi-modal Classes Modeling

Mono-modal Modeling. The off-line training phase consists of learning one model
M. for each class c. We propose to build a multi-modal centroid vector for each
class ¢ which summarizes the subset L. of all the labeled data instances £ which
have class c as label. In other words, £, = {x((j:), c}, is the set of all data instances
that belongs to class ¢. Each centroid is made by aggregating all data instances
dof L..
« (™)
c™(e)= P (2)

w
deL. d

P is an aggregation operator which may be an average, a max, a min. wy is a
weighting factor which counts the number of classes the document d belongs to.
Concretely, the intuition is that in a multi-label setting, as for instance in the
recipient proposal task (see Section [(.2)), a multi-labeled document is less repre-
sentative of the classes it belongs to than a mono-labeled document considered
as more specific to the class.
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Cross-modal Modeling. So far, the centroids are mono-modal and can only cap-
ture the modality in which they are defined. Therefore, following our main goal to
capture interactions across modes, we define “cross-centroids”. A cross-centroid
in mode m is made by aggregating the m-mode portion of different nearest neigh-
bors observations x((;z). The nearest-neighbors are chosen in £ according to a
specific mode m/ resulting in the cross-centroid C™0™](¢). Notice that, m and
m’ may be equal re-enforcing then the mono-modality aspect of the centroid.
More formally, a cross-centroid is computed as follows:

il = P xR x0) (3)
d’eNN(x"") deL.

where NN (1'(m/)) is the “nearest neighbors” function returning the set of nearest
neighbors of x in the mode m’ and using any traditional similarity measure of
information retrieval, the function w(xg.nl), x((;zl)) gives a weight proportional to
the (mono-modal) similarity between both elements.

4 Multi-modal Late Fusion

To assess the affinity of an unlabeled observation to a specific class ¢, we com-
pute its global similarity with the different centroids (i.e. mono modal and cross-
modal) representing each class. The multi-modal unlabeled input, xq(:.), is com-
pared mode by mode with the different centroids. Then, a global membership
score is deduced from a linear combination of each mode contribution. The global

score is thus computed as follows:

RSV (e, X,(:.)) = Z Qem sim(C’(m)7 ng))
+ Z Z 60,m7m’ Sim(C(m)[m/] , XS]:L)) (4)

where o, and Be,m,ms are positive weights summing up to 1. The “sim” function
may be any traditional similarity measure used in information retrieval. The
first part of Equation (] denotes the simple sum of the similarities of each mode.
This part does not cover any interaction across the modes. The last part of
the equation aims at capturing the interactions across the different modes by
computing the similarity with cross-modal centroids. In the remainder, we will
show empirically that computing these cross-modal similarities lead to better
performance for multi-modal categorization tasks. As with late fusion, the hyper-
parameters can be learned in order to maximize a specific utility function (by
cross-validation), for example: precision@1 or NDCG@10.
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5 Experiments and Discussions

5.1 The ENRON Data Set

The introduced multi-modal (MM) framework is validated on the ENRON
dataset. This dataset consists of a set of vectors and matrices that represent the
whole ENRON corpus [see, e.g., [11], after linguistic preprocessing and metadata
extraction. The linguistic preprocessing consists of removing some particular
artefacts of the collection (for instance some recurrent footers, that have noth-
ing to do with the original collection but indicate how the data were extracted),
removing headers for emails (From/To/. . . fields), removing numerals and strings
formed with non-alphanumeric characters, lowercasing all characters, removing
stopwords as well as words occurring only once in the collection. There are two
types of documents: documents are either (parent) emails or attachments (an
attachment could be a spreadsheet, a power-point presentation, ...; the conver-
sion to standard plain text is already given by the data provider). The ENRON
collection contains 685,592 documents (455,449 are parent emails, 230,143 are
attachments) extracted from 151 different mailboxes. We decided to process the
attachments simply by merging their textual content with the content of the
parent email, so that we have to deal only with parent emails. For parent emails,
we have not only the content information, but also metadata. The metadata
consist of:

— the custodian (i.e. the person who owns the mailbox from which this email
is extracted);

— the location (i.e. the folder decomposition of each mailbox owner);

— the date or timestamp;

— the Subject field (preprocessed in the same way as standard content text);

— the From field;

— the To field ;

— the CC field.

After preprocessing, we summarize the data by two views for each data point:
the textual view and the social view. The textual view consists of a bag-of-word
representation of the aggregation of the “Body” vector, the “Attachment” vector
and “Subject” vector. The social view is a vector in the bag-of-participants space
which is the aggregation of the “From” vector, the “To” vector and the “Cc”
vector.

For the foldering task, among the 151 available mailboxes, we consider 7
mailboxes having a sufficient amount of folders selected in [5]. Furthermore,
we removed folders which are not specific to the considered mailbox but which
have been automatically generated by an email client software. For instance, the
folders “All documents”, “Calendar”, “Sent mail”, “Deleted Items”, “Inbox”,
“Sent Items”, “Unread Mail”, “Contacts” and “Drafts” have been discarded
from the evaluation. Statistics on the seven selected folders are reported in Table
[l For the recipient proposal task, we report results for three mailboxes among
the five having the largest amount of emails in the collection, namely: Vince J.
Kaminski, Jeff Dasovich and Tana Jone’s mailboxes.
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Table 1. Folders distribution among of the preprocessed mailboxes used for the
foldering task

Mailbox #Folders Total #em Min #em. Max #em. Aver # em/Folder

Beck 60 258 1 27 4.30
Farmer 27 1689 1 528 62.56
Kaminski 32 842 1 120 26.31
Kitchen 51 4162 1 784 81.61
Lokay 14 1837 1 915 131.21
Sanders 20 411 2 181 20.55
Williams 21 2043 1 1076 97.29

5.2 Benchmark Protocol

The proposed model is tested on two different mail management tasks: (1) email
foldering whose goal is to retrieve the correct folder in which an email should go
using all its information (i.e. textual content and social metadata), (2) recipient
proposal whose goal is to automatically propose recipient candidates for a new
written message based only on the textual part of the email. It is important
to note that the temporal aspect plays here a big role. Indeed, it would be
generally easier to predict the recipient of new emails based on recent posts
than on old ones. This comes from the fact that generally emails are part of a
global discussion thread. In case of foldering, users may create folders, delete or
move emails after an amount of time, for instance to the “Trash” folder to free
memory on the server. We could introduce the temporal aspect in our model
when building centroids by weighting the contribution of each message using
the timestamp meta data. However, in order to compare more fairly with state-
of-the-art LR and ER fusion methods we decide to not include the temporal
information directly into the model. Instead, we decide to make training-test
splits which reflect the sequential aspect of the data such that the compared
methods are tested on more recent emails than those used during the training
phase. Hence, we assume that the emails of the collection are sorted by increasing
order of their timestamp.

For the foldering task, we consider training sets composed by 50% of the
mailbox. After learning, the goal is to predict the folder of the next 10% emails
in the temporal sequence. For example, when considering a training set made
from the first 50% of the collection (i.e. in terms of timestamp), the test set then
consists of the emails in the interval 50%-60%. By time-shifting the training and
the test sets by 10%, we may consider training on the emails going from 10% to
60% and test on the next 10%, and so on. So that, finally, we define 5 possible
training and test sets. The different methods require some hyper-parameters to
be set. For this purpose, during each training phase, hyper-parameters are tuned
internally by dividing the 50% training set into 40% internal-training and 10%
internal-test. For the recipient proposal task, we consider training sets and test
sets made each by 10% of the mailbox. By time-shifting by 10% the training-test
sets we define 9 different splits. The first two splits are used as validation set for
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Table 2. Table presenting the results for a foldering task averaged on 5 chronological
ordered training-test pairs for the Beck’s, Farmer’s, Kaminski’s and Kitchen’s mail-
boxes. The state-of-the art methods late fusion (LF') and early fusion (EF) are com-
pared with the proposed multi-modal framework. The reported performance measure
for this mono-label classification task are the Recall@l,@5, @10, the NDCG@10 and
the NDCG. The hyper-parameters of each algorithm has been tuned on an independent
validation set.

Alg. RQ1 R@3 R@5 R@10 NDCG@Q10 NDCG
Beck’s mailbox

MM 0.55 +/- 0.15 0.68 +/- 0.12 0.71 +/- 0.08 0.77 +/- 0.11 0.66 +/- 0.11 0.68 +/- 0.10

LF 042 +/-0.1 0.57 +/- 0.06 0.62 +/- 0.06 0.70 +/- 0.04 0.56 +/- 0.06 0.60 +/- 0.06

EF 0.46 +/- 0.14 0.63 +/- 0.15 0.65 +/- 0.11 0.69 +/- 0.09 0.59 +/- 0.12 0.63 +/- 0.10
Farmer’s mailbox

MM 0.68 +/- 0.11 0.82 +/- 0.09 0.87 +/- 0.08 0.89 +/- 0.07 0.79 +/- 0.08 0.81 +/- 0.08

LF 0.65 +/- 0.14 0.79 +/- 0.13 0.81 +/- 0.12 0.86+/- 0.09 0.76 +/- 0.12 0.78 +/- 0.11

EF 0.68 +/- 0.13 0.77 4+/- 0.12 0.81 +/- 0.11 0/85 4 /- 0.08 0.76 4+ /- 0.11 0.78 4+ /- 0.10
Kaminski’s mailbox

MM 0.54 +/- 0.20 0.68 +/- 0.21 0.73 +/- 0.16 0.82 +/- 0.18 0.67 +/- 0.19 0.70 +/-0.18

LF 0.44 4+/- 0.19 0.61 4+ /- 0.25 0.67 +/- 0.22 0.77 +/- 0.17 0/60 +/- 0.19 0.63 4 /- 0.19

EF 0.51 +/- 0.22 0.61 4+/- 0.21 0.67 +/- 0.23 0.78 +/- 0.21 0.63 +/- 0.21 0.66 +/- 0.20
Kitchen’s mailbox

MM 0.42 +/- 0.13 0.65 +/- 0.07 0.77 +/- 0.07 0.87 +/- 0.08 0.63 +/- 0.09 0.65 +/- 0.08

LF 0.41 4+/- 0.12 0.65 4+ /- 0.16 0.75 +/- 0.13 0.81 4+/- 0.14 0.61 +/- 0.13 0.64 +/- 0.12

EF 0.44 4+/- 0.12 0.64 4+ /- 0.12 0.74 +/- 0.10 0.83 +/- 0.10 0.63 +/- 0.11 0.66 +/- 0/09

tuning the hyper-parameters of the different methods. The remaining splits are
used for assessing the performance of the different algorithms.

5.3 Classification Models and Tuning

The benchmarked classification models are (1) the MM model proposed in this
paper, the (2) EF model and the (3) LF model. For the EF and LF fusion
models we use a one-vs-rest logistic regression classifier with a 12-norm regu-
larization. This provides, after normalization, the posterior probability of each
class given a test data point. As previously said, the regularization parameter is
internally tuned during training for the foldering task, or tuned on an indepen-
dent validation set for the recipient proposal task. For the LF' strategy, the best
convex combination (i.e. achieving the best performance in terms of NDCG@10
on a independent data set) of the mono-modal classifiers is kept for the test.

For the MM model, a set of parameters has to be learned for each class
corresponding to the weights given to each centroid by the model. The class
parameters are learned using a logistic regression where a positive target (41)
is associated to data points that belongs to the class and negative target (0) for
unlabeled points. For classes with less than 30 data points, we use an uniform
convex combination of the weights.

Note that the number of nearest-neighbors used for computing “cross-modal”
centroids has been set to 10. The results obtained on 5, 20 and 30 nearest-
neighbors lead to the same observations.
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Table 3. Table presenting the results for a foldering task averaged on 5 chronological
ordered training-test pairs for the Lokay’s, Sanders’s and Williams’s mailboxes. The
state-of-the art methods late fusion (LF') and early fusion (EF) are compared with the
proposed multi-modal framework. The reported performance measure for this mono-
label classification task are the Recall@1,@5, @10, the NDCG@10 and the NDCG. The
hyper-parameters of each algorithm has been tuned on an independent validation set.

Alg. RaQ1l Ra@3 RQ5 R@10 NDCG@10 NDCG
Lokay’s mailbox

MM 0.80 +/- 0.04 0.92 +/- 0.05 0.95 +/- 0.04 0.96 +/- 0.04 0.89 +/- 0.04 0.89 +/- 0.04

LF 0.77 +/- 0.04 0.90 +/- 0.05 0.94 +/- 0.04 0.96 +/- 0.04 0.87 +/- 0.04 0.87 +/- 0.04

EF 0.81 +/- 0.05 0.91 +/- 0.06 0.95 +/- 0.05 0.96 +/- 0.04 0.89 +/- 0.05 0.89 +/- 0.05
Sanders’s mailbox

MM 0.82 +/- 0.12 0.86 +/- 0.13 0.88 +/- 0.10 0.92 +/- 0.12 0.86 +/- 0.12 0.87 +/- 0.11

LF 0.70 +/- 0.13 0.84 +/- 0.13 0.86 +/- 0.13 0.90 +/- 0.15 0.80 +/- 0.13 0.82 +/- 0.12

EF 0.78 +/- 0.14 0.82 +/- 0.14 0.86 +/- 0.16 0.89 +/- 0.15 0.83 +/- 0.14 0.84 +/- 0.13
Williams’s mailbox

MM 0.68 +/- 0.34 0.80 +/- 0.38 0.81 +/- 0.38 0.81 +/- 0.36 0.76 +/- 0.36 0.77 +/- 0.33

LF 0.74 +/- 0.37 0.80 +/- 0.39 0.81 +/- 0.38 0.81 +/- 0.38 0.78 +/- 0.38 0.79 +/- 0.35

EF 0.74 +/- 0.37 0.80 +/- 0.38 0.81 +/- 0.38 0.78 +/- 0.37 0.78 +/- 0.37 0.79 +/- 0.34

5.4 Results and Discussion

Foldering Task: The obtained results for the MM, EF and LF are reported
in Table @] and Table Bl The retrieval measure performance are the recall at
rank 1 (RQ1), the recall at rank 3 (R@3), the recall at rank 5 (R@5) and the
recall at rank 10 (R@10), knowing that, for each data point, there is only one
relevant folder. We measure also the normalized discounted cumulative gain,
limited to rank 10 (NDCG@10) and on the whole set of folders (NDCG). The
reported scores are the results averaged over the 5 sequential training-test pairs.
Clearly, for 4 of the 7 mailboxes (namely: Beck, Farmer, Kaminski and Sanders)
the proposed MM framework outperforms the EF and the LF strategies. The
scores in bold mean that the performances are significantly better (verified by
a signed test with a p-value < 0.05). Moreover, the EF and LF methods never
outperforms the MM approach on all the measures simultaneously. Although the
LF is generally the preferred approach for a foldering task on this data set (see,
e.g. [6]), we observe in our tests that EF is always better or equivalent for all the
performance measures than LF. Hence, we argue that often FF' is not correctly
used. Indeed, it is important to normalize independently each view before fusion
due to the semantic difference that may exist between the views. The results
reported on William’s mailbox have a large variance. This is because, at the
second time step, new folders have been created by the user for which no emails
or a few were present in the training. In the real world, this realistic case often
happen, therefore designing sequential training-test splits is critical in order to
fairly assess the performance of the system.

Recipient Proposal. The results are reported for three different mailboxes in Ta-
ble @ The recipient proposal task is a multi-label classification task for which
the performance are measured using the macroF1 (maF1), the mean average
precision (MAP) and the NDCG. For the MM framework, we also report the
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Table 4. Averaged performance measures on 7 different time slots of size 10 % (i.e.
training size of 10 %) for Kaminski’s, Dasovich’s and Jone’s mailboxes on a recipient
proposal task. The state-of-the art methods late fusion (LF') and early fusion (EF)
are compared with the proposed multi-modal framework. The reported performance
measure for this multi-label classification task are the maF1, the MAP and the NDCG.
The hyper-parameters of each algorithm has been tuned on an independent validation
set.

Model maF'1 MAP NDCG
Kaminski’s mailbox
Ctext) 0.16 4+/- 0.03  0.24 +/- 0.05 0.40 +/- 0.07
O (text)[text] 0.38 4+/- 0.06  0.44 +/- 0.09 0.55 +/- 0.11
Ctext)[participant] 0.11 4+/- 0.02  0.13 +/- 0.03 0.24 +/- 0.04
(¢ (participant) 0.04 +/-0.01  0.11 +/- 0.01 0.26 +/- 0.04
(¢ (participant)[participant] 0.11 +/-0.01  0.21 +/- 0.02 0.37 +/- 0.04
¢ (participant)[text] 0.02 4+/- 0.01  0.04 +/- 0.01 0.15 +/- 0.02
aCtext) 4 (1 — q)CParticipant) 98 1 /. 0.03  0.26 +/- 0.05 0.42 4/- 0.07
EF 0.29 +/-0.16  0.34 +/- 0.18 0.45 +/- 0.19
LF 0.30 +/- 0.16  0.35 +/- 0.18 0.46 +/- 0.19
RSV 0.40 +/- 0.05  0.46 +/- 0.08 0.57 +/- 0.11
Dasovich’s mailbox
O text) 0.61 +/-0.14  0.25 +/- 0.06 0.46 +/- 0.04
O (text)[text] 0.66 +/- 0.14  0.28 +/- 0.06 0.48 +/- 0.07
(¢ (text) [participant] 0.57 4+/- 0.14  0.25 +/- 0.03 0.47 +/- 0.02
(¢ (participant) 0.62 +/-0.08  0.30 +/- 0.04 0.49 +/- 0.03
¢ (participant)[participant] 0.74 4+/- 0.15  0.38 +/- 0.04 0.54 +/- 0.04
(¢ (participant)[text] 0.78 +/- 0.09  0.37 +/- 0.04 0.49 +/- 0.03
aCtet) 4 (1 — q)oParticipant) 067 1/ 0.12  0.31 +/- 0.04 0.50 +/- 0.04
EF 0.36 +/- 0.06  0.41 +/- 0.06 0.52 +/- 0.06
LF 0.37 +/- 0.06  0.41 +/- 0.06 0.52 +/- 0.06
RSV 0.79 +/- 0.07  0.40+/- 0.08 0.55+/- 0.06
Jone’s mailbox

¢ (text) 0.86 +/- 0.06  0.41 +/- 0.07 0.55 +/- 0.05
O (text)[text] 0.90 +/- 0.05  0.45 +/- 0.06 0.56 +/- 0.05
(O (text) [participant] 0.83 4+/- 0.07  0.39 +/- 0.06 0.54 +/- 0.04
(¢ (participant) 0.80 4+/- 0.05  0.40 +/- 0.07 0.55 +/- 0.05
(¢ (participant)[participant] 0.86 +/- 0.07  0.47 +/- 0.06 0.60 +/- 0.04
¢ (participant)[text] 0.79 4+/- 0.04  0.38 4+/- 0.06 0.54 +/- 0.05
aCtet) 4 (1 — q)oParticipant) 086 4 /- 0.04  0.41 +/- 0.06 0.55 +/- 0.04
EF 0.46 +/- 0.12  0.50 +/- 0.09 0.59 +/- 0.06
LF 0.46 +/- 0.12  0.12 +/- 0.09 0.59 +/- 0.06
RSV 0.91 +/- 0.04  0.50 +/- 0.06 0.60 +/- 0.05
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results obtained individually by each centroid. Moreover, in addition of report-
ing the results obtained by the EF and LF baselines, we also report the results
obtained by the MM-baseline which consists of using only a combination of the
mono-modal centroids.( in other words, the combination of the textual centroid
and the social centroid : aC*ext) 4 (1 — @)CParticipant) ) On the three tested
mailboxes, the proposed MM framework outperforms the FF and the LF and
the simple combination of the textual and the social centroids. The scores in
bold mean that the performances are significantly better (verified by a signed
test with a p-value < 0.05). Notice that, on the Kaminski’s mailbox, textual cen-
troids obtained a better score than the social centroids, while on the Dasovitch’s
mailbox social centroids obtained a better score than the textual centroids.

6 Related Work

In a fully supervised setting, as pointed out in [3], multi-view learning usually
performs worse than learning on the union of all views. Hence, a few has been
done in this field. For instance, [12] proposed a method that combines a two stage
learning (KCCA followed by SVM) into a single optimization termed “SVM-
2K”. Others have considered working on a graph representation of the data. For
instance, [13] exploited hyperlinks between web pages in order to improve tra-
ditional classification tasks using only the content. [14] studied the composition
of kernels in order to improve the performance of a soft-margin support vector
machine classifier. [15, [16] used both local text in a document as well as the
distribution of the estimated classes of other documents in its neighborhood,
to refine the class distribution of the document being classified. Their frame-
work has been tested for the semi-supervised and fully-supervised classification
as well. More recently, [17] proposes to learn the weights of a namely ”supervised
random walk” using both the information from the network structure and the
attribute data.

In this paper we introduce an extension of the classical Rocchio classification
algorithm also known as the nearest centroid or nearest prototype classifier (see
[18]) to the multi-modal case. An extension of this algorithm using kernel-based
similarities has been introduced in [19]. A probabilistic variant of the Rocchio
classifier has been proposed in [20].

7 Conclusions

In this work, we introduced a novel and simple algorithm in order to deal with
multi-modal fully supervised classification. To this purpose, we extended the
traditional Rocchio classification algorithm by defining mono-modal and multi-
modal centroids. The introduced framework has the advantage of searching for
a high consensus among views using scores reflecting the interactions between
the different existing modes. We showed on two different tasks — a foldering
task and recipient prediction task — that the proposed multi-modal framework
outperforms state-of-the-art approaches: the early fusion and the late fusion. As
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further research, we would like to investigate multi-view learning with latent
spaces and interactions between latent variables.
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