Skip to main content

The Fox–Li Operator as a Test and a Spur for Wiener–Hopf Theory

  • Chapter
  • First Online:

Abstract

The paper is a concise survey of some rigorous results on the Fox–Li operator. This operator may be interpreted as a large truncation of a Wiener–Hopf operator with an oscillating symbol. Employing theorems from Wiener–Hopf theory one can therefore derive remarkable properties of the Fox–Li operator in a fairly comfortable way, but it turns out that Wiener–Hopf theory is unequal to the task of answering the crucial questions on the Fox–Li operator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    According to [12], this conjecture comes from “using a distinctly physical approach based on wave-guide theory”, but we admit that we have not been able to follow the argument of [23]. Moreover, numerical computations do not support the conjecture.

  2. 2.

    The reader might enjoy knowing the following, which is cited from [1]: “Harold Widom grew up in Brooklyn, New York. He went to Stuyvesant High School where he was captain of the math team. Coincidentally, the captain of the rival team at the Bronx High School of Science was Henry Landau …”.

References

  1. E.L. Basor, E.M. Landesman, Biography of H. Widom. Oper. Theory Adv. Appl. 71, ix–xi (1994)

    Google Scholar 

  2. M. Berry, Mode degeneracies and the Petermann excess-noise factor for unstable lasers. J. Mod. Opt. 50, 63–81 (2003)

    Google Scholar 

  3. M. Berry, C. Storm, W. van Saarlos, Theory of unstable laser modes: edge waves and fractality. Opt. Commun. 197, 393–402 (2001)

    Google Scholar 

  4. A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, 2nd edn. (Springer, Berlin/Heidelberg/New York, 2006)

    Google Scholar 

  5. A. Böttcher, H. Widom, Two remarks on spectral approximations for Wiener–Hopf operators. J. Integral Equ. Appl. 6, 31–36 (1994)

    Google Scholar 

  6. A. Böttcher, H. Brunner, A. Iserles, S. Nørsett, On the singular values and eigenvalues of the Fox–Li and related operators. N.Y. J. Math. 16, 539–561 (2010)

    Google Scholar 

  7. A. Böttcher, S. Grudsky, D. Huybrechs, A. Iserles, First-order Trace Formulae for the Iterates of the Fox-Li Operator. Panor. Mod. Operator Theory Relat. Top. 207–224 (2012). Springer

    Google Scholar 

  8. A. Böttcher, S. Grudsky, A. Iserles, Spectral theory of large Wiener–Hopf operators with complex-symmetric kernels and rational symbols. Math. Proc. Camb. Philos. Soc. 151, 161–191 (2011)

    Google Scholar 

  9. H. Brunner, A. Iserles, S. P. Nørsett, The spectral problem for a class of highly oscillatory Fredholm integral equations. IMA J. Numer. Anal. 30, 108–130 (2010)

    Google Scholar 

  10. H. Brunner, A. Iserles, S.P. Nørsett, The computation of the spectra of highly oscillatory Fredholm integral operators. J. Integral Equ. Appl. (2010), to appear

    Google Scholar 

  11. J.A. Cochran, The existence of eigenvalues for the integral equations of laser theory. Bell Syst. Tech. J. 44, 89–110 (1965)

    Google Scholar 

  12. J.A. Cochran, E.W. Hinds, Eigensystems associated with the complex-symmetric kernels of laser theory. SIAM J. Appl. Math. 26, 776–786 (1974)

    Google Scholar 

  13. A.G. Fox, T. Li, Resonance modes in a maser interferometer. Bell Syst. Tech. J. 40, 453–488 (1961)

    Google Scholar 

  14. U. Grenander, G. Szegő, Toeplitz Forms and Their Applications (University of California Press, Berkeley/Los Angeles, 1958)

    Google Scholar 

  15. P. Hartman, A. Wintner, The spectra of Toeplitz’s matrix. Am. J. Math. 76, 867–882 (1954)

    Google Scholar 

  16. H. Hochstadt, On the eigenvalues of a class of integral equations arising in laser theory. SIAM Rev. 8, 62–65 (1966)

    Google Scholar 

  17. H. Landau, The notion of approximate eigenvalues applied to an integral equation of laser theory. Q. Appl. Math. 35, 165–172 (1977/1978)

    Google Scholar 

  18. H. Landau, H. Widom, Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)

    Google Scholar 

  19. D.J. Newman, S.P. Morgan, Existence of eigenvalues of a class of integral equations arising in laser theory. Bell Syst. Tech. J. 43, 113–126 (1964)

    Google Scholar 

  20. D. Slepian, Some asymptotic expansions for prolate spheroidal wave functions. J. Math. Phys. 44, 99-140 (1965)

    Google Scholar 

  21. P. Tilli, Some results on complex Toeplitz eigenvalues. J. Math. Anal. Appl. 239, 390–401 (1999)

    Google Scholar 

  22. L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University Press, Princeton, 2005)

    Google Scholar 

  23. L.A. Vainshtein, Open resonators for lasers. Sov. Phys. JETP 40, 709–719 (1963)

    Google Scholar 

  24. H. Widom, On a class of integral operators with discontinuous symbol. Oper. Theory Adv. Appl. 4, 477–500 (1982)

    Google Scholar 

  25. H. Widom, Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index. Oper. Theory Adv. Appl. 48, 387–421 (1990)

    Google Scholar 

Download references

Acknowledgements

The second author acknowledges support by CONACYT grants 80503 and 102800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arieh Iserles .

Editor information

Editors and Affiliations

Additional information

Dedicated to the 80th Anniversary of Professor Stephen Smale

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Böttcher, A., Grudsky, S., Iserles, A. (2012). The Fox–Li Operator as a Test and a Spur for Wiener–Hopf Theory. In: Pardalos, P., Rassias, T. (eds) Essays in Mathematics and its Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28821-0_3

Download citation

Publish with us

Policies and ethics