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Abstract. KeeLoq is a lightweight block cipher which is extensively
used in the automotive industry [7, 8, 14, 15]. Its periodic structure, and
overall simplicity makes it vulnerable to many different attacks. Only
certain attacks are considered as really “practical” attacks on KeeLoq:
the brute force, and several other attacks which require up to 216 known
plaintexts and are then much faster than brute force, developed by Cour-
tois et al., [10] and (faster attack) by Dunkelman et al. [1].
On the other hand, due to the unusually small block size, there are yet
many other attacks on KeeLoq, which require the knowledge of as much
as about 232 known plaintexts but are much faster still. There are many
scenarios in which such attacks are of practical interest, for example if a
master key can be recovered, see Section 2 in [11] for a detailed discussion.
The fastest of these attacks is an attack by Courtois, Bard and Wagner
from [10] that has a very low complexity of about 228 KeeLoq encryptions
on average. In this paper we will propose an improved and refined attack
which is faster both on average and in the best case.
We also present an exact mathematical analysis of probabilities that arise
in these attacks using the methods of modern analytic combinatorics.
Keywords: block ciphers, highly-unbalanced compressing Feistel ciphers,
random permutation statistics, slide attacks, KeeLoq, automobile locks

1 Introduction

KeeLoq is a lightweight block cipher designed in the 1980’s and licensed to Mi-
crochip [7]. It is used in automobile door locks and alarms, garage door opening
systems etc. For many years there was no attack on KeeLoq, because the spec-
ification was kept confidential. In 2007, a document with the full specification
of KeeLoq was made public on a Russian web site [15]. Many different cryp-
tographic attacks on KeeLoq were published since then [1, 4–6, 10, 11]. Some of
these attacks are considered as “practical” attacks [1] though brute force is really
the simplest attack to handle in practice.

KeeLoq has unusually small block length: 32 bits. Thus, in theory, the at-
tacker can expect to recover and store the entire code-book of 232 known plain-
texts. Then one may wonder whether it is really interesting to recover the key, as
the code-book allows one to encrypt and decrypt any message. However, there
are many cases in which it remains interesting. For example if a master key in
the system can be thus recovered, or if very few plaintext/ciphertext pairs are
missing and yet are very valuable to the attacker, or if the code-book is noisy
and contains errors. There are many other scenarios as well, see Section 2 in
[11] for examples and a detailed discussion. One of the two attacks described in



[11] will work as soon as some 60 % of the code-book is available, therefore 40
% of the code-book can still be determined by the attacker. In this paper, for
simplicity we will assume that the whole code-book is available.

The starting point in this paper is the Slide-Determine attack by Courtois,
Bard and Wagner [10]. This is the fastest attack known when the attacker is
in possession of the entire code-book. We will propose an improved and refined
version of this attack, that is faster than the original attack, both on average
and in the best case.

This paper is organised as follows: in Section 2 we describe the cipher. In
Section 3, we establish a number of basic lemmas and observations on KeeLoq.
In Section 4 we study various statistics on fixed points and random permutations.
In Section 5 we describe our main attack, and we conclude in Section 6.

1.1 Notation
We will use the following notation for functional iteration:

f (n)(x) = f(f(· · · f(︸ ︷︷ ︸
n times

x) · · ·))

If h(x) = x for some function h, then x is a fixed point of h. If h(h(x)) = x
but h(x) 6= x then x is a “point of order 2” of h. In like manner, if h(i)(x) = x
but h(j)(x) 6= x for all j < i, then x is a “point of order i” of h. Obviously if x
is a point of order i of h, then

h(j)(x) = x if and only if i|j

2 Cipher Description

The specification of KeeLoq can be found in the Microchip product specification
document [15], which actually specifies KeeLoq decryption, that can be converted
to a description of the encryption, see [7, 8, 4]. Initially there were mistakes in
[7, 8] as opposed to [15, 4] but they are now corrected.

The KeeLoq cipher is a strongly unbalanced Feistel construction in which the
round function has one bit of output, and consequently in one round only one
bit in the “state” of the cipher will be changed. Alternatively, it can viewed as a
modified shift register with non-linear feedback, in which the fresh bit computed
by the Boolean function is XORed with one bit of the rotating key.

The cipher has the total of 528 rounds, and it makes sense to view that as
528 = 512+16 = 64×8+16. The encryption procedure is periodic with a period
of 64 and it has been “cut” at 528 rounds, because 528 is not a multiple of 64, in
order to prevent obvious slide attacks (but more advanced slide attacks remain
possible as will become clear later). Let k63, . . . , k0 be the key. In each round,
it is bitwise rotated to the right, with wrap around. Therefore, during rounds
i, i + 64, i + 128, . . ., the key register is the same. If one imagines the 64 rounds
as some fk(x), then KeeLoq is

Ek(x) = gk(f (8)
k (x))



with gk(x) being a 16-round final step, and Ek(x) being all 528 rounds. The last
“surplus” 16 rounds of the cipher use the first 16 bits of the key (by which we
mean k15, . . . , k0) and gk is a functional“prefix” of fk (which is also repeated at
the end of the whole encryption process). In addition to the simplicity of the
key schedule, each round of the cipher uses only one bit of the key. From this
we see that each bit of the key is used exactly 8 times, except the first 16 bits,
k15, . . . , k0, which are used 9 times.

At the heart of the cipher is the non-linear function with algebraic normal
form (ANF) given by:

NLF (a, b, c, d, e) = d⊕ e⊕ ac⊕ ae⊕ bc⊕ be⊕ cd⊕ de⊕ ade⊕ ace⊕ abd⊕ abc

Alternatively, the specification documents available [7], say that it is “the
non-linear function 3A5C742E” which means that NLF (a, b, c, d, e) is equal to
the ith bit of that hexadecimal number, where i = 16a + 8b + 4c + 2d + e. For
example 0, 0, 0, 0, 1 gives i = 1 and the second least significant (second from the
right) bit of “3A5C742E” when written in binary.

The main shift register has 32 bits, (unlike the key shift register with 64
bits), and let Li denote the leftmost or least-significant bit at the end of round
i, while denoting the initial conditions as round zero. At the end of round 528,
the least significant bit is thus L528, and then let L529, L530, . . . , L559 denote the
31 remaining bits of the shift register, with L559 being the most significant. The
following equation gives the shift-register’s feedback:

Li+32 = ki mod 64 ⊕ Li ⊕ Li+16 ⊕NLF (Li+31, Li+26, Li+20, Li+9, Li+1)

where (k63, k62, . . . , k1, k0) is the original key and (L31, . . . , L0) is the plaintext.

3 Preliminary Analysis of KeeLoq

3.1 Brute Force Attack on KeeLoq

As in [10], in this paper we assume that:

Fact 3.1. An optimised assembly language implementation of r rounds of KeeLoq
is expected to take only about 4r CPU clocks.

Justification: See footnote 4 in [4].
Thus, the complexity of an attack on r rounds of KeeLoq with k bits of the

key should be compared to 4r × 2k−1 which is the expected complexity of the
brute force key search. For example, for full 528-round KeeLoq, the complexity
of the exhaustive key search is about 275 CPU clocks.

We note that computing the entire code-book of KeeLoq requires 232 KeeLoq
computations, which is is about 243 CPU clocks. Interestingly, the attacks we
study in this paper are always faster than this, as they only have to read the
KeeLoq code-book, and can rapidly discard large portions of it.



1. Initialize with the plaintext: L31, . . . , L0 = P31, . . . , P0

2. For i = 0, . . . , 528− 1 do
Li+32 = ki mod 64 ⊕ Li ⊕ Li+16⊕NLF (Li+31, Li+26, Li+20, Li+9, Li+1)

3. The ciphertext is C31, . . . , C0 = L559, . . . , L528.

Fig. 1. KeeLoq Encryption



3.2 Useful Lemmas on KeeLoq

In this section we recall some basic facts from [10], with full justification.

Fact 3.2. Given (x, y) with y = hk(x), where hk represents up to 32 rounds of
KeeLoq, one can find the part of the key used in hk in as much time as it takes
to compute hk.
Justification: This is because for up to 32 rounds, all state bits between round
i and round i − 1 are directly known. More precisely, after the round i, 32 − i
bits are known from the plaintext, and i bits are known from the ciphertext,
for all i = 1, 2, . . . , 32. Then the key bits are obtained directly: we know all the
inputs of each NLF, and we know the output of it XORed with the corresponding
key bit. Therefore using the following formula we learn the key bit in question:
ki−32 mod 64⊕ = Li ⊕ Li−32 ⊕ Li−16 ⊕ NLF (Li−1, Li−6, Li−12, Li−23, Li−31).
Furthermore, this also shows that there will be exactly one possible key.

Remark: For more rounds it is much less simple, yet as shown in [10], algebraic
attacks allow to efficiently recover the key for up to 160 rounds given a very small
number of known plaintexts.
Fact 3.3. Given (x, y), one can quickly test whether it is possible that y = gk(x)
for 16 rounds of KeeLoq. The probability that a random (x, y) will pass this test
is 1/216.
Justification: This test can be implemented with a SAT solver, to find that most
systems of equations of this kind are not satisfiable which takes negligible time.
However it is in fact much easier.

After 16 rounds of KeeLoq, only 16 bits of x are changed, and 16 bits of x
are just shifted. If data is properly aligned this requires a 16-bit equality test
that should take only 1-2 CPU clocks.
Fact 3.4. Given (x, y) with y = hk(x), where hk represents 48 rounds of KeeLoq,
one can find all 216 possible keys for hk in as much time as 216 times the time
to compute hk.

Justification: This is to be done by trying exhaustively all possibilities for the
first 16 key bits and applying Fact 3.2.
Fact 3.5. For full KeeLoq, given a pair (p, c) with c = Ek(p), it is possible to
very quickly test whether p is a possible fixed point of f8

k . All fixed points will
be accepted; all but 1/216 of the non-fixed points will be rejected.
Justification: If p is a fixed point of f8, then c = gk(p). We simply use Fact 3.3 to
test whether it is possible that c = gk(p). We can notice that because we exploit
the periodic structure of KeeLoq, the complexity of this test does not depend
on the number of rounds in KeeLoq.



4 Statistics on Cycles in Random Permutations

We start with the following well known fact: which is very frequently used in
cryptanalysis:

Proposition 4.1. [cf. [10]] Given a random function from n-bits to n-bits, the
probability that a given point y has i pre-images is 1

i!e , when n →∞.

Proposition 4.2. The first 64 rounds fk of KeeLoq have 1 or more fixed points
with probability 1− 1/e ≈ 0.63.
Justification: We can look at pre-images of 0 with fk(x)⊕ x that is assumed to
behave as a random function. In Appendix A we show that this argument is not
correct (but it can be repaired and one can show that it will hold for any block
cipher that is not weak). The result is true for a random permutation and this
is a direct consequence of Proposition B.3 that we will prove in Appendix B.1.
Proposition 4.3. Assuming fk behaves as a random permutation, the expected
number of fixed points of f8

k is exactly 4.
Justification: A random permutation π has 1 fixed point on average. Then in
addition to possible “natural” fixed points (1 on average) the π8 will also “in-
herit” all fixed points of π2, π4 and π8. All points of order 1 (i.e. fixed points)
for π come from points of order 1, 2, 4, and 8, of π. And conversely, all points
of order 1, 2, 4, and 8, of π are points of order 1 (i.e. fixed points) for π. For
large permutations, all these points are with very high probability distinct fixed
points. For independent random events we can just add the expected values.

For another proof of this fact, see Corollary B.7.1 in Appendix B.1.
Proposition 4.4. Let π be a random permutation and j, k ∈ IN+. The proba-
bility that πk has exactly j fixed points and π has at least 1 fixed point is:

e
−

∑
i|k

1
i · S′(j) when N →∞

where S′(j) =
[
tj

]
exp

(
∑
i|k

ti

i

)
−[

tj
]
exp


∑

i|k
i 6=0

ti

i




Where t is a formal variable, and [tj ]f(t) denotes the coefficient of tj in an
[infinite] formal series expansion of the function f(t).
Justification: The full proof of this fact is given in Appendix B.2. The proof is
based on Proposition II.4. on page 132 in [12]. The last line in Table 1 below
gives the numerical values for the probability that π has at least one fixed point
and π8 has at least j cycles, for j ≤ 7, with π being a random permutation. We
have also checked and confirmed all these results by computer simulations.

Table 1. The first values of S′(j) for k = 8 and resulting cumulated probabilities

j 0 1 2 3 4 5 6 7

S′(j) 0 1 1
2

2
3

7
24

7
15

151
720

67
315

e−15/8 · S′(j) 0.000 0.153 0.077 0.102 0.045 0.071 0.032 0.032
∞∑

i=j

e−15/8 · S′(i) 0.632 0.632 0.479 0.402 0.300 0.255 0.184 0.151



5 Our Improved Slide-Determine Attack on KeeLoq

The cipher KeeLoq is an extremely weak cipher when approximately the entire
code-book is known. We will now present our attack, that improves the Slide-
Determine Attack from [10], both on average and in specific cases.

5.1 Setup and Assumptions

We assume that approximately the entire code-book is known: all possible 232

plaintext-ciphertext pairs. As in [10] we assume that all the 232 plaintext-ciphertext
pairs are stored in a table. This requires 16 Gigabytes of RAM which is now avail-
able on a high-end PC. We also assume that the time to get one pair is about
tr = 16 CPU clocks. This is a realistic and conservative estimate. In fact our
attack spends most of the time in (consecutive) reading of this memory, its com-
plexity is directly proportional to tr and as we will see later, the complexity of
the attack can be further improved if faster memory is available.

In our Slide-Determine Attack we make the following assumption. We assume
that there is at least one fixed point for fk where fk represents the first 64 rounds
of the cipher. As shown in Section 4, this happens with probability 0.63. We recall
that if x is a fixed point of fk(·) then x is a fixed point of f

(8)
k (·), which are the

first 512 rounds of KeeLoq. In fact several additional fixed points for f8
k are

expected to exist, as on average f8
k has 4 fixed points (cf. Proposition 4.3).

The complexity of nearly all known attacks on KeeLoq greatly depends on
the number of fixed points for fk and f8

k . In our attack that will follow, the
more fixed points exist for f8

k , the faster will be the overall attack. Overall, our
attack works for 63 % of all keys (cf. Proposition 4.2) but for a smaller fraction
of 30 % of all keys (this figure comes from Proposition 4.4 and Table 1) it will
be particularly fast, and for about 15 % of keys, even faster.

5.2 Strong Keys in KeeLoq

In contrast, for 37 % of keys for which fk has no fixed point whatsoever, our
Slide-Determine Attack (as well as the more basic version of it in [10]) fails
completely. Following [10, 11], they can be used in practice to prevent this attack:
the manufacturer or the programmer of a device that contains KeeLoq can check
each potential key for fixed points for fk (232 plaintexts have to be checked).
If it has any, that key can be declared “weak” and never used. A proportion of
37 % of all the keys will be strong, and following [10], this changes the effective
key space from 64 bits to 62.56 bits. This is somewhat similar to a strong-key
solution that was in 2002 patented and commercialized by Gemplus corporation
(currently Gemalto) to prevent GSM SIM cards from being cloned, see [13].

Overall, we get a small loss, in many scenarios perfectly acceptable, that
makes the cipher more secure. Using these strong keys does totally prevent the
attack we study in the present paper. However the Attack B described in [11]
still works and KeeLoq is still broken but with a higher complexity: of about 240

KeeLoq encryptions.



5.3 Our Slide-Determine Attack
We consider all 232 plaintext-ciphertext pairs (p, c). We assumed that at least
one plaintext p is a fixed point of fk. Then, slightly more than 4 of them on
average are fixed points for f8

k (cf. Proposition 4.3). This attack occurs in three
stages.

Stage 1A - Batch Guessing Fixed Points. Following our assumption there
is at least one p that is a fixed point for f8

k . For each pair (p, c), we use Fact 3.5
to test whether it is possible that f8

k (p) = p; if not, discard that pair. The com-
plexity so far is about tr · 232 CPU clocks (mostly spent accessing the memory).
Only about 216 + 4 pairs will survive, and all these where p is a fixed point to
f8

k .
Then following Fact 3.2 we can at the same time compute 16 bits of the key

with time of about 4 ·16 CPU clocks (cf. Fact 3.2 and 3.1). To summarize, given
the entire code-book and in time of about tr · 232 CPU clocks by assuming that
p is a fixed point to f8

k , we produce a list of about 216 triples p, c, (k15, . . . , k0).

Stage 1B - Sorting/Ranking (Optional). This stage is optional, we wish
to be able to filter out a certain fixed proportion of these 216 cases, so that the
complexity of Stage 1 will dominate attack. Let j8 be the number of fixed points
for f8

k . If j8 > 1, our attack can be improved. If we omit Stage 1B, or if j8 = 1
(which is quite infrequent), then the Stage 3 will dominate the attack, which as
we will see later can make it up to 211 times slower, depending on the values of
tr and j8. To bridge this gap we wish to exclude a proportion of up to (1−1/211)
of all the pairs. In practice, we will not exclude any case, but rather order them
in such a way that those that appear at the end are unlikely to be ever used,
and those at the front of the list are much more likely. The higher is the value of
j8, the faster will be the attack and both the best-case and average complexity
of the whole attack will be improved. This is achieved as follows.

We store the triples p, c, (k15, . . . , k0) in a data structure keyed by (k15, . . . , k0).
(For instance, we can have an array of size 216, where A[i] points to a linked list
containing all triples such that (k15, . . . , k0) = i.) It allows us to count, for each
value (k15, . . . , k0), the number f of triples associated with that partial-key value.
This gives us a ranking procedure: the more triples associated with a partial-key
value, the higher it should be ranked. Now we sort them using these counts f ,
and we enumerate the suggested values of (k15, . . . , k0) in order of descending
values of f . When we are considering a fixed value of (k15, . . . , k0), we examine
all of the triples p, c, (k15, . . . , k0) associated with that value of (k15, . . . , k0), and
we apply later Stages 2 and 3 of our Attack. When at the Stage 3 the correct
key is found, we will stop and never try the remaining triples.

The key remark is that, if j8 > 0, then the real 16 bits of the actual key
(k15, . . . , k0) must appear at least j8 times in our list. This means that, if j8 is
large, our attack will terminate earlier. How earlier exactly depends in how many
other keys appear at least j8 times in our list. This number can be computed as
follows: we assume that the keys that appear in this table are the 216 outputs
of a random function on 16 bits, that takes as input any of the 216 pairs (p, c).



Then following Proposition 4.1, the proportion of 1
ei! of keys will appear i times.

The value of j8 is unknown to the attacker and we simply try all values f in
our ranking in decreasing order. Overall, after Stage 1A we have less than 216

16-bit keys, but still 216 triples to test in later stages of our attack. Let U(j8)
be the total number of new keys that need to be examined at this stage and let
T ′(j8) = j8 · U(j8) be the total number of triples that exist at this stage. For
simplicity, we consider all cases j8 ≥ 7 together in one step and therefore we
put T ′(7) = 216 · ∑i≥7 i · 1

ei! and T ′(j8) = 216 · i · 1
ei! for j8 ∈ {1, 2, 3, 4, 5, 6}.

Let T (j8) be the total cumulated number of triples p, c, (k15, . . . , k0) defined as
T (j8) =

∑
i≥j8

T ′(i) = 216 ·∑i≥j8
i · 1

ei! . This gives depending on j8:

Table 2. The number of (k15, . . . , k0) that have to be tested on average in our attack

j8 ≥ 7 6 5 4 3 2 1

T ′(j8) 25.3 27.7 210.0 212.0 213.6 214.6 214.6

T (j8) 25.3 27.9 210.3 212.4 214.1 215.3 216.0

Overall, for a fixed value of j8, in our attack we need to test all the triples
counted by T ′(j) in columns j > j8, and half of the triples (on average) in the
column corresponding to j8.

Stage 2 - Batch Solving. If we assume that p is a fixed point of fk, at least one
triple in our list is valid. Moreover we expect that less than 2 are valid on average,
as we expect on average between 1 and 2 fixed points for fk (we assumed at least
one). In fact, our attack with ranking is executed ’in chunks’ and will complete
and stop as soon as we encounter one of them, but we are conservative and will
assume that all the j8 must be tested. For each surviving triple, assume that p

is a fixed point, so that c = Ek(p) = gk(f (8)
k (p)) = gk(p). Note that if fk(p) = p,

then p = hk(c), where hk represents the 48 rounds of KeeLoq using the last 48
key bits. Then an algebraic attack can be applied to suggest possible keys for
this part, and if we guess additional 16 bits of the key, it takes less than 0.1 s,
see [10]. But there is a simpler and direct method to get the same result. We use
Fact 3.4 to recover 216 possibilities for the last 48 key bits from the assumption
that p = h(c). Combined with the 16 bits pre-computed above for each triple,
we get a list of at most 232 possible full keys on 64 bits. Without ranking and
early abort (cf. Step 1B), this takes time equivalent to 232 computations of hk(·),
which is about 240 CPU clocks. When we execute our attack with Step 1B, we
only compute these keys as needed, in order of decreasing j8, and we expect to
compute only at most 216 · T (j8) of these full keys on 64 bits, before the attack
succeeds. This gives a time of about 216 · T (j8) · 4 · 48 CPU clocks.

Stage 3 - Verification. Finally, we test each of these up to 232 complete keys
on one other plaintext-ciphertext pair p′, c′. Most incorrect key guesses will be
discarded, and only 1 or 2 keys will survive, one of them being correct. With
additional few pairs we get the right key with certainty.

Without the ranking method (Stage 1B), this stage would require up to 232

full 528-round KeeLoq encryptions, which would dominate the complexity of the
whole attack. With Stage 1B, we need at most 216·T (j8) full KeeLoq encryptions.



5.4 Complexity Analysis
In the following table we compute the complexity of Stages 1, 2, 3, assuming
successively that j8 ≥ 7, then j8 = 6, j8 = 5, . . . , j8 = 1. Since the complexity
of Stage 1 greatly depends on how fast is the speed of (sustained consecutive)
RAM access compared to the speed of the CPU, we give two versions. In very
realistic “Stage 1” we assume that tr = 16 CPU clocks. In the very optimistic
“Stage 1*” we assume that tr = 1 CPU clocks, and the comparison of 16 bits
that is executed in Stage 1A in order to check whether p is likely to be a fixed
point, is executed in parallel by the same CPU.

The attack has to be executed in the order of columns in the following table.
The probabilities of each case are computed following Proposition 4.4 and Table
1. The complexities are converted to full KeeLoq computations, which means
that the unit is 211 CPU clocks.

Table 3. The complexity of each stage of our slide-determine attack

j8 ≥ 7 6 5 4 3 2 1

probability/keys 0.151 0.032 0.072 0.045 0.102 0.077 0.153
cumulated keys 0.151 0.184 0.255 0.300 0.402 0.479 0.632

T ′(j8) 25.3 27.7 210.0 212.0 213.6 214.6 214.6

Stage 1 227 − − − − − −
Stage 1* 223∗ − − − − − −
Stage 2 217.7 220.2 222.6 224.6 226.1 227.1 227.1

Stage 3 221.1 223.7 226.0 228.0 229.6 230.6 230.6

Stage 2+3 221.2 223.8 226.1 228.1 229.7 230.7 230.7

Now we will compute the complexity of the full attack.

5.5 Results
We will distinguish 3 versions of the attack.

Optimistic Version 1: In the most optimistic scenario we can think of,
assuming tr = 1 and j8 ≥ 7 which is the case for 15 % of all keys (cf. Table
1), the total complexity is dominated by Stage 1* and the whole attack requires
only 223 KeeLoq encryptions.

Restricted Realistic Version 2: In a fully realistic scenario, with tr =
16, assuming j8 ≥ 4 which happens for 30 % of all keys (cf. Table 1), the
total complexity is dominated by Stage 1, and the whole attack requires on
average 227.4 KeeLoq encryptions. This number is obtained from Table 3 and
Table 1 and we compute an approximation of the average complexity as follows:
227+0.072/0.3 ·1/2 ·226.1+0.045/0.3 ·226.1+0.045/0.3 ·1/2 ·228.1. This is because
for these 30 % of the keys, when j8 > 5, the Stages 2+3 take negligible time
compared to 227, and we require 226.1 and 228.1 steps only for a fraction of all
keys. For example only for about 0.045/0.3 of these keys with j8 ≥ 4, we need
228.1 operations, and half of this number on average for this interval.

General Version 3: In order to calculate the expected (average) complexity
of our attack (in the realistic scenario) we add the complexity of the Stage 1



that is always executed, and for Stage 2+3 we need to compute an integral of
an increasing function that is approximated by a straight line in each of the 7
intervals. This is done as follows. We add the full cost of all previously considered
valued j8, and for the corresponding fraction of keys corresponding to the current
j8, the actual number of steps in Stages 2+3 that has to be executed is on average
half of the figure given in the last row of Table 3. Let C ′2+3(j) be the figure given
in the last row, and let p′(j) be the probability from the first row, and p(j) be
the cumulative probability from the second row. The expected total complexity
of our attack is about

227 +
7∑

j=1

C ′2+3(j) ·
p′(j)/2 + 0.632− p(j)

0.632
≈ 229.6.

Therefore our combined attack with ranking (Stage 1B) runs for 63 % of keys
(cf. Proposition 4.2), the worst-case running time is 232 KeeLoq encryptions (in
which case all the figures in the last columns have to be added), and the average
running time is about 229.6 KeeLoq encryptions.

Summary of Our Slide-Determine Attack.

To summarize, for 15 % of the keys the complexity can be a low as 223

KeeLoq encryptions, but only if the memory is very fast. For 30 % of all keys
the complexity is 227 KeeLoq encryptions with realistic assumptions on the speed
of memory, and overall for all 63 % of keys for which fk has a fixed point, the
average complexity is 229.6 KeeLoq encryptions.

6 Conclusion

KeeLoq is a block cipher that is in widespread use throughout the automobile
industry and is used by millions of people every day. KeeLoq is a weak and
simple cipher, and has several vulnerabilities. Its greatest weakness is clearly the
periodic property of KeeLoq that allows many sliding attacks which are very
efficient [1, 4–6, 10, 11]. Their overall complexity does not depend on the number
of rounds of the cipher and in spite of having 528-rounds KeeLoq is insecure.

In addition, KeeLoq has a very small block size of 32 bits which makes it
feasible for an attacker to know and store more or less the whole code-book. But
when the attacker is given the whole code book of 232 plaintexts-ciphertext pairs,
KeeLoq becomes extremely weak. In [10] Courtois Bard and Wagner showed that
it can be broken in time which is faster than the time needed to compute the
code-book by successive application of the cipher. This is the Slide-Determine
attack from [10] which is also the fastest key recovery attack currently known on
KeeLoq. In this paper we have described and analysed a refined and improved
Slide-Determine attack that is faster both on average and in specific sub-cases
(cf. Table 4 below). For example, for 30 % of all keys, we can recover the key
of the full cipher with complexity equivalent to 227 KeeLoq encryptions. This
attack does not work at all for a proportion of 37 % so called strong keys [10,
11]. However the Attack B described in [11] still works.



In Table 4 we compare our results to previously published attacks on KeeLoq
[1, 4–6, 10, 11], We can observe that the fastest attacks do unfortunately require
the knowledge of the entire code-book. Then, there are attacks that require 216

known plaintexts but are slower. Finally, there is brute force attacks that are
the slowest. In practice however, since they require only 2 known plaintexts
and are actually feasible, brute force will be maybe the only attack that will
be executed in practice by hackers. Knowing which is the fastest attack on one
specific cipher, and whether one can really break into cars and how, should be
secondary questions in a scientific paper. Instead, in cryptanalysis we need to
study a variety of attacks on a variety of ciphers and in many different attack
scenarios.

Table 4. Comparison of our attacks to other attacks reported on KeeLoq.

Type of attack Data Time Memory Reference

Brute Force 2 KP 263 tiny

Slide-Algebraic 216KP 253 small Slide-Algebraic Attack 2 of [10]

Slide-Meet-in-the-Middle 216KP 246 small Preneel et al[1]

Slide-Meet-in-the-Middle 216CP 245 small Preneel et al[1]

Slide-Correlation 232KP 251 16 Gb Bogdanov[4, 5]

Slide-Cycle-Algebraic 232KP 240 18 Gb Attack A in [11],

Slide-Cycle-Correlation 232KP 240 18 Gb Attack B in [11], cf. also [5]

Two previous attacks in [10]

Slide-Determine 232KP 231 16 Gb A: for 63 % of all keys

Slide-Determine 232KP 228 16 Gb B: for 30 % of all keys

THIS PAPER:
Our three new refined attacks

Slide-Determine 232KP 230 16 Gb Average time, 63 % of keys

Slide-Determine 232KP 227 16 Gb Realistic, 30 % of keys

Slide-Determine 232KP 223 16 Gb Optimistic, 15 % of keys

Legend: The unit of time complexity here is one KeeLoq encryption.
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A About a Frequently Used Argument on Random
Permutations and Random Functions

This section expands one point that arises in Section 4. It is totally secondary in
this paper, except that it discussed the validity of Proposition 4.2 in both theory
and practice (the numerical precision we can expect for KeeLoq). We recall that:
Proposition 4.1.[cf. Section 4] Given a random function GF (2)n → GF (2)n

the probability that a given point y has i pre-images is 1
ei! , when n →∞.

Justification: Let y be fixed, the probability that f(x) = y is 1/N where N = 2n

is the size of the space. There are NN possible random functions. Each possible
subset of i out of exactly N pre-images x1, . . . , xn constitutes an independent
disjoint event the probability of which is (N − 1)N−i/NN . We multiply by

(
N
i

)

and get:
(
N
i

)
(1−1/N)N−i1/N i ≈ 1

ei! when N →∞. This is a Poisson distribution
with the average number of pre-images being λ = 1.

From this, as we already explained, it is a common practice to argue that:
Proposition 4.2.A. A random permutation GF (2)n → GF (2)n has 1 or more
fixed points with probability 1− 1/e ≈ 0.63, when n →∞
Proposition 4.2.[cf. Section 4] The same holds first 64 rounds fk of KeeLoq.

Justification and Discussion: In Section 4, to justify this result, we have assumed
that fk(x) ⊕ x is a pseudo-random function, and looked at the number of pre-
images of 0 with this function. Therefore we need Proposition 4.2.A. However
one can not prove Proposition 4.2.A. in the suggested way from Proposition
4.1. This would be incorrect. Below we explain the argument in details, why it
is incorrect, and we will propose two different ways to fix it.

A.1 Does Proposition 4.2.A. Hold for Random Permutations and
can the Result be Applied to Block Ciphers?

The Faulty Argument. Our argument is not valid as it stands for random
permutations. Let π : {0, 1}n → {0, 1}n be a random permutation. We cannot
claim that Q(x) = π(x) ⊕ x is a random function. In fact it isn’t a random
function. Let N = 2n be the size of the domain. For a random function, by a
birthday paradox, after

√
N evaluations, we would have with probability about

0.39 (cf. page 134 in [17]) the existence of at least two points x 6= x′ such that
Q(x)⊕ x = Q(x′)⊕ x′. Here this would imply π(x) = π(x′) which is impossible
for a permutation.

Thus the argument as it stands, claiming that Q(x) is a random function
is not a valid mathematical argument for random permutations. A rigourous
proof of Proposition 4.2.A. will be given in Appendix B. We will in fact show
a more general fact, see Proposition B.3. Interestingly, we can also ’repair’ our
failed proof, through a cryptographic argument about indistinguishability. More
precisely, we will show below that Proposition 4.2.A. holds with (at least) a very
good precision for random permutations. Importantly, by the same method we
will later see that this can also work for a block cipher such as KeeLoq. Quite
surprisingly it is possible to show that Proposition 4.2. holds with a sufficient
precision for a real-life cipher such as KeeLoq, if we make a cryptographic as-
sumption about fk.



A.2 How to Repair the Faulty Argument

Does Proposition 4.2.A. Give a Good Approximation of the Result for
Random Permutations? We want to show that for a random permutation the
predicted probability 1 − 1/e is a very good approximation. Roughly speaking
this can be shown as follows. We consider an adversary that can do only K
computations, where K ¿ √

N . It should be then then possible to show, by
the methods from the Luby-Rackoff theory, that the probability advantage for
distinguishing Q(x) = π(x) ⊕ x from a random function is negligible. Indeed,
for K queries to a random function, the probability that there is a collision on
x 7→ Q(x) ⊕ x is about 1− e−K2/2N , see page 134 in [17]. This probability will
be negligible as long as K ¿ √

N . So though, Q(x) = π(x)⊕ x is not a random
function, the difference cannot be observed by our adversary. Then, any non
negligible difference between he probability that π has a fixed point, and 0.63
would mean that Q(x) = π(x)⊕x can be distinguished from a random function,
which is impossible when K ¿ √

N . We need to note here that we didn’t really
give here a complete proof, just explained the main idea. Instead we will prove
Proposition 4.2.A. mathematically in Appendix B.

Is This Approximation Good for KeeLoq? In real life, we are not deal-
ing with random permutations, but with real-life objects such as KeeLoq. Can
Proposition 4.2. be shown to hold, at least with some precision, for the 64 rounds
of KeeLoq? We will show, by a straightforward black-box reduction argument,
that the difference between the observed probability and 1− 1/e cannot be ’too
large’ for KeeLoq. This is if we assume that fk is an (even very moderately)
secure block cipher and admits no very efficient distinguisher attack.

Roughly speaking the argument is as follows. Assume that Rk(x) = fk(x)⊕x
can only be distinguished from a pseudo-random function with a probability
advantage bigger than say 0.1, given at least 216 computations and 216 queries
to Rk(x). We cannot expect a much stronger assumption, because here N = 232

and the birthday paradox allows us to realize that we will never find two points
such that Rk(x)⊕x = Rk(x′)⊕x′, which would otherwise happen if Rk really was
a random function. We assume that there is no better distinguisher attack than
this attack (with a probability advantage of about 0.39, cf. page 134 in [17]). With
the same time complexity and the same number of queries to Rk(x), by using
the same rule as in Linear Cryptanalysis, we can measure the frequency of fixed
points with precision of the standard deviation that will be about 1/

√
216 = 2−8,

which is a good precision. The conclusion is that, any deviation from (1− 1/e)
bigger than a small multiple of 2−8, will be visible to the attacker and will be
detected with a high probability. It would actually give us a distinguisher attack
on fk that works with complexity being either less then 216 or for a probability
advantage bigger than 0.1, which we assumed impossible.



B Appendix: Fixed Points and Small Cycles in Random
Permutations

B.1 On Points Lying in Small Cycles for a Random Permutation

We denote the set of all positive integers by IN+. In this section we study general
permutations π : {0, . . . , N − 1} → {0, . . . , N − 1} with N elements, for any
N ∈ IN+, i.e. N does not have to be of the form 2n (in KeeLoq N = 232).

Random permutations are frequently studied. Nevertheless, we need to be
careful, because a number of facts about random permutations are counter-
intuitive, see for example Proposition B.5 below. Other intuitively obvious facts
are not all obvious to prove rigourously, as illustrated in the previous section
when trying to prove that the Proposition 4.2 holds for random permutations.
For these reasons, in this paper we will be ’marching on the shoulders of giants’
and will use some advanced tools, in order to be able to compute the exact
answers to all our questions directly, without fear of making a mistake, and with
a truly remarkable numerical precision. We will be using methods of the modern
analytic combinatorics. It is a highly structured and very elegant theory, that
stems from the method of generating series attributed to Laplace, and is greatly
developed in the recent monograph book by Flajolet and Sedgewick [12].
Definition B.1 (EGF). If Ai ∈ IN is the number of certain combinatorial
objects of size i, the EGF (exponential generating function) of this object is
defined as a formal (infinite) series:

a(z) =
∑

i≥0

Ai

i!
zn.

The probability that a random permutation belongs to our class is pA =
limi→∞ Ai

i! . We assume that the combinatorial object is such that there is no
sudden jumps, discontinuities, or particular cases, and this limit exists. Then
the question is how to compute this limit.
Proposition B.1. With the above notations, we consider the analytical expres-
sion of the function h(z) = a(z)(1− z) as a function IR → IR. Then pA = h(1).
Justification: By definition of a(z), this function has the following Taylor series
expansion stopped at order k:

ak(z) =
A0

0!
+

∑

1≤i≤k

(
An

n!
− An−1

(n− 1)!
)zi

and the series a(z) is well defined and converges when z = 1 because for every
k we have: ak(1) = An/n! and we assumed that An/n! converges.

All non-trivial combinatorial results in this paper are direct consequences of
one single fact that comes from the representation of permutations as sets of
cycles, and that appears explicitly as Proposition II.4. on page 132 in [12].
Proposition B.2. Let A ⊂ IN+ be an arbitrary subset of cycle lengths, and let
B ⊂ IN+ be an arbitrary subset of cycle sizes. The class P(A,B) of permutations
with cycle lengths in A and with cycle number that belongs to B has EGF as
follows:



g(z) = P(A,B)(z) = β(α(z)), where α(x) =
∑

i∈A

xi

i
and β(x) =

∑

i∈B

xi

i!

This result is exploited extensively in a paper by Marko R. Riedel dedicated
to random permutation statistics, see [16]. One direct consequence of it is the
following fact:
Corollary B.2.1. The EGF of all permutations that do not contain cycles that
belong to A is equal to

g(z) = exp(f(z))

where f(z) is obtained by dropping all the terms in zi for all the i ∈ A, from

the formal series ln( 1
1−z )

def
=

∑
i≥1

zi

i , and where exp(x) can be defined as an

operation on arbitrary formal series defined by exp(x) =
∑

i≥0
xi

i! .
Now we are ready to show, in a surprisingly direct and easy way, our gener-

alised version of our Proposition 4.2.
Proposition B.3. Let π be a random permutation of size N . The probability
that π has no cycles of length k is e−

1
k when N →∞.

Justification: Following Corollary B.2.1, the EGF of permutations with no cycles
of length k is:

g(z) = exp

(
log(

1
1− z

)− zk

k

)
=

1
1− z

· exp

(
−zk

k

)

The following Proposition B.1, we have pA = h(1) with h(z) = g(z)(1 − z)
and therefore pA = h(1) = e−

1
k .

On precision of these estimations: This result means that pA → e−
1
k when

N → ∞. What about when N = 232? We can answer this question easily by
observing that the Taylor expansion of the function g(z) gives all the exact
values of An/n!. For example when k = 4 we computed the Taylor expansion of
g(z) at order 201, where each coefficient is a computed as a fraction of two large
integers. This takes less than 1 second with Maple computer algebra software.
The results are surprisingly precise: the difference between the A200/200! and
the limit is less than 2−321. So the convergence is very fast and even for very
small permutations (on 200 elements) our result is extremely accurate.
Proposition B.4. The probability that π has no cycles of length i ∈ A is:

pA =
∏

i∈A
e−

1
i = e

−
∑

i∈A
1
i when N →∞

Justification: The proof is the same as for Proposition B.3. The EGF is equal
to:

g(z) =
1

1− z
·
∏

i∈A
exp

(
−zi

i

)

Remark. This shows that for two fixed integers, i 6= j the events that π has no
cycle of length i and j respectively, are independent when N is large, which is



what we expect because these events concern (on average) a very small number
of points as compared to N . Moreover, when N is not large compared to the
numbers in A, these events are not be independent, but we can still compute the
exact probability for any N by taking the appropriate term in Taylor expansion
of g(z), and see how precise is our approximation.

Another result that can also be obtained as a direct consequence of Corollary
B.2.1, is interesting mainly because it is quite counter-intuitive:
Proposition B.5. If we fix x and choose a random permutation π on n ele-
ments, the probability that x lives in cycle of length i is exactly 1/n, for all
1 ≤ i ≤ n, i.e. this probability does NOT depend on the value of i.
Justification: This result can very easily be shown by extending g(z) to a bivari-
ate generating function and formal derivation w.r.t. one variable, see [16].

B.2 On Cycles in Iterated Permutations
Proposition B.6. A point x is a fixed point for πk if and only if it lives in a
cycle of length i for π for some positive integer i|k.
Justification: Let i be the cycle size for π of a given fixed point x of πk. So
πi(x) = x and it is the smallest such integer i > 0, i.e. πj(x) 6= x for any
0 < j ≤ i−1. Then for any k > i, πk(x) = πk mod i(x). Now if x is a fixed point
for πk, then x = πk(x) = πk mod i(x) and this can only be x when k mod i = 0.
Conversely, any point in a cycle of positive length i|k gives a fixed point for πk.
Proposition B.7. Let k ∈ IN+. The expected number of fixed points of πk is
exactly τ(k) where τ(k) is the number of all positive divisors of k.
Justification: A random permutation π has 1 fixed point on average. Then in
addition to possible “natural” fixed points (1 on average) the πk will also “in-
herit” all fixed points of πi, i|k that will be with high probability all distinct
fixed points. A rigourous proof goes as follows. Following Proposition B.6, we
need to count all points that live in a cycle of length ∈ A for π itself. We define
an indicator variable Ix as equal to 1 if x lives in a cycle of length ∈ A, and 0
otherwise. Then following Proposition B.5, Ix = 1 with probability |A|/n and
by summation over all possible values of x we get that the expected number of
x living in such a cycle is exactly τ(k) = |A|.
Corollary B.7.1. The expected number of fixed points for the 512 rounds f8

k

of KeeLoq is exactly τ(8) = 4.

Proposition B.8. Let π be a random permutation and k > 0. The probability
that πk has no fixed points is:

e
−

∑
i|k

1
i when N →∞

Justification: We combine Proposition B.4 and Proposition B.6.
Proposition B.9. Let π be a random permutation and j, k ∈ IN+. The proba-
bility that πk has exactly j fixed points is:

e
−

∑
i|k

1
i · S(j) when N →∞ where S(j) =

[
tj

]
exp


∑

i|k

ti

i






Justification: Let A = {i ∈ IN+ such that i|k}. Any permutation can be split in
a unique way as follows: we have one permutation πA that has only cycles of
type i ∈ A, and another permutation πAc that has no cycles of length i ∈ A.
This, following the terminology of [12] can be seen as a “labelled product” of
two classes of permutations. Following Section II.2. in [12]), the corresponding
EGF are simply multiplied. We need to compute them first.

Following Proposition B.6 the number of fixed points for πk is exactly the
size of πA. which must be equal to exactly j for all the permutations in the set
we consider here. We compute the EGF of permutations πA of size exactly j
and that have only cycles of size i ∈ A. This EGF is simply obtained by taking
the part of degree exactly j in the appropriate EGF written directly following
Proposition B.2 as follows:

gA,j(t) = zj · [tj] exp


∑

i|k

ti

i




Finally, we multiply the result by the EGF from Proposition B.4:

g(z) =
1

1− z
· exp

(
−

∑

i∈A

zi

i

)
· zj · [tj] exp


∑

i|k

ti

i




It remains to apply the Proposition B.1 and we get the result.
Finally we will prove the following result, already announced in Section 3:

Proposition 4.4 Let π be a random permutation and j, k ∈ IN+. The proba-
bility that πk has exactly j fixed points and π has at least 1 fixed point is:

e
−

∑
i|k

1
i · S′(j) when N →∞

where S′(j) =
[
tj

]
exp

(
∑
i|k

ti

i

)
−[

tj
]
exp


∑

i|k
i 6=0

ti

i




Justification: As in the previous proposition, our permutations can be con-
structed as a “labelled product” of permutations that have only cycles of type
i ∈ A and at least 1 fixed point, and permutations with no cycles of length
i ∈ A. The first EGF is then derived exactly as in the previous proposition
except that, from gA,j(t) we have to remove the part of degree exactly j in the
EGF of all permutations that have no fixed points, and therefore have cycle
lengths in A− {1}. Thus we replace gA,j(t) by:

zj · [tj] exp


∑

i|k

ti

i


− zj · [tj] exp




∑
i|k
i 6=0

ti

i




Corollary B.9.1. In Table 1 on page 6 we computed the numerical values for
k = 8 needed in this paper.


