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Abstract. This paper presents a method for automatic segmentation
of some short association fiber bundles from massive dMRI tractography
datasets. The method is based on a multi-subject bundle atlas derived
from a two-level intra-subject and inter-subject clustering strategy. Each
atlas bundle corresponds to one or more inter-subject clusters, presenting
similar shapes. An atlas bundle is represented by the multi-subject list of
the centroids of all intra-subject clusters in order to get a good sampling
of the shape and localization variability. An atlas of 47 bundles is inferred
from a first database of 12 brains, and used to segment the same bundles
in a second database of 10 brains.

1 Introduction

Diffusion MRI allows noninvasive study of brain white matter (WM) structure
through the measurement of the restricted diffusion of water. The fiber orienta-
tion can be inferred from this data and fiber bundles can be reconstructed using
tractography algorithms [I]. Until now, several WM bundle atlases have been
proposed [2J3] for the bundles belonging to deep white matter (DWM). However,
short fibers of superficial white matter (SWM) have been barely considered,
probably because these are more variable across sujects. Furthermore, the par-
tial volume effect in subcortical regions prevents accurate delineation of small
fiber bundles. The continuous improvement of DW-MRI acquisition schemes,
diffusion models and tractography algorithms leads to increasingly complex and
large tractography datasets, with known DWM tracts composed by various fiber
fascicles of different shapes and lengths, and a big amount of short SWM associ-
ation bundles. This improvement allows deeper analyses of WM bundles, but, at
the same time, increases the requirements of tractography datasets analysis and
segmentation techniques. The segmentation of human brain WM fiber bundles
is therefore a complex and not completely solved problem. In particular, the car-
tography of fiber bundles of SWM is still an unachieved task. In [4], the authors
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performed a group analysis to study SWM using a voxel-based approach rely-
ing on linear brain normalization. They could identify only four U-fiber bundles
because of the blurring occurring with such a normalization. Most recently, this
method was improved using non-linear normalization, and was able to detect 29
short association bundles in 20 subjects [5]. These results are very interesting
but as a ROI (region of interest) based approach was used, there is no guarantee
that the fibers present the same shape across subjects.

The usual strategies proposed for the segmentation of fiber bundles follow
two complementary ideas. The first approach is based on ROIs used to select
or exclude tracts [3I5]. The second strategy is based on tract clustering using
pairwise similarity measures [6]. This last approach requires less interaction than
manual approaches and integrates fiber shape and position information in the
analysis, which is not the case of most ROI-based segmentation approaches. It
can also embed a priori knowledge represented by a bundle template [7]. However,
the clustering-based methods commonly present a limitation on the number
of fibers that can be analyzed. In spite of two recent works that describe the
analysis of huge datasets (120,000 [§] and 480,000 fibers [9]), the segmentation
of huge tractography datasets, presenting more than one million tracts, is still a
challenge.

Hence, this paper presents a method for the segmentation of SWM fiber bun-
dles from massive tractography datasets using a priori information embedded
in a multi-subject (MS) fiber bundle atlas. The method builds upon a multires-
olution intra-subject clustering that can compress millions of tracts into a few
thousand consistent bundles, described in [I0]. A second level of clustering is
performed across subjects in order to infer a list of generic bundles with consis-
tent shape and localization in a normalized space [I1]. The most reproducible
inter-subject (IS) clusters computed from a database of 12 brains were manually
labeled to build the atlas. This MS strategy, embedding the shape and local-
ization variability, has been shown recently to be more efficient than the usual
single template approach for brain structure recognition because of weaknesses
of the spatial normalization paradigm [I2]. New tractography datasets are first
compressed with the same intra-subject clustering. The resulting clusters are
then labeled using pairwise distances to the centroids representing the MS atlas
bundles. To the best of our knowledge, this is the first SWM clustering-based
segmentation method.

2 Material and Method

2.1 Diffusion and Tractography Datasets

The atlas was constructed from 12 subjects of a High Angular Resolution Dif-
fusion Imaging (HARDI) adult database (DB1). This database provides high
quality T1-weighted images and diffusion-weighted (DW) data acquired with a
GE Healthcare Signa 1.5T Excite scanner. The diffusion data presents a high
angular resolution based on 200 directions and a b-value of 3000s/mm? (voxel
size of 1.875x1.875x 2 mm).
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Ten subjects of another adult HARDI database (DB2), were used to test the
segmentation method. This database provides high quality T1-weighted images
and DW data acquired with a Siemens 3.0 T Tim Trio system. The DW data is
based on 41 directions and a b-value of 1000s/mm? (voxel size of 2x2x2mm).

DW data were acquired using a twice refocusing spin echo technique com-
pensating Eddy currents to the first order. Geometrical distortions linked to
susceptibility artifacts were corrected using a phase map acquisition. T1 and
DW data were automatically realigned using a rigid 3D transform. The diffusion
Orientation Distribution Function (ODF) was reconstructed in each voxel. For
subjects from DB1, a spherical deconvolution (SD) of the fiber ODF was used.
It is a SD transform reconstructed from g-ball imaging with a constrained reg-
ularization [13], using a maximum spherical harmonic order SH,,,, = 8 and a
Laplace-Beltrami regularization factor Ay g = 0.006. For subjects from DB2, an
analytical solution of the g-ball model was determined [14], using a SHyqr = 6
and a App = 0.006. Whole-brain tractography was performed using an improved
tractography propagation mask (using T1 data rather than FA) and a regular-
ized deterministic tractography algorithm. Tractography was initiated from two
seeds in each voxel of the mask (with T1 resolution), in both retrograde and
anterograde directions, according to the maximal direction of the underlying
ODF. Tracking parameters included a maximum curvature angle of 30° and a
minimum and maximum fiber length of 20 mm and 250 mm, respectively, leading
to a set of about 1.5 millions tracts per subject.

2.2 HARDI Multi-subject Fiber Bundle Atlas

The two-level clustering was performed using the method described in [I1] ap-
plied on database DB1, with some improvements. First, intra-subject clustering
[10] was applied to each dataset. This intra-subject clustering reduces the
tractography dataset information from more than one million of tracts to a few
thousand fiber bundles. The obtained bundles are thin and regular fiber fascicles
composed by fibers presenting similar length and shape. In addition, during the
analysis most of noise fibers are discarded, leading to a cleaner fiber dataset.
Due to its regular shape, each resulting fiber bundle can be represented by a
single fiber, called a bundle centroid. This compressed representation of a trac-
tography dataset allows the application of further processing steps that could
not be applied to the whole fiber dataset.

The second clustering level aimed at matching the putative bundles produced
by the previous level across the population of subjects. In this inter-subject
clustering, fiber centroids from all the subjects were aligned by an affine trans-
formation to the Talairach space (TS), estimated from the T1-weighted image.
Then, the centroids were clustered using pairwise distance measures [15] in or-
der to match bundles with similar shapes and positions in TS. In order to get
population representative clusters, only clusters composed by centroids from at
least half of the subjects were selected. The final addition of closest centroids
described in [I1] was not performed with the aim of keeping very tight clusters.
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Fig.1. Cortical surface anatomical regions used to identify the atlas short
association bundles. Images where adapted from http://www.bartleby.com/107/ and
http://www.netterimages.com,/.

The inter-subject clusters belonging to SWM were manually labeled by an ex-
pert using gyral parcellation of cortical surfaces, in order to give an anatomical
name to each reproducible bundle (see Fig.[Il). Each atlas bundle is then repre-
sented by the complete set of individual centroids belonging to the underlying
intra-subject clusters. A last visual inspection led to discard a few artefactual
centroids clearly including spurious parts like loops. The resulting multi-subject
representation provides a good sampling of the inter-subject variability of the
bundle trajectory after affine normalization. The atlas inference was done for
the bundles of the left hemisphere (LH), with a length between 35 and 110 mm.
The bundles of the right hemisphere (RH) were obtained using the symmetric
of those of the LH with respect to Talairach inter-hemispheric plane. The goal
is to get a symmetric atlas for the validation described in this paper. Ongoing
work aims at performing the same inference for the RH in order to remove any
bias. The current atlas includes a total of 47 SWM bundles; see details in Fig. 2l

2.3 WM Tracts Segmentation

The segmentation of a new tractography dataset begins with a compression into
a few thousand bundles equivalent to the compression used during the atlas
inference, described in [10]. Then, the resulting bundles are labeled using a su-
pervised classification based on the fiber bundle atlas. The bundle centroids are
normalized to the TS using an affine transformation. Then pairwise distances
are computed between each centroid of the new subject and all the centroids of
the atlas. The distance measure used is the maximum of the Euclidean distances
between corresponding points (dM), defined for two fibers A and B, described
by N, points, as

dar(A, B) = min (max | a; — by ||, max | a; — by, ) (1)

where a; and b; are the position of the points of fibers A and B respectively, for
i = 0..N,—1. This distance is a good representation of the similarity between two
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Fig.2. Short association bundle atlas (47 bundles per hemisphere). The first
row shows all the atlas bundles. The remaining rows show each bundle in a separated
figure. Bundle names were assigned in function of the regions that the bundles connect,
following the names illustrated in Fig. [[l In some cases, an additional spatial specifi-
cation was used: fr (frontal), mid (middle), bek (back), sup (superior), inf (inferior).
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Fig.3. Automatic fiber bundle segmentation results. Only left hemisphere
bundles are shown. Colors are the same as for the bundle atlas (Fig. Bl). The bundles
were divided into three groups, in function of their reproducibility. Atlas bundles are
shown in the upper-left corner of each image. A: Fiber bundles found in all the subjects
(21 bundles). B: Fiber bundles found in 9 of the 10 subjects (12 bundles). C: Fiber
bundles found in 5 to 8 subjects (14 bundles).
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fibers, as it takes into account the fiber positions and shapes. It is more restrictive
than distances based on the closest points [I5J6]. For the calculation, the atlas
fibers and the individual centroids are resampled using 21 equally distributed
points. The whole set of pairwise distances is obtained in a few minutes.

Each individual centroid is labeled by the closest atlas bundle, provided that
the distance to this bundle, namely the smallest pairwise distance to the cen-
troids representing this bundle, is lower than a threshold. This threshold was
empirically adapted to each atlas bundle (between 8-14 mm) taking into account
the bundle mean fiber length and the proximity to other atlas bundles, leading
to higher thresholds for long and isolated bundles. A leave-one-out strategy for
the determination of the thresholds could be implemented in the future.

3 Results

A general problem for evaluating WM bundle segmentation is the lack of gold
standard. This is even more complex for SWM, which cartography is still largely
unknown and to the best of our knowledge, no atlas describing the shape of these
bundles has been proposed. We evaluate our approach using a second database
(DB2). The results for the ten subjects are presented in Fig. Bl All the bundles
were found in at least half of the subjects, which is consistent with our atlas
construction requirements. Twenty-one bundles were found in all the subjects.
Twelve bundles were found in nine subjects and fourteen bundles were found in
between five to eight subjects. The segmentations were validated by the expert
who defined the atlas. To get an insight of the quality of the results, the bundles
were visually compared with those obtained using larger distance thresholds.
It was found that the chosen thresholds were close to optimal for most of the
bundles. Long and isolated bundles were in general well segmented, when these
existed, but some classifications errors were found in short bundles localized very
close to other atlas bundles.

4 Discussion and Conclusion

The proposed method shows that it is possible to segment the most reproducible
SWM bundles using a clustering-based approach in a population of subjects.
The use of a multi-subject representation of bundles and shape information
could lead to cleaner bundles than when using a ROI-based strategy, which
may improve the sensitivity of morphometric studies. Furthermore, this new
atlas and the possibility to manipulate massive tractography datasets allow finer
decompositions of the bundles, for instance, we proposed two subdivisions of the
bundle connecting the pre- and post-central gyri. Our atlas is bound to be refined
with more of such subdivisions in the near future.

However, the proposed method is far from be perfect. This is due in part to the
high inter-subject variability of short association SWM bundles and the current
limitations of dMRI techniques. Our results depend strongly on the quality of the
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tractography results: bundles that are not tracked in individuals can not be seg-
mented, a problem that particularly affects SWM due to the partial volume effect.

But an important improvement will be obtained by the use of non-linear
normalization [I6]. First, the atlas construction will be performed using this
kind of normalization, leading to a better multi-subject representation of the
variability of the atlas bundles. Furthermore, the recognition of the bundles
should be also improved if non-linear normalization is used between the subjects
and the atlas, reducing the classification errors produced in bundles presenting
very similar shapes and close positions.
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