Skip to main content

On-Line Chemistry Within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model

  • Chapter
  • First Online:
Integrated Systems of Meso-Meteorological and Chemical Transport Models

Abstract

In this chapter we describe the Weather Research and Forecasting (WRF) model as it is coupled to online chemistry. This model now includes many atmospheric chemistry routines covering biogenic emissions, deposition, photolysis, chemical mechanisms. In addition, several atmospheric aerosol routines and a biomass burning model were added to WRF. The chemistry and aerosol routines are solved in an “online” fashion with the meteorology forecast model. In other words, the interaction and transport of meteorological, chemical, and aerosol species are calculated using the same physical parameterizations with no need to interpolate in time and/or space. Interactions include the aerosol direct and indirect effect. This chapter gives an overview of some of the most important features of this modeling system. Some evaluation results are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann IJ, Hass H, Memmesheimer M, Ebel A, Binkowski FS, Shankar U (1998) Modal aerosol dynamics model for Europe: development and first applications. Atmos Environ 32(17):2981–2999

    Article  Google Scholar 

  • Binkowski FS, Shankar U (1995) The regional particulate matter model, 1. mode desription and preliminary results. J Geophys Res 100:26191–26209

    Article  Google Scholar 

  • Chang JS, Binkowski FS, Seaman NL, McHenry JN, Samson PJ, Stockwell WR, Walcek CJ, Madronich S, Middleton PB, Pleim JE, Lansford HH (1989) The regional acid deposition model and engineering model. State-of-Science/Technology, Report 4, National Acid Precipitation Assessment Program, Washington, D.C

    Google Scholar 

  • Damian V, Sandu A, Damian M, Potra F, Carmichael GR (2002) The kinetic preprocessor KPP – a software environment for solving chemical kinetics. Comput Chem Eng 26:1567–1579

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Easter RC, Ghan SJ, Zhang Y, Saylor RD, Chapman EG, Laulainen NS, Abdul-Razzak H, Leung LR, Bian X, Zaveri RA (2004) MIRAGE: model description and evaluation of aerosols and trace gases. J Geophys Res 109:doi: 10.1029/2004JD004571

  • Erisman JW, van Pul A, Wyers P (1994) Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos Environ 28:2595–2607

    Article  Google Scholar 

  • Fahey KM, Pandis SN (2001) Optimizing model performance: variable size resolution in cloud chemistry modelling. Atmos Environ 35:4471–4478

    Article  Google Scholar 

  • Fast JD, WI Gustafson, RC Easter, RA Zaveri, JC Barnard, EG Chapman, GA Grell, SE Peckham (2006) Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J Geophys Res-Atmos. J Geophys Res 111:D21305. doi:10.1029/2005JD006721

    Google Scholar 

  • Freitas SR, Longo KM, Andreae MO (2006) Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophys Res Lett 33:L17808, doi:10.1029/2006GL026608

    Google Scholar 

  • Freitas SR, Longo KM, Chatfield R, Latham D, Silva Dias MAF, Andreae MO, Prins E, Santos JC, Gielow R, Carvalho JA Jr (2007) Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos Chem Phys 7:3385–3398

    Google Scholar 

  • Geiger H, Barnes I, Benter T, Spitteler M (2003) The tropospheric degradation of isoprene: an updated module for the Regional Atmospheric Chemistry Mechanism. Atmos Environ 37:1503–1519

    Article  Google Scholar 

  • Ghan S, Laulainen N, Easter R, Wagener R, Nemesure S, Chapman E, Zhang Y (2001) Evaluation of aerosol direct radiative forcing in MIRAGE. J Geophys Res 106(D6):5295–5316

    Article  Google Scholar 

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29(14):doi: 10.1029/2002GL015311

    Google Scholar 

  • Grell GA, Peckham SE, McKeen S, Schmitz R, Frost G, Skamarock WC, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6975

    Article  Google Scholar 

  • Gustafson WI Jr, Chapman EG, Ghan SJ, Easter RC, Fast JD (2007) Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004. Geophys Res Lett 34, L19809, doi:10.1029/2007GL030021

    Google Scholar 

  • Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339

    Article  Google Scholar 

  • Jacobson MZ (1997) Development and application of a new air pollution modelling system – II. Aerosol phase simulations. Atmos Environ 31:587–608

    Article  Google Scholar 

  • Jones A, Roberts DL, Slingo A (1994) A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature 370:450–453

    Google Scholar 

  • Kim SW, Heckel A, McKeen SA, Frost GJ, Hsie EY, Trainer MK, Richter A, Burrows JP, Peckham SE, Grell GA (2006) Satellite-observed US power plant NOx emission reductions and their impact on air quality. Geophys Res Lett 33(L22812):5

    Google Scholar 

  • Kulmala M, Laaksonen A, Pirjola L (1998) Parametrization for sulphuric acid/water nucleation rates. J Geophys Res 103:8301–8307

    Article  Google Scholar 

  • Lin S-J, Rood RB (1996) Multidimensional flux-form semi-Lagrangian transport schemes. Mon Weather Rev 124:2046–2070

    Article  Google Scholar 

  • Madronich S (1987) Photodissociation in the atmosphere. 1: Actinic flux and the effects of ground reflections and clouds. J Geophys Res 92:9740–9752

    Article  Google Scholar 

  • McKeen SA, J Wilczak, GA Grell, I Djalalova, S Peckham, E-Y Hsie, W Gong, V Bouchet, S Menard, R Moffet, J McHenry, J McQueen, Y Tang, GR Carmichael, M Pagowski, A Chan, T Dye, G Frost, P Lee, R Mathur (2005) Assessment of an ensemble of seven real-time ozone forecasts over Eastern North America during the summer of 2004. J Geophys Res 110, D21307, doi: 10.1029/2005JD005858

    Google Scholar 

  • McKeen S, Chung SH, Wilczak J, Grell G, Djalalova I, Peckham S, Gong W, Bouchet V, Moffet R, Tang Y, Carmichael GR, Mathur R, Yu S (2006) The evaluation of several 21 PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field 22 study. J Geophys Res 112, D10S20, doi: 2006JD007608

  • Mellor GL, Yamada T (1982) Development of a turbulent closure model for geophysical fluid problems. Reviews of Geophysics and Spacephysics 20:851–875

    Google Scholar 

  • Middleton P, Stockwell WR, Carter WPL (1990) Aggregation and analysis of volatile organic compound emissions for regional modelling. Atmos Environ 24:1107–1133

    Google Scholar 

  • Odum JR, Hoffmann T, Bowman F, Collins D, Flagan RC, Seinfeld JH (1996) Gas/particle partitioning and secondary organic aerosol yields. Environmental Science Technology 30:2580–2585

    Google Scholar 

  • Pagowski M, Grell GA (2006) Ensemble-based ozone forecasts: skill and economic value. J Geophys Res-Atmos 111, D23S30, doi: 10.1029/2006JD007124

  • Pagowski M, Grell GA, Devenyi D, Peckham SE, McKeen SA, Gong W, Delle Monache L, McHenry JN, McQueen J, Lee P (2006) Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts. Atmos Environ 40:3240–3250

    Article  Google Scholar 

  • Sandu A, Sander R (2006) Technical note: Simulating chemical systems in fortran90 and matlab with the kinetic preprocessor KPP-2.1. Atmos Chem Phys 6:187–195

    Article  Google Scholar 

  • Sandu A, Daescu D, Carmichael GR (2003) Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: I – theory and software tools. Atmos Environ 37:5083–5096

    Article  Google Scholar 

  • Saxena P, Hudischewskyj AB, Seigneur C, Seinfeld JH (1986) A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols. Atmos Environ 20:1471–1483

    Article  Google Scholar 

  • Schell B, Ackermann IJ, Hass H, Binkowski FS, Ebel A (2001) Modelling the formation of secondary organic aerosol within a comprehensive air quality model system. J Geophys Res 106:28275–28293

    Article  Google Scholar 

  • Skamarock WC, JB Klemp, J Dudhia, DO Gill, DM Barker, W Wang, JG Powers (2005) A description of the advanced research wrf version 2, Tech. Rep. 21 NCAR/TN-468+STR, NCAR

    Google Scholar 

  • Slingo A (1989) A GCM parametrization for the shortwave radiative properties of water clouds. J Atmos Sci 46:1419–1427

    Article  Google Scholar 

  • Stockwell WR, Middleton P, Chang JS (1990) The second-generation regional acid deposition model chemical mechanism for regional atmospheric chemistry modelling. J Geophys Res 95:16343–16367

    Article  Google Scholar 

  • Tzivion S, Feingold G, Levin Z (1989) The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J Atmos Sci 46:3312–3327

    Google Scholar 

  • Wesely ML (1989) Parametrization of surface resistance to gaseous dry deposition in regional numerical models. Atmos Environ 16:1293–1304

    Google Scholar 

  • Whitby ER, McMurry PH, Shankar U, Binkowski FS (1991) Modal aerosol dynamics modelling, Rep. 600/3-91/020, Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC. (Available as NTIS PB91-1617291AS from National Technical Information Service, Springfield, VA)

    Google Scholar 

  • Wicker LJ, Skamarock WC (2002) Time-splitting methods for elastic models using forward time schemes. Mon Weather Rev 130(9):2088–2097

    Article  Google Scholar 

  • Wilczak J, McKeen S, Djalalova I, Grell G, Peckham S, Gong W, Bouchet V, Moffet R, McHenry J, McQueen J, Lee P, Tang Y, Carmichael GR (2006) Bias-corrected ensemble and probabilistic forecasts of surface ozone over eastern North America during the summer of 2004. J Geophys Res-Atmos 111:D23S28. doi:10.1029/2006JD007598

    Google Scholar 

  • Wild O, Zhu X, Prather MJ (2000) Fast-J: Accurate simulation of in-and below-cloud 12 photolysis in tropospheric chemical models. J Atmos Chem 37(3):245–282. doi:10.1023/A:1006415919030

    Article  Google Scholar 

  • Zaveri RA, Peters LK (1999) A new lumped structure photochemical mechanism for 15 large-scale applications. J Geophys Res 104(D23):30387–30415

    Article  Google Scholar 

  • Zaveri RA, Easter RC, Peters LK (2005a) A computationally efficient multicomponent equilibrium solver for aerosols (MESA). J Geophys Res 110:D24203, doi: 10.1029/2004JD005618

    Google Scholar 

  • Zaveri RA, Easter RC, Wexler AS (2005b) A new method for multicomponent activity 20 coefficients of electrolytes in aqueous atmospheric particles. J Geophys Res 110(21) D02201, doi: 10.1029/2004JD004681

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Grell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Grell, G. et al. (2010). On-Line Chemistry Within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model. In: Baklanov, A., Alexander, M., Sokhi, R. (eds) Integrated Systems of Meso-Meteorological and Chemical Transport Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13980-2_3

Download citation

Publish with us

Policies and ethics