Skip to main content

The IMAP Hybrid Method for Learning Gaussian Bayes Nets

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6085))

Included in the following conference series:

Abstract

This paper presents the I-map hybrid algorithm for selecting, given a data sample, a linear Gaussian model whose structure is a directed graph. The algorithm performs a local search for a model that meets the following criteria: (1) The Markov blankets in the model should be consistent with dependency information from statistical tests. (2) Minimize the number of edges subject to the first constraint. (3) Maximize a given score function subject to the first two constraints. Our local search is based on Graph Equivalence Search (GES); we also apply the recently developed SIN statistical testing strategy to help avoid local minima. Simulation studies with GES search and the BIC score provide evidence that for nets with 10 or more variables, the hybrid method selects simpler graphs whose structure is closer to the target graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beinlich, I., Suermondt, H., Chavez, R., Cooper, G.: The ALARM monitoring system. In: AIME 1989, pp. 247–256 (1989)

    Google Scholar 

  2. Benjamini, Y., Hochberg, Y.: Controllling the false discovery rate—a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57(1), 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks with hidden variables. Machine Learning 29 (1997)

    Google Scholar 

  4. Bouckaert, R.R.: Bayesian belief networks: from construction to inference. PhD thesis, Universiteit Utrecht (1995)

    Google Scholar 

  5. Chickering, D.: Optimal structure identification with greedy search. JMLR 3, 507–554 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. The Tetrad project: Causal models and statistical data (2008), http://www.phil.cmu.edu/projects/tetrad/

  7. Cooper, G.: An overview of the representation and discovery of causal relationships using Bayesian networks. In: Glymour, C., Cooper, G. (eds.) Computation, Causation, and Discovery, pp. 4–62. MIT, Cambridge (1999)

    Google Scholar 

  8. de Campos, L.: A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. JMLR, 2149–2187 (2006)

    Google Scholar 

  9. Drton, Perlman: A SINful approach to Bayesian graphical model selection. Journal of Statistical Planning and Inference 138, 1179–1200 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Edwards, D.: Introduction to Graphical Modelling. Springer, New York (2000)

    MATH  Google Scholar 

  11. Friedman, N., Pe’er, D., Nachman, I.: Learning Bayesian network structure from massive datasets. In: UAI, pp. 206–215 (1999)

    Google Scholar 

  12. Hay, M., Fast, A., Jensen, D.: Understanding the effects of search constraints on structure learning. Technical Report 07-21, U Mass. Amherst CS (April)

    Google Scholar 

  13. Heckerman, D.: A tutorial on learning with Bayesian networks. In: NATO ASI on Learning in graphical models, pp. 301–354 (1998)

    Google Scholar 

  14. Klein, R.: Principles and practice of structural equation modeling. Guilford, New York (1998)

    Google Scholar 

  15. Margaritis, D., Thrun, S.: Bayes. net. induction via local neighbor. In: NIPS, pp. 505–511 (2000)

    Google Scholar 

  16. Meek, C.: Graphical Models: Selecting causal and statistical models. PhD thesis, CMU (1997)

    Google Scholar 

  17. Neapolitan, R.E.: Learning Bayesian Networks. Pearson Education, London (2004)

    Google Scholar 

  18. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  19. Schmidt, M., Niculescu-Mizil, A., Murphy, K.: Learning graphical model structure using L1-regularization path. In: AAAI (2007)

    Google Scholar 

  20. Schulte, O., Frigo, G., Greiner, R., Khosravi, H.: The IMAP hybrid method for learning Gaussian Bayes nets: Full version, ftp://ftp.fas.sfu.ca/pub/cs/oschulte/imap/imap-linear.pdf

  21. Schulte, O., Frigo, G., Greiner, R., Khosravi, H.: A new hybrid method for Bayesian network learning with dependency constraints. In: Proceedings IEEE CIDM Symposium, pp. 53–60 (2009)

    Google Scholar 

  22. Schulte, O., Luo, W., Greiner, R.: Mind change optimal learning of bayes net structure. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol. 4539, pp. 187–202. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)

    Google Scholar 

  24. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing bayesian network structure learning algorithm. Machine Learning 65(1), 31–78 (2006)

    Article  Google Scholar 

  25. van Allen, T., Greiner, R.: Model selection criteria for learning belief nets: An empirical comparison. In: ICML, pp. 1047–1054 (2000)

    Google Scholar 

  26. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulte, O., Frigo, G., Greiner, R., Khosravi, H. (2010). The IMAP Hybrid Method for Learning Gaussian Bayes Nets. In: Farzindar, A., Kešelj, V. (eds) Advances in Artificial Intelligence. Canadian AI 2010. Lecture Notes in Computer Science(), vol 6085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13059-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13059-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13058-8

  • Online ISBN: 978-3-642-13059-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics