
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 836–845, 2009.
© Springer-Verlag Berlin Heidelberg 2009

People-Oriented Programming: From Agent-Oriented
Analysis to the Design of Interactive Systems

Steve Goschnick

Department of Information Systems
University of Melbourne, VIC 3010, Australia

stevenbg@unimelb.edu.au

Abstract. Where the Object-Oriented paradigm set about abstracting objects,
Agent-Oriented (AO) theory draws on Psychology to abstract mentalist notions
like: beliefs, perceptions, goals, and intentions. As such, the associated Agent-
Oriented analysis can be used quite successfully to design interactive systems
for people, delivering applications that are heavily individual-oriented. This re-
versal of the AO lens focuses analysis back upon people. It puts a multi-faceted
agent used in analysis ‘into the shoes’ of the user and turns the design and im-
plementation into one we call People-Oriented Programming (POP). POP calls
on users to gather ethnographic data about themselves using Cultural Probes
and on end-user innovation via software toolkits. This turn of focus is timely as
the analyst/designer of interactive systems is facing new challenges regarding
flexibility, user situatedness, dynamic environments, incomplete data, diversity
in user needs, sensors in the environment, and users emersed in multiple paral-
lel social worlds. Based on an extensive background analysis this paper distills
a set of key aspects that any POP effort should possess.

Keywords: Agent-oriented analysis, agent-oriented paradigm, user innovation,
HCI, people-oriented programming, agent meta-models, ShadowBoard Agents.

1 Introduction

Several Agent-Oriented (AO) architectures draw on models from Psychology (e.g.
BDI and ShadowBoard [9]), abstracting mentalistic notions, such as: beliefs, percep-
tions, goals and intentions. As such, some associated agent-oriented analysis, can be
used quite successfully to design interactive systems for individuals with heterogene-
ous needs. This reversing of the lens of AO back upon people, places a multi-faceted
agent analysis ‘into the shoes’ of the user and turns the design and implementation
into one we call People Oriented Programming. This reversal of focus for AO analy-
sis is timely, as modern interactive systems are placing new challenges upon the ana-
lyst/designer: a heightened degree of flexibility, situatedness of users, uncertain and
dynamic environments, incomplete information, diversity in users and their needs,
sensors proliferating in the environment, and users emersed in multiple parallel social
worlds, instead of in one fixed organisation. It has a particular strength in the domes-
tic setting, where people spend a significant amount of their time, often on non-work
tasks, goals and less descript activities.

 People-Oriented Programming 837

Agent-Oriented analysis and design can deal with user situatedness via agent
adaptability. An agent’s internal world view, coupled with high-level core value goals
[9] facilitates autonomous behaviour. An AO system can deal with the non-sequential
external events in an agent’s environment (reactive behaviours), while continuing
with their current goals (proactive behaviours). In this paper we look in detail at these
two aspects of interaction design in mixed-initiative human-agent systems [3]: dealing
with the changing user context; and the message-flow model that facilitates reactive
and proactive behaviours. It is presented in the context of the ShaMAN multi-agent
meta-model [11], as instantiated in the DigitalFriend software [10].

Then, as the main contribution, this paper presents People Oriented Programming
(POP) as a new design paradigm for building personal systems. Based on an extensive
background analysis it distills a set of key aspects that any POP effort should possess.
POP calls upon the user in three capacities: as the focus of customised software,
which von Hippel and Katz describe as ‘markets of one’ [24]; as a self-ethnographer
using Cultural Probes [7] to gather data; and as an end-user developer via software
toolkits [24] designed to make the user central to innovation in new product develop-
ment, the way that end-users are doing in the games genre [18] and in mashups of
Internet services [2]. The technology used here to pursue People Oriented Program-
ming is the DigitalFriend, V1 of which instantiates the ShadowBoard Agent Architec-
ture [9]. Its theoretical base draws on Analytical Psychology – giving POP its fourth
layer of meaning. Before looking at POP and the agent analysis, we first look at the
pathways for interaction within the ShaMAN agent meta-model, in order to character-
ise and scope the design of the necessary interaction system.

2 Interaction through Operators, SpeechActs and UI devices

The DigitalFriend V2 is multi-agent system (MAS) software – an instantiation of the
ShaMAN meta-model – with a central goal of helping an individual user in the full-
spectrum of their life (work, leisure, family, community activity, etc.). It is designed
to monitor, alert, filter and initiate tasks, messages and resources, all within the con-
text of the user’s goals and activities. The Personal Assistant Agents accumulated
within the DigitalFriend make it a mixed-initiative human-agent system [3]. Interac-
tions that can take place, include: inter-agent communication which is facilitated via
speech-acts in an agent communication language; agent-to-user, usually via messages
accompanied by visual and/or aural alerts; and also via direct user-to-agent interac-
tion usually accomplished through UI interface components.

2.1 Interaction through Speech-Acts

SpeechFlow in ShaMAN represents an interaction model for agent inter-
communication. The allowable message types between two given agents, is an interac-
tion plan (or a communication protocol), within which all the dynamically produced
speech-acts, abide. Note: the right-hand side of figure 1 represents a part of an interac-
tion plan, in the form of sender speechact receiver, for a number of sub-agents
within a user’s DigitalFriend.

838 S. Goschnick

Fig. 1. Message mapping and Agent Interaction Plans

On the left is the part of the ShaMAN meta-model that deals with the flow of
speech-acts. The sending agent uses speech-acts to communication to either: other
agents (including the user); to whole SocialWorlds; or to a specific SocialRole across
SocialWorlds. In the DigitalFriend, each agent has a queue of messages received from
the SpeechFlow, and the situatedness of the agent (particularly the human user), often
determines which ones come off the queue, at what times, as we see in Section 3.

2.2 Human-to-Agent Interaction through UI Devices

The level of granularity of interaction between the human user and the agents in their
DigitalFriend are varied. The concept of Locales is taken from Fitzpatrick [5], and can
represent any place in which interaction takes place between the members of a Social
World. This includes abstract places such as the graphical representation of a GUI on
the screen. It can be something as commonplace as a File-Chooser GUI component
that an agent uses to ask the user for a file. Or it can be a custom UI widget an agent
uses to request specific information from the user.

Figure 2 is part of the ShaMAN meta-model as follows: an Agent has a number of
roles in multiple SocialWorlds represented as AgentRole. Roles have a set of goals that
once initiated, form an Agent’s intentions (represented here as AgentRoleGoal). Tasks
are set in motion to achieve a goal. Sub-tasks are performed by sub-agents, but some
require the user to perform a task, or to ponder a new situation. An agent may call on
Human-Agent-Interaction (the HAI entity) to achieve the necessary task. A Locale can
be a place for interaction. I.e. the UI components in fig.3 include an interactive map of
the world put to screen by an agent, which is waiting on the user to select and confirm
a country. Where a traditional Task Analysis may go down to key-stroke interactions,
in an agent system that uses high-level UI components, the task-granularity stops at
putting the UI component to screen, and receiving the user’s selection. I.e. The non-
sequential nature of user interaction with a complex GUI component, is not of specific
interest beyond what the user actually selects, facilitated here by the link between the
Task and the HAI entities.

 People-Oriented Programming 839

Fig. 2. Model of Human-Agent-Interaction within ShaMAN

3 Agent State as a Basis for Analysis

In the DigitalFriend the user is represented as another agent, but with several added
features: agents can interact with the user via direct actions (in addition to speech-
acts) via UI interfaces represented as Locales; the user has a set of known behaviours
including walking, driving, reading, meeting, sleeping; and, the user is represented
computationally at the top of the DigitalFriend’s hierarchy of agents, with their Goals
sitting at the top of the Goal hierarchy/network.

Fig. 3. Human-Agent-Interaction within DigitalFriend V2

There is a complex representation of agent-state within the ShaMAN meta-model,
giving a comprehensive coverage of the user’s situatedness (figure 4), including what
Locale they are currently in, who and what agents currently inhabit that Locale, what
resources they have at hand, and more. In analysis it is paramount to discover the
‘what’ rather than the ‘how’ [17]. To do so, we assume all people in a user’s Social-
Worlds are equally empowered with a MAS of the sophistication of at least the Digi-
talFriend. In a given Locale the Inhabitants are assumed to be known, along with their
Roles. Of the Resources across the system, those in AgentResource are immediately
available to an Agent, in addition the agent may use OnSiteResources.

840 S. Goschnick

Fig. 4. Agent State in ShaMAN [11], with respect to situatedness

Note: The ShaMAN meta-model (the greyed-out background in fig. 4, available elsewhere
[11]) has 30 classes/entities in UML class diagram notation. It effectively combines several
sub-models: Role, Goal, Task, Interaction, SocialWorld, Resource and Locale models. These
models are interconnected by a number of associate entities, in ER (entity relation) terminology
– i.e. the entities on the many end of the one-to-many relationships, in crows-foot notation. E.g.
Inhabitant, Responsibility, Member, AgentResource and OnSiteResource cross-relate several
sub-models, to great benefit regarding situatedness, in analysis, design and implementation.

Communication to the user from the DigitalFriend can be filtered for their current
situation. These elements of state (as per figure 4 above), together with the user’s
current behaviour, allows ShaMAN to select messages from the agent’s current queue
of messages (in particular, the user), according to a set of message delivery rules.

It becomes easy to stipulate rules such as: No taking a phone call while driving.
The rules can be stipulated more clearly once a user’s state has been ascertained:
What SocialWorlds do they belong to, and what are their Roles in those worlds? What
are the Responsibilities that go with those Roles? Who else are members of those
SocialWorlds and what are their respective Roles? What Locales (real and abstract)
does the user frequent in the course of fulfilling their Responsibilities? What are the
current conditions in the Locale? What Resources does the user have at their disposal,
within each Role? What Resources do their agents have at their disposal? What Re-
sources are available in the Locales a user is expected to use? What Agents does the
user expect to have available when in each of the Locales? What Agents does the user
expect to have available when they are in each of their Roles?

4 People-Oriented Programming as a Design Paradigm

4.1 Background

This general method follows on from the Shadowboard Methodology by Goschnick
and Graham [12]. It was not a generic AO methodology, but was specifically aimed at
gathering and tailoring the AO requirements for a multi-agent Personal Assistant
Agent (PAA) system, for an individual user. The authors made the point with:

 People-Oriented Programming 841

 “…the primary requirement in the work presented here was to have a 24x7 user-
representation available (even) while the user sleeps or is otherwise offline, within
a tool capable of autonomous computation, some decision-making, some informa-
tion filtering and with the ability to concentrate the presentation of relevant in-
formation and to inform the user at the most convenient time”

Their central idea then was to marry a top-down 62 role/sub-role model starting
template, with certain bottom-up techniques from ethnography including Cultural
Probes by Gaver et al [7] in the form of “user-kept diaries” and user scenarios in the
tradition of Rosson and Caroll [19], into a methodology that addressed the personal
aspirations and desires of an individual together with their social needs. To bring an
individual’s social needs into the equation, Goschnick and Graham foreshadowed
future work that called upon the theory of Social Worlds by Strauss [21] and the Lo-
cales framework [5]. That foreshadowed work there, is the ShaMAN meta-model
here, which now facilitates Social Worlds and Locales in a MAS system.

A significant difference in the Shadowboard Methodology over other agent meth-
odologies involves the Role entity: a role model is not only used in the requirements
gathering process, in addition, it serves functions within the analysis, design and in
the implementation of a Personal Assistant Agent. E.g. A role-hierarchy lens is used
to filter and organise messages for the user’s benefit, that come from various sub-
agents [10]. These messages are also stored in a log that represents an interaction
trajectory arc [5] of the user’s life so far.

Cultural Probe [7] data captures the richness of individual users in the domestic
and social space, however, many Ethnographers use it to inspire their own design
processes [1,8] rather than to enhance the design process. There have been pockets of
research trying to bring ethnographic data and/or scenarios into the Software Engi-
neering process as seamlessly as possible [14,22,6,13]. Some provide support for a
multi-disciplinary team approach to bring in the richness of social context [13]. While
ethnography and software engineering are complementary - ethnographic studies
capture the details that are useful in analysis, while software engineering design looks
for and uses abstractions as often as possible [22] - the two forms of data and focus,
from these two quite different disciplines, each with different notations and concepts,
means that there has been a bottleneck in getting from one to the other, difficult to
negotiate without loosing much of the detail captured in the ethnographic data. Fur-
thermore, there is neither an efficient or affordable way to capture it on the scale
needed for heterogeneous individual user needs.

A way forward involves users collecting data about their own lives with Cultural
Probes and Software Engineers providing model-based toolkits to enable end-user
development of interfaces and mash-ups of the software and Internet-based services
they regularly use in their lives. There is a movement of people towards such end-user
development of software and computer-based artifacts – whenever they get the appro-
priate tools to do so. We can see it in the current rise of mash-ups in the Internet
world [2] by hobbyist users. And we see it in the user modifications (so-called mods)
in computer games that facilitate user additions to their game playing [18, 16].

End-user development is in part researched in the context of user innovaton – i.e.
innovations created by end-users themselves rather than by corporate software houses
[23]. Von Hippel and Katz investigated the use of toolkits [24] distributed to end-
users, in order for manufacturers to be able to service the unique needs of individuals
in what they called “markets of one”. I.e. Some manufacturers have abandoned their

842 S. Goschnick

“increasingly frustrating efforts to understand users’ needs” (ibid) and instead have
outsourced need-related innovation tasks to the users themselves. To do so, the tasks
involved in bringing a new product into existence, are divided into two interrelated
parts: solution-related tasks, and needs-related tasks. The solutions-related tasks are
catered for with flexible user-friendly toolkits, initially provided by the manufacturer.
The needs-related tasks are what the end-users then do with those toolkits – i.e. they
customise the initial product to suit their specific needs.

Von Hippel has been researching in the user innovation space since the early
1990’s and in his book Democratizing Innovation [23] he gives two primary reasons
that help to explain the recent exponential growth in the user-innovation area: tools
that were previously only available to a niche professional base, have become avail-
able to mass end-users (in both cost and ease-of-use); and secondly, online communi-
ties of end-users confide their needs and share their solutions through the various
communication channels and social networks afforded by the Internet.

One of the earliest mass-enlistments of end-users via software toolkits, is in the
computer games area [15], where numerous games have tens of millions of users, and
several of them have tens of thousands of end-users providing additional innovative
content and functionality to those games. Prugl and Schreier [18] studied the use of
toolkits for the popular computer game The Sims (28 million units sold within 2 years
of release), in which they studied samples from four online user communities, with an
average of 15,000 members (ibid). Many other games offer toolkits to end-users to
extend game functionality and content. Jeppesen and Molin [15] found that of the 94
games they surveyed, 33 of them included toolkits for end-user development.

Where von Hippel mainly describes end-user innovation as the way that ‘markets
of one’ can be appropriately and cost effectively serviced with the goal of ‘satisfying
each user’s needs’, Prugl and Schreier looked deeper into ‘how’ users deal with the
invitation to innovate (including the model of open innovation), and they also investi-
gated the attractiveness of end-user designs, to other users. They single out ‘leading-
edge’ users as a potential source of radical product development (ibid), since their
designs find large user-bases amongst other users in online communities that centre
around the toolkits. This is a useful finding since end-user toolkits are used by a mi-
nority of users, whereas some of the innovation produced by those users, can be used
by many of the rest. In a study about what motivates users to modify the games they
play [16], Kadarusman focused on the World of Warcraft (WoW) game, which has
over 11 million registered users (as at October 2008). He reported that WoW has
more than 4600 user-modifications available for download, the most popular of which
was downloaded on average 110,927 times per day.

4.2 Definition of People-Oriented Programming

We are now in a position to describe People Oriented Programming (POP) as a new
design paradigm for developing individual-oriented systems, and define the four ele-
ments that it includes. POP calls upon the individual user in three main capacities:
firstly, as the central focus of a customised software system addressing heterogeneous
needs, which von Hippel and Katz describe as ‘markets of one’ [24]; secondly as a self-
ethnographer [12,1] administering and using Cultural Probes [7], personal role models
[9,10] and scenarios [19] to gather their own very-specific data (including in the domes-
tic space); and thirdly, as end-user developers, coming up with their own solutions to

 People-Oriented Programming 843

match their personal needs, utilising well-engineered software toolkits [24] designed to
make the user the centre of innovation in new product development. The fourth element
of POP is the cognitive models behind the tools, techniques and frameworks upon which
the user toolkits are built. These models are drawn from two disciplines that are not
often cross-referenced [11]: the Agent-Oriented paradigm, and Cognitive Task Model-
ling. E.g. the technology used in this research to pursue People Oriented Programming
is the DigitalFriend, which appropriately has its theoretical base anchored upon a cen-
tury of evolution of models of mind from Analytical Psychology [9,10].

Fig. 5. Home Environment Locale with interface to Java SunSpot sensor (insert)

The following section briefly explores the use of Locales from the ShaMAN meta-
model, which has featured in parts of Sections 2 and 3, by way of an example Digi-
talFriend of a user engaged in POP, with the DigitalFriend V2 toolkit:

4.3 Example Locales in a User’s DigitalFriend

In the personalisation of the DigitalFriend for a given individual, numerous private
and personally significant Locales are brought into the analysis, and into the technol-
ogy. For example, a map of the user’s home is represented as a Locale in figure 5. It is
cross-related with the Role lens in the DigitalFriend (see insert in figure 5), and is
connected with a sensor (a Java SunSpot technology kit, in this prototype) that knows
exactly where the user currently is spatially. For example, if the person is in the
kitchen sub-Locale, then the DigitalFriend can be set to assume the person is in the
default role of cook, and likewise the Resources that become available can be cooking
suggestions and recipes. When in the garden, they can be assumed to be in the gar-
dener role by default, and can receive messages about their previous activity against
significant Resources (e.g. “You last pruned the Apple tree in late Winter of 2008”)
from a trajectory arc (i.e. via log files). With more specialised sensors, they would be
able to get information about the state of the garden as they pass by them – e.g. moist
content sensors could trigger: “The south-east garden bed has a moisture content well
below the recommendation for this time of the year”.

The Locales in the model do not have to represent maps or rooms that actually ex-
ist, as those in figure 5 do. From the Jungian Psychology that underlines the theory of

844 S. Goschnick

sub-selves behind the many-facetted, many-role model of the individual, also comes
the Jungian concept of archetypal symbols [9], which hold common meanings (across
people) when they appear in peoples’ dreams. From Jung we are told that to dream
often of a given House or Home usually symbolically represents the person’s mind
itself in some compartmentised way. The different rooms: kitchen, lounge, dining,
bedroom, laundry, etc symbolically representing analogous-aspects of the individual’s
life. Therefore an individual user can build ‘the house of their dreams’ in computer-
based imagery, either 2D plans or 3D representations, and then link those im-
ages/media to the roles in their life within the MAS DigitalFriend, as a personally
satisfying and highly intuitive interface.

5 Conclusion

People Oriented Programming (POP) as defined above sounds simple i.e.: focus on the
heterogeneous needs of individual users; get the users to record their own ethnographic
data; and then have them develop their own enhancements to agent-oriented software
using user-friendly toolkits. That stated simplicity belies the actual complexity to carry
it out. Just as the modern GUI PC is much easier to use than old non-GUI PCs, multiple
layers of complexity and indirection were needed to bring about that simplicity of use.
Not surprisingly then, ethnography is an inexact way to gather requirements as com-
pared to traditional requirements engineering methods; AO technologies are an order of
magnitude more complex that traditional OO languages and frameworks; and user-
oriented toolkits that are user-friendly enough to build personal systems from disparate
services and applications, are complex in terms of designing and building them. How-
ever, the POP approach retains the richness from the cultural probe data, through into
the technology in a way that reflects peoples social needs, desires and goals, and to the
benefit of the collective aspirations of the social worlds they are a part of.

The recently reported amount of end-user innovation in the games genre touched
on above, is testimony to the approach working, when the mix between user-needs
and the functionality of the solution-related technology on offer, is right.

The agent-oriented model-based approach to personalising an individual’s inter-
face to the technology in their lives is a natural fit. The mentalistic notions that the
AO paradigm abstracts in a computational form, draws upon Psychology, and there-
fore can be reverse-focused upon programming for individuals, by end-users them-
selves. The models from cognitive task modeling told us that goals, plans, tasks,
actions, roles and objects are represented in the cognitive functioning of the mind.
These models confirm those from the agent-oriented paradigm [11], and vice versa,
through their strong underlying similarities. And it is the models that will hold POP
together as the artifacts shared between the Software Engineers building the toolkits,
and the end-users innovating their own creations and customisations with them.

References

1. Arnold, M.: The Connected Home: Probing the Effects and Affects of Domesticated ICTs.
In: Proceedings of PDC 2004, ACM, Toronto (2004)

2. Feiler, J.: Web 2.0 Mashups. McGraw Hill, New York (2008)

 People-Oriented Programming 845

3. Fleming, M., Cohen, R.A.: User Modeling Approach to Determining System Initiative in
Mixed Initiative AI Systems. In: International Conference on User Modeling UM 1997 (1997)

4. Fitzpatrick, G.: The Locales Framework: Understanding and Designing for Wicked Prob-
lems. Kluwer Academic Publications, London (2003)

5. Forbrig, P., Dittmar, A.: Bridging the Gap between Scenarios and Formal Models. In:
Jacko, J., Stephanidis, C. (eds.) Human Computer Interaction: Theory & Practice (Part I),
pp. 98–102. Lawrence Erlbaum Associates, Mahwah (2003)

6. Gaver, B., Dunne, T., Pacenti, E.: Cultural Probes. Interactions 6(1), 21–29 (1999)
7. Gaver, B., Boucher, A., Pennington, S., Walker, B.: Cultural Probes and the Value of Un-

certainty. Interactions 11(5), 53–56 (2004)
8. Goschnick, S.B.: ShadowBoard: an Agent Architecture for enabling a sophisticated Digital

Self. Thesis, Dept. of Computer Science, University of Melbourne, Australia (2001)
9. Goschnick, S.B.: The DigitalFriend: the First End-User Oriented Multi-Agent System. In:

OSDC 2006, Open Source Developers’ Conference, Melbourne, Australia, December 5-8
(2006)

10. Goschnick, S., Balbo, S., Sonenberg, L.: From Task to Agent-Oriented Meta-models, and
Back Again. In: Forbrig, P., Paternò, F. (eds.) HCSE/TAMODIA 2008. LNCS, vol. 5247,
pp. 41–57. Springer, Heidelberg (2008)

11. Goschnick, S., Graham, C.: Augmenting Interaction and Cognition using Agent Architec-
tures and Technology Inspired by Psychology and Social Worlds. In: Universal Access in
the Information Society, vol. 4(19), Springer, Heidelberg (2005)

12. Haesen, M., Coninx, K., Van den Bergh, J., Luyten, K.: MuiCSer: A Process Framework
for Multi-disciplinary User-Centred Software Engineering Processes. In: Forbrig, P., Pa-
ternò, F. (eds.) HCSE/TAMODIA 2008. LNCS, vol. 5247, pp. 150–165. Springer, Heidel-
berg (2008)

13. Hughes, J., O’Brien, J., Rouncefield, M., Blythin, S.: Designing with Ethnography: A
Presentation Framework for Design. In: Proceedings of Design of Interactive Systems
(DIS 1997), pp. 147–158. ACM, Amsterdam (1997)

14. Jeppesen, L.B., Molin, M.J.: Consumers as Co-developers: Learning and Innovation Out-
side the Firm. Technology Analysis and Strategic Management 15(3), 363–384 (2003)

15. Kadarusman, J.: User-Innovation in the Modding Community of World of Warcraft. Hon-
ours Thesis, Department of Information Systems, University of Melbourne (2008)

16. Pressman, R.: Software Engineering: A Practitioner’s Approach. McGraw-Hill, New York
(2004)

17. Prugl, R., Schreier, M.: Learning from leading-edge customers at The Sims: Opening up
the innovation process using toolkits. R&D Management 36(3), 237–250 (2006)

18. Rosson, M.B., Caroll, J.M.: Usability Engineering: Scenario-based development of human-
computer interaction. Morgan Kaufmann, San Francisco (2001)

19. Stary, C.: Toward the Task-Complete Development of Activity-Oriented User Interfaces.
International Journal of Human-Computer Interaction 11(2), 153–182 (1999)

20. Strauss, A.: A Social World Perspective. Studies in Symbolic Interaction 1, 119–128
(1978)

21. Viller, S., Sommerville, I.: Conherence: An Approach to Representing Ethnographic
Analyses in Systems Design. Human-Computer Interaction 14, 9–41 (1999)

22. Von Hippel, E.: Democratizing Innovation. MIT Press, Cambridge (2005)
23. Von Hippel, E., Katz, R.: Shifting Innovation to Users via Toolkits. Management Sci-

ence 48(7), 821–833 (2002),
 http://userinnovation.mit.edu/papers/10.pdf

	People-Oriented Programming: From Agent-Oriented Analysis to the Design of Interactive Systems
	Introduction
	Interaction through Operators, SpeechActs and UI devices
	Interaction through Speech-Acts
	Human-to-Agent Interaction through UI Devices

	Agent State as a Basis for Analysis
	People-Oriented Programming as a Design Paradigm
	Background
	Definition of People-Oriented Programming
	Example Locales in a User’s DigitalFriend

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

