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Preface

Paul Erdős

Paul Erdős liked to talk about The Book, in which God maintains the perfect
proofs for mathematical theorems, following the dictum of G. H. Hardy that
there is no permanent place for ugly mathematics. Erdős also said that you
need not believe in God but, as a mathematician, you should believe in
The Book. A few years ago, we suggested to him to write up a first (and
very modest) approximation to The Book. He was enthusiastic about the
idea and, characteristically, went to work immediately, filling page after
page with his suggestions. Our book was supposed to appear in March
1998 as a present to Erdős’ 85th birthday. With Paul’s unfortunate death
in the summer of 1996, he is not listed as a co-author. Instead this book is
dedicated to his memory.

“The Book”

We have no definition or characterization of what constitutes a proof from
The Book: all we offer here is the examples that we have selected, hop-
ing that our readers will share our enthusiasm about brilliant ideas, clever
insights and wonderful observations. We also hope that our readers will
enjoy this despite the imperfections of our exposition. The selection is to a
great extent influenced by Paul Erdős himself. A large number of the topics
were suggested by him, and many of the proofs trace directly back to him,
or were initiated by his supreme insight in asking the right question or in
making the right conjecture. So to a large extent this book reflects the views
of Paul Erdős as to what should be considered a proof from The Book.

A limiting factor for our selection of topics was that everything in this book
is supposed to be accessible to readers whose backgrounds include only
a modest amount of technique from undergraduate mathematics. A little
linear algebra, some basic analysis and number theory, and a healthy dollop
of elementary concepts and reasonings from discrete mathematics should
be sufficient to understand and enjoy everything in this book.

We are extremely grateful to the many people who helped and supported
us with this project — among them the students of a seminar where we
discussed a preliminary version, to Benno Artmann, Stephan Brandt, Stefan
Felsner, Eli Goodman, Torsten Heldmann, and Hans Mielke. We thank
Margrit Barrett, Christian Bressler, Ewgenij Gawrilow, Michael Joswig,
Elke Pose, and Jörg Rambau for their technical help in composing this
book. We are in great debt to Tom Trotter who read the manuscript from
first to last page, to Karl H. Hofmann for his wonderful drawings, and
most of all to the late great Paul Erdős himself.

Berlin, March 1998 Martin Aigner · Günter M. Ziegler



VI

Preface to the Fourth Edition

When we started this project almost fifteen years ago we could not possibly
imagine what a wonderful and lasting response our book about The Book
would have, with all the warm letters, interesting comments, new editions,
and as of now thirteen translations. It is no exaggeration to say that it has
become a part of our lives.

In addition to numerous improvements, partly suggested by our readers, the
present fourth edition contains five new chapters: Two classics, the law of
quadratic reciprocity and the fundamental theorem of algebra, two chapters
on tiling problems and their intriguing solutions, and a highlight in graph
theory, the chromatic number of Kneser graphs.

We thank everyone who helped and encouraged us over all these years: For
the second edition this included Stephan Brandt, Christian Elsholtz, Jürgen
Elstrodt, Daniel Grieser, Roger Heath-Brown, Lee L. Keener, Christian
Lebœuf, Hanfried Lenz, Nicolas Puech, John Scholes, Bernulf Weißbach,
and many others. The third edition benefitted especially from input by
David Bevan, Anders Björner, Dietrich Braess, John Cosgrave, Hubert
Kalf, Günter Pickert, Alistair Sinclair, and Herb Wilf. For the present edi-
tion, we are particularly grateful to contributions by France Dacar, Oliver
Deiser, Anton Dochtermann, Michael Harbeck, Stefan Hougardy, Hendrik
W. Lenstra, Günter Rote, Moritz Schmitt, and Carsten Schultz. Moreover,
we thank Ruth Allewelt at Springer in Heidelberg as well as Christoph
Eyrich, Torsten Heldmann, and Elke Pose in Berlin for their help and sup-
port throughout these years. And finally, this book would certainly not look
the same without the original design suggested by Karl-Friedrich Koch, and
the superb new drawings provided for each edition by Karl H. Hofmann.

Berlin, July 2009 Martin Aigner · Günter M. Ziegler
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