Skip to main content

On Radio Broadcasting in Random Geometric Graphs

  • Conference paper
Distributed Computing (DISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5218))

Included in the following conference series:

Abstract

One of the most frequently studied problems in the context of information dissemination in communication networks is the broadcasting problem. In this paper we consider radio broadcasting in random geometric graphs, in which n nodes are placed uniformly at random in \([0, \sqrt{n}]^2\), and there is a (directed) edge from a node u to a node v in the corresponding graph iff the distance between u and v is smaller than the transmission radius assigned to u. Throughout this paper we consider the distributed case, i.e., each node is only aware (apart from n) of its own coordinates and its own transmission radius, and we assume that the transmission radii of the nodes vary according to a power law distribution. First, we consider the model in which any node is assigned a transmission radius r > r min according to a probability density function ρ(r) ~r  − α (more precisely, \(\rho(r) = (\alpha-1)r_{\min}^{\alpha-1} r^{-\alpha}\)), where α ∈ (1,3) and \(r_{\min}> \delta \sqrt{\log n}\) with δ being a large constant. For this case, we develop a simple radio broadcasting algorithm which has the running time O(loglogn), with high probability, and show that this result is asymptotically optimal. Then, we consider the model in which any node is assigned a transmission radius r > c according to the probability density function ρ(r) = (α − 1)c α− 1 r  − α, where α is drawn from the same range as before and c is a constant. Since this graph is usually not strongly connected, we assume that the message which has to be spread to all nodes of the graph is placed initially in one of the nodes of the giant component. We show that there exists a fully distributed randomized algorithm which disseminates the message in O(D (loglogn)2) steps, with high probability, where D denotes the diameter of the giant component of the graph.

Our results imply that by setting the transmission radii of the nodes according to a power law distribution, one can design energy efficient radio networks with low average transmission radius, in which broadcasting can be performed exponentially faster than in the (extensively studied) case where all nodes have the same transmission power.

Partly supported by the Royal Society IJP 2007/R1 “Geometric Sensor Networks with Random Topology”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berenbrink, P., Cooper, C., Hu, Z.: Energy efficient randomised communication in unknown adhoc networks. In: Proc. of 19th SPAA 2007, pp. 250–259 (2007)

    Google Scholar 

  2. Brusci, D., Pinto, M.D.: Lower bounds for the broadcast problem in mobile radio networks. Distributed Computing 10(3), 129–135 (1997)

    Article  Google Scholar 

  3. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis and protocol design. IEEE Transactions on Communications 33(12), 1240–1246 (1985)

    Article  MATH  Google Scholar 

  5. Chlebus, B., Ga̧sieniec, L., Östlin, A., Robson, J.: Deterministic radio broadcasting. In: Welzl, E., Montanari, U., Rolim, J. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 717–728. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Chlebus, B., Gąsieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in ad hoc radio networks. Distributed Computing 15(1), 27–38 (2002)

    Article  Google Scholar 

  7. Chrobak, M., Gąsieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. Journal of Algorithms 43(2), 177–189 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cicalese, F., Manne, F., Xin, Q.: Faster centralized communication in radio networks. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 339–348. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Clementi, A., Monti, A., Silvestri, R.: Distributed broadcast in radio networks with unknown topology. Theoretical Computer Science 302, 337–364 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. Journal of Algorithms 60(2), 115–143 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Czumaj, A., Wang, X.: Fast messgae dissemination in random geometric ad-hoc radio networks. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 220–231. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. De Marco, G., Pelc, A.: Faster broadcasting in unknown radio networks. Information Processing Letters 79(2), 53–56 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. Journal of Discrete Algorithms 5, 187–201 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Elkin, M., Kortsarz, G.: An improved algorithm for radio broadcast. ACM Transactions on Algorithms 3(1) (2007)

    Google Scholar 

  15. Elsässer, R., Gąsieniec, L.: Radio communication in random graphs. Journal of Computer and Systems Sciences 72, 490–506 (2006)

    Article  MATH  Google Scholar 

  16. Emek, Y., Gąsieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in udg radio networks with unknown topology. In: Proc. of PODC 2007, pp. 195–204 (2007)

    Google Scholar 

  17. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. Journal of Algorithms 46(1), 1–20 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly resilient, energy-efficient multipath routing in wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communication Review 5(4), 11–25 (2001)

    Article  Google Scholar 

  19. Gąsieniec, L., Pagourtzis, A., Potapov, I., Radzik, T.: Deterministic communication in radio networks with large labels. Algorithmica 47(1), 97–117 (2007)

    Article  MathSciNet  Google Scholar 

  20. Gąsieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks. Distributed Computing 19(4), 289–300 (2007)

    Article  Google Scholar 

  21. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing Letters 36(6), 305–308 (1990)

    Article  Google Scholar 

  22. Ishizuka, M., Aida, M.: Achieving power-law placement in wireless sensor networks. In: Proc. of ISADS 2005, pp. 661–666 (2005)

    Google Scholar 

  23. Kowalski, D., Pelc, A.: Time of deterministic broadcasting in radio networks with local knowledge. SIAM Journal on Computing 33, 870–891 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Distributed Computing 18(1), 43–57 (2005)

    Article  Google Scholar 

  25. Kowalski, D., Pelc, A.: Optimal deterministic broadcasting in known topology radio networks. Distributed Computing 19(3), 183–195 (2007)

    Google Scholar 

  26. Krishnamachari, B., Wicker, S., Bejar, R., Pearlman, M.: Critical density thresholds in distributed wireless networks. In: Communications, Information and Network Security. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  27. Lotker, Z., Navarra, A.: Managing random sensor networks by means of grid emulation. In: Boavida, F., Plagemann, T., Stiller, B., Westphal, C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 856–867. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage problems in wireless ad-hoc sensor networks. In: Proc. of INFOCOM 2001, vol. 3, pp. 1380–1387 (2001)

    Google Scholar 

  29. Muthukrishnan, S., Pandurangan, G.: The bin-covering technique for thresholding geometric graph properties. In: Proc. of 16th SODA 2005, pp. 989–998 (2005)

    Google Scholar 

  30. Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability (2003)

    Google Scholar 

  31. Sen, A., Huson, M.L.: A new model for scheduling packet radio networks. In: Proc. of INFOCOM 1996, pp. 1116–1124 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gadi Taubenfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elsässer, R., Gąsieniec, L., Sauerwald, T. (2008). On Radio Broadcasting in Random Geometric Graphs. In: Taubenfeld, G. (eds) Distributed Computing. DISC 2008. Lecture Notes in Computer Science, vol 5218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87779-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87779-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87778-3

  • Online ISBN: 978-3-540-87779-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics