Skip to main content

The Mechanism of RNase III Action: How Dicer Dices

  • Chapter
Book cover RNA Interference

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 320))

Abstract

Members of the Ribonuclease III (RNase III) family are double-stranded (ds) RNA-specific endoribonucleases, characterized by a signature motif in their active centers and a 2-nucleotide (nt) 3′ overhang in their products. Dicer functions as a dsRNA-processing enzyme, producing small interfering RNA (siRNA) of approx. 24 nt in length (approx. 20-basepair RNA duplex with a 2-nt 3′ overhang on each end). Bacterial RNase III functions not only as a processing enzyme, but also as a binding protein that binds dsRNA without cleaving it. As a processing enzyme it produces siRNA-like RNA of approx. 13 nt in length (approx. 9-basepair duplex with a 2-nt 3′ overhang on each end) as well as various types of mature RNA. Dicer is structurally most complicated member of the family; bacterial RNase III is comparatively much simpler. One structure is known for Dicer in its RNA-free form (MacRae, Zhou, Li, Repic, Brooks, Cande, Adams, and Doudna, Science 311:195–198); many structures are available for bacterial RNase III, including the first catalytic complex of the entire family (Gan, Tropea, Austin, Court, Waugh, and Ji, Cell 124:355–366). In light of the structural and biochemical information on the RNase III proteins and the structure of a non-Dicer PAZ (Piwi Argonaute Zwille) domain in complex with a 7-basepair RNA duplex with a 2-nt 3′ overhang on each end (Ma, Ye, and Patel, Nature 429:318–322), the structure and function of Dicer is being elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Aa-RNase III:

Aquifex aeolicus RNase III

Ago:

Argonaute

ds:

Double-stranded

dsRBD:

dsRNA-binding domain

endoND:

Endonuclease domain

Ec-RNase III:

Escherichia coli RNase III

Gi-Dicer:

Giardia intestinalis Dicer

Hs-Agol:

Homo sapiens Agol

Hs-Dicer:

Homo sapiens Dicer

nt:

Nucleotide

PAZ:

Piwi Argonaute Zwille

PDB:

Protein Data Bank

siRNA:

Small interfering RNA

ss:

Single-stranded

RISC:

RNA-induced silencing complex

RMSD:

Root-mean-square deviation

RNAi:

RNA interference

RNase III:

Ribonuclease III

Sp-Dicer:

Schizosaccharomyces pombe Dicer

References

  • Akey DL, Berger JM (2005) Structure of the nuclease domain of ribonuclease III from M. tuberculosis at 2.1 Å. Protein Sci 14:2744–2750.

    Article  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242.

    Article  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366.

    Article  PubMed  Google Scholar 

  • Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS, Court DL, Ji X (2001) Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 9:1225–1236.

    Article  PubMed  Google Scholar 

  • Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X (2004) Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure (Camb) 12:457–466.

    Article  Google Scholar 

  • Campbell FE Jr, Cassano AG, Anderson VE, Harris ME (2002) Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. J Mol Biol 317:21–40.

    Article  PubMed  Google Scholar 

  • Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98:9742–9747.

    Article  PubMed  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742.

    Article  PubMed  Google Scholar 

  • Carthew RW (2001) Gene silencing by double-stranded RNA. Curr Opin Cell Biol 13:244–248.

    Article  PubMed  Google Scholar 

  • Cerutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci 25:481–482.

    Article  PubMed  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744.

    Article  PubMed  Google Scholar 

  • Conrad C, Evguenieva-Hackenberg E, Klug G (2001) Both N-terminal catalytic and C-terminal RNA binding domain contribute to substrate specificity and cleavage site selection of RNase III. FEBS Lett 509:53–58.

    Article  PubMed  Google Scholar 

  • Cook A, Conti E (2006) Dicer measures up. Nat Struct Mol Biol 13:190–192.

    Article  PubMed  Google Scholar 

  • Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37.

    Article  PubMed  Google Scholar 

  • Court D (1993) RNA processing and degradation by RNase III. In: Belasco JG, Braverman G (eds) Control of Messenger RNA Stability. Academic Press, New York, pp 71–116.

    Google Scholar 

  • Dasgupta S, Fernandez L, Kameyama L, Inada T, Nakamura Y, Pappas A, Court DL (1998) Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III—the effect of dsRNA binding on gene expression. Mol Microbiol 28:629–640.

    Article  PubMed  Google Scholar 

  • Davies DR, Goryshin IY, Reznikoff WS, Rayment I (2000) Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289:77–85.

    Article  PubMed  Google Scholar 

  • Dunn JJ (1982) Ribonuclease III. In: Boyer P (ed) The enzymes. Academic Press, New York, pp 485–499.

    Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.

    Article  PubMed  Google Scholar 

  • Filipowicz W (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122:17–20.

    Article  PubMed  Google Scholar 

  • Filippov V, Solovyev V, Filippova M, Gill SS (2000) A novel type of RNase III family proteins in eukaryotes. Gene 245:213–221.

    Article  PubMed  Google Scholar 

  • Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X (2005) Intermediate states of ribonuclease III in complex with double-stranded RNA. Structure (Camb) 13:1435–1442.

    Article  Google Scholar 

  • Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X (2006) Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 124:355–366.

    Article  PubMed  Google Scholar 

  • Inada T, Kawakami K, Chen SM, Takiff HE, Court DL, Nakamura Y (1989) Temperature-sensitive lethal mutant of ERA, a G protein in Escherichia coli. J Bacteriol 171:5017–5024.

    PubMed  Google Scholar 

  • Kharrat A, Macias MJ, Gibson TJ, Nilges M, Pastore A (1995) Structure of the dsRNA binding domain of E. coli RNase III. EMBO J 14:3572–3584.

    PubMed  Google Scholar 

  • Krainer A (1997) Eukaryotic mRNA processing. IRL Press, New York.

    Google Scholar 

  • Lamontagne B, Larose S, Boulanger J, Elela SA (2001) The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism. Curr Issues Mol Biol 3:71–78.

    PubMed  Google Scholar 

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81.

    Article  PubMed  Google Scholar 

  • Leulliot N, Quevillon-Cheruel S, Graille M, van Tilbeurgh H, Leeper TC, Godin KS, Edwards TE, Sigurdsson ST, Rozenkrants N, Nagel RJ, Ares M, Varani G (2004) A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III. EMBO J 23:2468–2477.

    Article  PubMed  Google Scholar 

  • Li H, Nicholson AW (1996) Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants. EMBO J 15:1421–1433.

    PubMed  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426:465–469.

    Article  PubMed  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M (2004) Nucleic acid 3L-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol 11:576–577.

    Article  PubMed  Google Scholar 

  • Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang X (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–1925.

    Article  PubMed  Google Scholar 

  • Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429:318–322.

    Article  PubMed  Google Scholar 

  • MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311:195–198.

    Article  PubMed  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574.

    Article  PubMed  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620.

    Article  PubMed  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349.

    Article  PubMed  Google Scholar 

  • Nicholson AW (1996) Structure, reactivity, and biology of double-stranded RNA. Prog Nucleic Acid Res Mol Biol 52:1–65.

    Article  PubMed  Google Scholar 

  • Nicholson AW (1999) Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev 23:371–390.

    Article  PubMed  Google Scholar 

  • Nowotny M, Yang W (2006) Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J 25:1924–1933.

    Article  PubMed  Google Scholar 

  • Nowotny M, Gaidamakov SA, Crouch RJ, Yang W (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121:1005–1016.

    Article  PubMed  Google Scholar 

  • Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321.

    Article  PubMed  Google Scholar 

  • Ohmichi T, Karimata H, Sugimoto N (2002) Effect of secondary structure of short double-stranded RNA on RNAi efficiency. Nucleic Acids Res Suppl 63–64.

    Google Scholar 

  • Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21:5864–5874.

    Article  PubMed  Google Scholar 

  • Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629.

    Article  PubMed  Google Scholar 

  • Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12:340–349.

    Article  PubMed  Google Scholar 

  • Robertson HD, Webster RE, Zinder ND (1968) Purification and properties of ribonuclease III from Escherichia coli. J Biol Chem 243:82–91.

    PubMed  Google Scholar 

  • Saleh MC, Van Rij RP, Andino R (2004) RNA silencing in viral infections: insights from poliovirus. Virus Res 102:11–17.

    Article  PubMed  Google Scholar 

  • Schwarz DS, Hutvagner G, Haley B, Zamore PD (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 10:537–548.

    Article  PubMed  Google Scholar 

  • Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua-Tor L (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10:1026–1032.

    Article  PubMed  Google Scholar 

  • Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437.

    Article  PubMed  Google Scholar 

  • Steiniger-White M, Rayment I, Reznikoff WS (2004) Structure/function insights into Tn5 transposition. Curr Opin Struct Biol 14:50–57.

    Article  PubMed  Google Scholar 

  • Sun W, Nicholson AW (2001) Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side-chain and Mn(2+) rescue of the Glu117Asp mutant. Biochemistry 40:5102–5110.

    Article  PubMed  Google Scholar 

  • Sun W, Jun E, Nicholson AW (2001) Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain. Biochemistry 40:14976–14984.

    Article  PubMed  Google Scholar 

  • Sun W, Li G, Nicholson AW (2004) Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro. Biochemistry 43:13054–13062.

    Article  PubMed  Google Scholar 

  • Sun W, Pertzev A, Nicholson AW (2005) Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis. Nucleic Acids Res 33:807–815.

    Article  PubMed  Google Scholar 

  • Tian B, Bevilacqua PC, Diegelman-Parente A, Mathews MB (2004) The double-stranded-RNA-binding motif: interference and much more. Nat Rev Mol Cell Biol 5:1013–1023.

    Article  PubMed  Google Scholar 

  • van Rij RP, Andino R (2006) The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 24:186–193.

    Article  PubMed  Google Scholar 

  • Wu H, Xu H, Miraglia LJ, Crooke ST (2000) Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 275:36957–36965.

    Article  PubMed  Google Scholar 

  • Wu H, Henras A, Chanfreau G, Feigon J (2004) Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc Natl Acad Sci USA 101:8307–8312.

    Article  PubMed  Google Scholar 

  • Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426:468–474.

    Article  PubMed  Google Scholar 

  • Yang W, Lee JY, Nowotny M (2006) Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol Cell 22:5–13.

    Article  PubMed  Google Scholar 

  • Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ (2005) Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell 19:405–419.

    Article  PubMed  Google Scholar 

  • Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21:5875–5885.

    Article  PubMed  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ji, X. (2008). The Mechanism of RNase III Action: How Dicer Dices. In: Paddison, P.J., Vogt, P.K. (eds) RNA Interference. Current Topics in Microbiology and Immunology, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75157-1_5

Download citation

Publish with us

Policies and ethics