Skip to main content

Formalized Information-Theoretic Proofs of Privacy Using the HOL4 Theorem-Prover

  • Conference paper
Book cover Privacy Enhancing Technologies (PETS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5134))

Included in the following conference series:

Abstract

Below we present an information-theoretic method for proving the amount of information leaked by programs formalized using the HOL4 theorem-prover. The advantages of this approach are that the analysis is quantitative, and therefore capable of expressing partial leakage, and that proofs are performed using the HOL4 theorem-prover, and are therefore guaranteed to be logically and mathematically consistent with the formalization. The applicability of this methodology to proving privacy properties of Privacy Enhancing Technologies is demonstrated by proving the anonymity of the Dining Cryptographers protocol. To the best of the author’s knowledge, this is the first machine-verified proof of privacy of the Dining Cryptographers protocol for an unbounded number of participants and a quantitative metric for privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhargava, M., Palamidessi, C.: Probabilistic Anonymity, vol. 3653 (2005)

    Google Scholar 

  2. Blanchet, B.: A computationally sound mechanized prover for security protocols. In: IEEE Symposium on Security and Privacy, pp. 140–154 (May 2006)

    Google Scholar 

  3. Chatzikokolakis, K.: Probabilistic and Information-Theoretic Approaches to Anonymity. PhD thesis, Laboratoire d’Informatique (LIX), École Polytechnique, Paris (October 2007)

    Google Scholar 

  4. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confidential data. Electr. Notes Theor. Comput. Sci. 59(3) (2001)

    Google Scholar 

  6. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and polymorphic types. J. Log. Comput. 15(2), 181–199 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: design of a type III anonymous remailer protocol. pp. 2–15 (2003)

    Google Scholar 

  8. Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. In: Proceedings of SECCO 2005. Electronic Notes in Theoretical Computer Science (2005)

    Google Scholar 

  9. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5), 236–243 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Reading (1982)

    MATH  Google Scholar 

  11. Dewdney, A.K.: Computer recreations: Of worms, viruses, and core war. Scientific American, 110 (March 1989)

    Google Scholar 

  12. Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards Measuring Anonymity, vol. 2482 (2003)

    Google Scholar 

  13. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

    Google Scholar 

  14. Doob, J.L.: Measure Theory. Graduate Texts in Mathematics, vol. 143. Springer, Heidelberg (1991)

    Google Scholar 

  15. Goel, S., Robson, M., Polte, M., Sirer, E.G.: Herbivore: A Scalable and Efficient Protocol for Anonymous Communication. Technical Report 2003-1890, Cornell University, Ithaca, NY (February 2003)

    Google Scholar 

  16. Gordon, M.J.C.: From lcf to hol: a short history. In: Plotkin, G., Stirling, C.P., Tofte, M. (eds.) Proof, Language, and Interaction. MIT Press, Cambridge (2000)

    Google Scholar 

  17. Hasan, O., Tahar, S.: Verification of expectation properties for discrete random variables in hol. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 119–134. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD thesis, University of Cambridge (2002)

    Google Scholar 

  19. Levine, B.N., Shields, C.: Hordes — A Multicast Based Protocol for Anonymity. Journal of Computer Security 10(3), 213–240 (2002)

    Google Scholar 

  20. Lowe, G.: Breaking and fixing the needham-schroder public-key protocol using fdr. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

    Google Scholar 

  21. Malacaria, P.: Assessing security threats of looping constructs. In: POPL, pp. 225–235 (2007)

    Google Scholar 

  22. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer Security 6(1-2), 85–128 (1998)

    Google Scholar 

  23. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. Technical Report 97-15, DIMACS (1997)

    Google Scholar 

  24. Rennhard, M., Plattner, B.: Introducing MorphMix: Peer-to-Peer based Anonymous Internet Usage with Collusion Detection. In: Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2002), Washington, DC, USA (November 2002)

    Google Scholar 

  25. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218. Springer, Heidelberg (1996)

    Google Scholar 

  26. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Shannon, C.E.: A mathematical theory of communication. Bell System Technincal Journal (27), 379–423, 623–656 (1948)

    MathSciNet  Google Scholar 

  28. Shmatikov, V.: Probabilistic model checking of an anonymity system. Schneider S.(ed.) Journal of Computer Security 12(3/4), 355–377 (2004)

    Google Scholar 

  29. Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nikita Borisov Ian Goldberg

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coble, A.R. (2008). Formalized Information-Theoretic Proofs of Privacy Using the HOL4 Theorem-Prover. In: Borisov, N., Goldberg, I. (eds) Privacy Enhancing Technologies. PETS 2008. Lecture Notes in Computer Science, vol 5134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70630-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70630-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70629-8

  • Online ISBN: 978-3-540-70630-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics