Skip to main content

Graph-Based Modeling of Biological Regulatory Networks: Introduction of Singular States

  • Conference paper
Book cover Computational Methods in Systems Biology (CMSB 2004)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3082))

Included in the following conference series:

Abstract

In the field of biological regulation, models extracted from experimental works are usually complex networks comprising intertwined feedback circuits. R. Thomas and coworkers introduced a qualitative description of the dynamics of such regulatory networks, called the generalized logical analysis, and used the concept of circuit-characteristic states to identify all steady states and functional circuits. These characteristic states play an essential role on the dynamics of the system, but they are not represented in the state graph. In this paper we present an extension of this formalism in which all singular states including characteristic ones are represented. Consequently, the state graph contains all steady states. Model checking is then able to verify temporal properties concerning singular states. Finally, we prove that this new modeling is coherent with R. Thomas’ modeling since all paths of R. Thomas’ dynamics are represented in the new state graph, which in addition shows the influence of singular states on the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sveiczer, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J., Novak, B.: Modeling the fission yeast cell cycle: quantized cycle times in wee1- cdc25delta mutant cells. Proc. Natl. Acad. Sci. U S A. 97, 7865–7870 (2000)

    Article  Google Scholar 

  2. Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., Tyson, J.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell. 11, 369–391 (2000)

    Article  Google Scholar 

  3. Tyson, J., Novak, B.: Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263 (2001)

    Article  Google Scholar 

  4. Hasty, J., McMillen, D., Collins, J.: Engineered gene circuits. Nature 420, 224–230 (2002)

    Article  Google Scholar 

  5. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

  6. Thomas, R.: Regulatory networks seen as asynchronous automata: A logical description. J. Theor. Biol. 153, 1–23 (1991)

    Article  Google Scholar 

  7. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. I. structural conditions of multistationarity and other nontrivial behavior. Chaos 11, 170–179 (2001)

    Article  MATH  Google Scholar 

  8. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11, 180–195 (2001)

    Article  MATH  Google Scholar 

  9. Snoussi, E.: Qualitative dynamics of a piecewise-linear differential equations: a discrete mapping approach. Dynamics and stability of Systems 4, 189–207 (1989)

    Article  MATH  Google Scholar 

  10. Snoussi, E., Thomas, R.: Logical identification of all steady states: the concept of feedback loop caracteristic states. Bull. Math. Biol. 55, 973–991 (1993)

    Article  MATH  Google Scholar 

  11. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks - I. biological role of feedback loops an practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276 (1995)

    Article  MATH  Google Scholar 

  12. Peres, S., Comet, J.-P.: Contribution of computational tree logic to biological regulatory networks: Example from pseudomonas aeruginosa. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 47–56. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A Fruitful Application of Formal Methods to Biological Regulatory Networks, extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. (in press, 2004)

    Google Scholar 

  14. Guespin, J., Bernot, G., Comet, J.P., Mriau, A., Richard, A., Hulen, C., Polack, B.: Epigenesis and dynamic similarity in two regulatory networks in pseudomonas aeruginosa. Acta Biotheoretica (in press, 2004)

    Google Scholar 

  15. Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  16. Richard, A., Comet, J.P., Bernot, G.: SMBioNet: Selection of Models of Biological Networks, http://smbionet.lami.univ-evry.fr

  17. Thomas, R.: The role of feedback circuits: positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix. Ber. Bunsenges. Phys. Chem. 98, 1148–1151 (1994)

    Article  Google Scholar 

  18. Plahte, E., Mestl, T., Omholt, S.W.: Feedback loop, stability and multistationarity in dynamical systems. J. Biol. Syst. 3, 569–577 (1995)

    Article  MATH  Google Scholar 

  19. Demongeot, J.: Multistationarity and cell differentiation. J. Biol. Syst. 6, 11–15 (1998)

    Article  Google Scholar 

  20. Snoussi, E.: Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst. 6, 3–9 (1998)

    Article  MATH  Google Scholar 

  21. Soulé, C.: Graphic requirements for multistationarity. ComPlexUs 1 (2003)

    Google Scholar 

  22. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 359. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Heidtke, K.R., Schulze-Kremer, S.: Design and implementation of a qualitative simulation model of λ phage infection. Bioinformatics 14, 81–91 (1998)

    Article  Google Scholar 

  24. Heidtke, K.R., Schulze-Kremer, S.: BioSim: A New Qualitative Simulation Environment for Molecular Biology. In: Proceedings of the 6th International Conference in Intelligent Systems for Molecular Biology, pp. 85–94. AAAI Press, Menlo Park (1998)

    Google Scholar 

  25. De Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19, 336–344 (2003)

    Article  Google Scholar 

  26. Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative analysis of regulatory graphs: a computation tools based an a discrete formal framwork. Lecture Notes on Control and Information Sciences (accepted, 2003)

    Google Scholar 

  27. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical networks. Theoretical Computer Science (to appear, 2004)

    Google Scholar 

  28. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks - ii. immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277–297 (1995)

    MATH  Google Scholar 

  29. Thomas, R., Gathoye, A., Lambert, L.: A complex control circuit. regulation of immunity in temperate bacteriophages. Eur. J. Biochem. 71, 211–227 (1976)

    Article  Google Scholar 

  30. Sánchez, L., van Helden, J., Thieffry, D.: Establishement of the dorso-ventral pattern during embryonic development of drosophila melanogaster: a logical analysis. J. Theor. Biol. 189, 377–389 (1997)

    Article  Google Scholar 

  31. Sánchez, L., Thieffry, D.: A logical analysis of the drosophila gap-gene system. J. Theor. Biol. 211, 115–141 (2001)

    Article  Google Scholar 

  32. Mendoza, L., Thieffry, D., Alvarez-Buylla, E.: Genetic control of flower morphogenesis in arabidopsis thaliana: a logical analysis. Bioinformatics 15, 593–606 (1999)

    Article  Google Scholar 

  33. Bassano, V., Bernot, G.: Marked regulatory graphs: A formal framework to simulate biological regulatory networks with simple automata. In: Proc. of the 14th IEEE International Workshop on Rapid System Prototyping, RSP 2003, San Diego, California, USA (2003)

    Google Scholar 

  34. Bernot, G., Cassez, F., Comet, J.P., Delaplace, F., Müller, C., Roux, O., Roux, O.H.: Semantics of Biological Regulatory Networks. In: BioConcur, Workshop on Concurrent Models in Molecular Biology. ENTCS series (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richard, A., Comet, JP., Bernot, G. (2005). Graph-Based Modeling of Biological Regulatory Networks: Introduction of Singular States. In: Danos, V., Schachter, V. (eds) Computational Methods in Systems Biology. CMSB 2004. Lecture Notes in Computer Science(), vol 3082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25974-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25974-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25375-4

  • Online ISBN: 978-3-540-25974-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics