
A Proactive Management Framework in Active
Clusters

Eunmi Choi1 and Dugki Min2

1 School of Computer Science and Electronic Engineering, Handong Global
University, Heunghae-eub, Puk-ku, Pohang, Kyungbuk, 791-708, Korea

emchoi@handong.edu
2 School of Computer Science and Engineering, Konkuk University,

Hwayang-dong, Kwangjin-gu, Seoul, 133-701, Korea
dkmin@konkuk.ac.kr

Abstract. An active Web cluster system is an active network that has a
collection of locally distributed servers that are interconnected by active
switches, providing a Web application service. In this paper, we intro-
duce the ALBM (Adaptive Load Balancing and Management) active
cluster system that provides proactive management. The architecture of
the ALBM active cluster and its underlying components are presented.
We focus on system-level and service-level management of the active clus-
ter system by presenting the corresponding proactive ALBM framework.
The system-level framework considers performance counters of resource
state dynamics; the service-level framework concerns service quality and
proactive actions based on event occurrences. The experimental results
on adaptive load balancing are presented in terms of system-level proac-
tive management. In addition, a proactive event message service tool is
introduced for providing effective services and management in terms of
service-level proactive management.

1 Introduction

An active network contains network nodes that perform customized processing
of packets [15,16,17]. An active Web cluster system is an active network that has
a collection of locally distributed servers interconnected by active switches[5,18],
providing a Web application service. It is shown as a single transparent cluster
system to the user with one site name and one virtual IP address [1,2,3]. Due to
their characteristics of cost-effectiveness, high scalability, and high availability,
active Web cluster systems have become a typical solution to the next generation
Internet services[4].

Various active Web cluster architectures have been developed in many forms.
The most popular form is based on hardware L4 active switches [5,6,7]. The H/W
switch-based cluster systems are easy to deploy only by connecting server nodes
to the active switch box. The employed H/W L4 active switches act as traffic
managers that would direct IP traffics to the highly appropriate healthy server in
a cluster, performing network address translation on messages flowing through

N. Wakamiya et al. (Eds.): IWAN 2003, LNCS 2982, pp. 228–239, 2004.
c© IFIP International Federation for Information Processing 2004

A Proactive Management Framework in Active Clusters 229

them. Since these systems are based on H/W switches, it is impossible to add
any customizing schedules or new management services that contain capability
to automatically recover the system from partial failures. Recently, some cluster
systems are constructed on top of the Linux Virtual Server (LVS) [8,9,10,11].
The LVS is a software load balancer that directs network connections to multiple
servers, so that servers can share their workload. As a S/W active switch, the
LVS supports most of connection scheduling algorithms that are provided by
the H/W active switches. Moreover, since the LVS is an open software, it can
be customized to collaborate with other software tools or extended to add more
improved scheduling algorithms for reflecting the system state of each node.
Several variations of LVS[11,12,13] have been introduced to make the LVS be
more adaptive.

In this paper, we introduce the ALBM (Adaptive Load Balancing and Man-
agement) active cluster that has a hybrid cluster architecture, which employs
S/W active switches as well as middleware agents on server nodes. The ALBM
cluster has proactive management framework that could provide both adaptive
load balancing and proactive event-driven management. For adaptive load bal-
ancing, its active switch, called Traffic Manager, provides network-level server
load balancing that changes the scheduling adaptively according to node state
information by means of node agents. In order to analyze the dynamics of server
performance due to workload, we perform several experiments with performance
counters. We compare the performance results of adaptive scheduling algorithms
to those of non-adaptive ones on various kinds of workload. For proactive man-
agement, the ALBM proactive framework includes service-level and server-level
monitoring mechanisms for collecting performance counters. It also contains the
rule-based event processing engine, and has direct and indirect event notification
mechanisms for collecting and processing events.

This paper is organized as follows. Section 2 presents the ALBM active clus-
ter system architecture and its components. Section 3 introduces the proactive
ALBM management framework. In Section 4, we show experimental results on
the performance of ALBM active cluster for various adaptive load balancing al-
gorithms. In Section 5, we introduce a proactive event message service tool. We
summarize in Section 6.

2 The ALBM Active Cluster Architecture

In this section, we introduce the architecture of ALBM (Adaptive Load Balanc-
ing and Management) active cluster system with its underlying components. As
shown in Figure 1, the ALBM cluster system is composed of active switches,
application servers, and the management station. Although the cluster consists
of tens of application servers, called nodes, it is published with one site name
and one virtual IP address that are assigned to one or more active switches,
called Traffic Managers(TMs).

The Traffic Manager(TM)s interface the rest of cluster nodes with the Inter-
net, making the distributed nature of the architecture transparent to Internet

230 E. Choi and D. Min

Fig. 1. Architecture of the ALBM Active Cluster System

clients. The TM is an active switch that performs customized processings on
incoming and outgoging packets. When client traffic arrives, the TM routes the
client packet to one of the servers according to its load balancing algorithm and
policy, performing network address translation on the packets flowing through
them. In order to decide traffic routing adaptively, it collects the status informa-
tion of collaborated servers periodically and schedules servers in a specific order
according to employing load balancing algorithm. After translating to a proper
address, it routes a packet to the assigned server on the OSI Layer 4 level.
Our TM provides several load scheduling algorithmss, such as Round-Robin,
Least-Connected, Weighted, Response-time basis, and adaptive algorithms. Cur-
rently, our TM supports two types of L4 switching mechanisms: Direct Routing
(DR) and Network Address Translation (NAT). Compared to other typical L4
switches, our TM considers current nodes states to manage the load-balancing
mechanism. The TM receives information of real servers on the fly, such as state
of workloads, dead node, and cluster configurations. To have the system highly
fault-tolerant and scalable, two or more TMs can be organized as a cluster of
TMs. In this case, each of TMs executes the Traffic Manager Node (TM-Node)
Service. The TM-Node services perform membership management in an efficient
way to be prepared with possible combinations of active or stand-by TM. The
TM is implemented in C to achieve a high performance and take a small portion
of memory.

On each of application servers, a middleware service, called Node Agent (NA),
is running. The NA is a system-level service that is remotely and dynamically
deployed and initiated by our middleware deployment service. The NAs are in-
dicated by Circle As on the bottom of each node in Figure 1. The NA makes

A Proactive Management Framework in Active Clusters 231

the underlying server be a member node of the ALBM system. The NA takes
two types of agent roles. First, it works as an agent for managing the managed
node. It monitors and controls the system elements or the application service
of the node, and collects the state and performance information on its local
management information basis. It interacts with the M-Station, giving the local
information and receiving administrative commands for management purposes.
Second, it works as an agent for clustering. Regarding membership manage-
ment, it sends heartbeat messages to one another. When there is any change in
membership, the membership convergence mechanism is initiated by the master
node. The master node is dynamically elected by members whenever there is no
master node or there exists inconsistent master information among members.
Besides, the NA provides L7 APIs to application services running on the node.

The management station, called M-Station, is a management center of the
entire ALBM cluster system, working together with the management console
through Web-based GUIs. All administrators commands are received into and
executed through the M-Station. By interacting with the master node of a clus-
ter, the M-Station collects the dynamic state or performance information of the
cluster system resources and application services. Also, the M-Station checks the
system state in the service-level, and carries out some actions when values moni-
tored from service-level quality are significantly far behind the service-level QoS
objectives. According to the management strategies and policies determined by
the human administrator, the M-Station takes proper management actions, such
as alarming events or removing failed nodes. The M-Station is implemented in
Java.

All the components in the ALBM system are interconnected with public
and private networks. The public network is used to provide public services to
Internet clients, while the private network is used for secure and fast internal
communications among components on management purpose.

2.1 Adaptive Load Balancing Mechanism

The adaptive scheduling algorithms in the ALBM active cluster system adjust
their schedules, taking into accounts of dynamic state information of servers and
applications collected from servers. The ALBM algorithm is as follows. By col-
lecting appropriate information of server states, the NAs customize and store the
data depending on the application architecture, machine types, and expectation
of a system manager. Each NA decides if the current state is overloaded or un-
derloaded by using upper or lower thresholds of resource utilization determined
by system configuration and load balancing policies of cluster management. Each
cluster has a coordinator that is in charge of any centralized task in the cluster.
We call the coordinator a Master NA, and only the Master NA communicates
with TM as the representative in order to control the incoming TMs traffic.
After collecting state data of all NAs in a cluster, the Master NA reports the
state changes to the TM. Thus, real-time performance data are transferred to
the M-Station, and the state data of servers are reported to the TM. By using

232 E. Choi and D. Min

the state information reported by Master NAs, the TM adjusts traffics of incom-
ing requests properly to balanced server allocation. The TM does not allocate
requests to overloaded servers, until the overloaded server state is back to a nor-
mal state. The scheduling algorithms are applied to the TM through the control
of M-Station.

3 Proactive ALBM Framework

This section presents the proactive management framework on the ALBM ac-
tive cluster system. This framework provides a management environment to
adaptively control the system according to the system dynamics. For short-term
management, it detects faults, failures, or overload states and reacts automati-
cally to recover the system from the fault or performance degradation situation.
It also accumulates the states of system and the state changes, such as events,
into databases. Information stored in these databases is used for mid-term and
long-term management, such as performance analysis, root cause analysis, and
capacity planning.

In our proactive management framework, three types of dynamic system in-
formation are collected. One type is performance counters of resource states in
a server node. Theses counters are retrieved directly from the server node in the
system level. Typical examples of resource state counters are available memory
in Kbytes, processor time, and NIC total bytes. The next type of system in-
formation is performance counters of service quality that are measured in the
service level, i.e., collecting service counters outside the service cluster. Typical
examples of service quality counters are the average response time per request
and the average throughput per second. These types of system information rep-
resent the system state in different views. The third type is events that occur
while serving applications and managing the system. The system listens and
stores events in terms of management, since events represent the state changes
of the system that might affect the performance or availability of the system.

The this section, we describe the architecture of our proactive management
framework in two views: one shows the structure of how to collect the perfor-
mance counters of resource states and service quality, and the other shows the
structure of how to collect the events.

3.1 Architecture for Collecting Performance Counters

Figure 2 shows the architecture of modules that are related to performance coun-
ters collection and process. Performance counters of resource states are collected
by the Resource Monitor in our framework. The Resource Monitor is imple-
mented as a separate process that is independent of the NA process in a server
node, since the Resource Monitor includes operations that could wait for failed
resources. The Resource Monitor checks the resource status by accessing OS
APIs and sends the measured information to the Resource State Collector of
the NA. The Resource State Collector collects resource states from a number of

A Proactive Management Framework in Active Clusters 233

resources periodically. Resource states collected by the Resource State Collector
are passed to the Node State Evaluator. The Node State Evaluator evaluates
the status of the server node based on the pre-defined node policies and makes
the Event Delegator generate an event if necessary.

Another way to measure performances of server nodes is to monitor the ser-
vice quality in service level. The Service Level (SL) Monitor checks the service
quality of each node in the service level, by measuring service availability, re-
sponse time, and recovery time. As a separate process, the SL Monitor can be
deployed on any machine, which may locate outside of the service cluster or run
on the same machine where the M-Station locates. By considering the objectives,
the SL manager generates events and notifies them to the M-Station with the
corresponding measured QoS information.

Service Node Machine

Node Agent

Event

Delegator

Note State

Evaluator

Resource

State

Collector

Resoruce

Monitors

Management

Station

Performance

Counter

Collector

Service Level

Monitor

Event Delegator

Station Machine

Service

Application

Counter

DB

Performanc

Analysis Tool

Service Quality

Evaluator

Fig. 2. Architecture of Performance Counter Collection

The resource state counters and the SL quality counters are collected by
the Performance Counter Collector in the M-Station. The M-Station stores the
performance counters into the Counter DB. This Counter DB is retrieved by the
Performance Analysis Tool to trace system resource states and service quality
states. Meanwhile, resource state counters and SL quality counters are passed to
the Service Quality Evaluator for evaluating the system states and service level.
If it is necessary to generate an event, the Event Delegator generates and sends
the events to the appropriate system components.

The TMs interface the rest of cluster nodes, making the distributed nature
of the architecture transparent to Internet clients. All inbound packets to the
system are received and forwarded to application servers through the TMs. It
provides network-level traffic distribution services by keeping on balancing the
servers loads. On each of application servers, a middleware service, called Node

234 E. Choi and D. Min

Agent (NA), is deployed. The NA is in charge of management and operation
of the ALBM cluster, such as cluster formation, membership management, and
adaptive management and load balancing. The management station, called M-
Station, is a management center of the entire ALBM cluster system. All adminis-
trators commands typed through management console are received and delivered
to the M-Station. Communicating with NAs, the M-Station performs cluster
management operations, such as cluster creation/removal and node join/leave.
The M-Station also collects current states and configurations of the entire sys-
tem, and provides them to other authenticated components in the system. Using
the server state information provided by NAs, it performs proactive management
actions according to the predefined policies. Besides, the M-Station checks the
state of the system in service-level, and carries on some actions when the moni-
tored service-level quality value is significantly far behind with the service-level
QoS objectives.

3.2 Architecture for Event Collection

The NA watches the service node to detect any occurrences of state change due
to failures, errors, and faults of resources or service applications. According to
the pre-defined node policies, the NA generates events through Event Delegator.
As described in the previous subsection, the Event Delegator also generates
performance degradation events guided by the Resource State Evaluator. The
generated events are passed to the Event Rule Engine inside of the NA and
also notified to the other system components outside of the NA through the
Event Notifier. Figure 3 shows the architecture of the modules that are related
to event notification and process. The Event Rule Engine, which contains rules
and the corresponding conditions and actions, is in charge of event processing.
When a new event is arrived, the rule engine performs the rule-matching step and
processes the event according to the matched rule. Our rule engine is designed to
be expandable or changeable for newly created event types and event processing
conditions or actions; it can generate action or condition classes during run time
from a XML rule definition schema. Some actions are performed and activated by
the Event Rule Engine, but other actions are delegated to the Managed Agent.

Events are delivered toward the outside of the NA through the Event Notifier.
The Event Notifier provides a direct event notification environment between two
remote applications or components. As a separate service process, the Event No-
tifier can be shared by several applications running on the same server. Whenever
a distributed component has changed its state, the component uses the Event
Notifier to notify a state-change event to other related distributed components.
The target where to disseminate an event is determined by the dissemination
information that is dynamically updated according to the event rule definition
as well as the system state and configuration. For outgoing or incoming events,
simple event processing actions, such as filtering or formatting, can be applied
according to the event rule definition.

In our proactive framework, if an event is so urgent that an automatic action
should be performed immediately, the urgent events are directly passed to the

A Proactive Management Framework in Active Clusters 235

Event Channel

Service

Event

Correlator

Event

Channel

Event

Logger

Event

Delegator

Event

Notifier

Service Node

Node Agent

Event

Notifier

Event

Delegator

Event

Rule Engine

Service

Application

Managed

Agent

Proxys

Channel Server Machine

Event

DB

Performanc

Analysis Tool

Management

Station

Manager

Event

Rule Engine

Event

Delegator

Event

Notifier

Station Node

Management

Console

Fig. 3. Architecture of Event Collection

M-Station through the Event Notifier. The Event Delegator of M-Station collects
all directly transmitted events from NAs. The Event Rule Engine of M-Station
determines if the proper action should be performed after looking at the collected
events. The Event Rule Engine contains a rule engine where rule matching and
executing process is performed when a new event is arrived. In our rule engine
system, a rule is activated by a number of correlated events that satisfy a given
condition, and then an activated rule executes a predefined action. Thus, a rule
is defined by a combination of a number of correlated events, called Event Token,
a rule condition, a rule action, as well as by its properties, such as a rule name
and a priority. The rule priority determines the order of applying rules when
there are two or more rules compete. The event token name follows a format of
domain-name:event-type-name. The condition and action codes are written in
Java. The Manager of M-Station carries out the action to the associated managed
agents. The process and result are reported to the Management Console.

The Event Notifier also sends all the events including the urgent events to the
Event Channel Service that provides the indirect event communication service.
The Event Channel Service provides indirect event transmission service that
decouples event consumers from event producers. For each event customer or
producer group, the Event Channel Service provides different quality of services
or different event transmission mechanisms (push or pull mode). Also, the Event
Channel Service is used as an event collection center where all the events are
collected from NAs and various event producers in the cluster system. Using the

236 E. Choi and D. Min

aggregated events, we can perform an event correlation processing for root-cause
analysis or a trend analysis for capacity planning.

The Event Channel Service is composed of Event Channel, Event Logger, and
Event Correlator. An Event Channel performs various event-processing services,
such as event scheduling for QoS-based transmission or event filtering. It also
delivers events to the Event Correlator and the Event Logger for further processes
of event analysis. The Event Correlator obtains events from channels and applies
rules to find correlations between events. The Event Correlator is used to find
a root-cause of node failure and to generate knowledge-based high-level events.
The Event Logger sends event logs to the remote event log server to collect all
the events for a time period. The collected events are analyzed together with
the collected performance counters for system trend analysis. The channel has
a flexible structure to be changed according to the QoS policy.

4 An Experiment with Adaptive Mechanism

We perform an experiment to show the benefit of applying our adaptive mech-
anism to the non-adaptive load scheduling algorithms. As for load scheduling
algorithms, two commonly used ones are employed: the Round-Robin(RR) algo-
rithm that is a popular static algorithm, and the Least Connection (LC) algo-
rithm that is a popular dynamic algorithm. The adaptive version of RR and LC
are called ARR and ALC, respectively. In our adaptive mechanism, the cost of
adaptive operation is negligible since reporting the state information of servers
to the TM is not a periodic processing and it occurs only when the state changes.
It is very few compared to the amount and frequency of incoming requests.

We make a realistic workload that is heavy-tailed. In literature, many re-
searchers have concluded that general Internet traffics follow heavy tail distri-
butions [8,9,10]. In order to make heavy-tailed e-commerce traffic, we mix an e-
commerce traffic provided by Web Bench tool[7] and a memory-intensive traffic
at the rate of 80% and 20%, respectively. The e-commerce traffic contains mixed
requests of text pages, image files, and CGI requests. The memory-intensive traf-
fic contains memory requests of random size and random duration. The random
size and duration are randomly selected between 5MB to 15MB and between 0
to 20 seconds, respectively.

The workload requests are generated by tens of client machines, which are
interconnected with a cluster of server nodes in the same network segment.
Each server has PIII-900MHz dual CPU and 512 MB memory. Each client has
PIV 1.4GHz CPU and 256MB memory. The network bandwidth is 100MB. The
number of connections per client thread is 4. The total running time is 2 minutes,
think time between requests in a client is 10 seconds, and ramp-up time is 20
seconds.

Figure 4 shows the experimental result; adaptive ARR and ALC algorithms
achieve about 10% better performances than non-adaptive ones. The best per-
formance is achieved with the ALC algorithm. Due to the active characteristic of
traffic manager (i.e. network switch), the adaptive mechanism could achieve bet-

A Proactive Management Framework in Active Clusters 237

ter throughput by adjusting the load scheduling dynamically. According to the
feature of Web Bench Tool, the next request is generated after the response of
the previous request has received. That is, Web Bench Tool slows down sending
requests when the server responds late. Due to this feature, all scheduling al-
gorithms reduce their throughputs after reaching their maximum performances.
This makes results after the peak points meaningless.

�

��

��

��

��

��

� � � �� �� �� �� �� ��

	
��
��

�
�
�
�
�
�
��
��
�
�

�� �	 ��� ��	

Fig. 4. Experimental Comparison

5 Proactive Event Messaging Service Tool

In addition to adaptive load balancing, the dynamic state information is used in
the M-Station for proactive management. The M-Station provides proactive ac-
tions in two levels: system level and service level. In system level, the M-Station
receives system state transition events from NAs and takes actions according
to the rules managed by an event rule-engine. Events are transmitted to the
M-Station through underlying event notification and channel services. In service
level, a service-level (SL) monitor takes the similar role as NAs. The SL monitor
checks the service quality of the ALBM cluster in service level, such as avail-
ability, response time, and recovery time. By considering the QoS objectives,
the SL monitor generates events and notifies them to the M-Station with the
corresponding measured QoS information. The SL monitor can be deployed on
any place and computer in Internet.

In this section, we present a proactive event messaging service is implemented
on top of the proactive management framework. The proactive event messaging
service sends a message to the system manager according to the predefined event
rules when an event occurs. Figure 5 shows the GUI to set up actions according
to the event type. When an event occurs, the setting action is triggered and per-
formed as desired. It is possible to send an e-mail to a human administrator, an

238 E. Choi and D. Min

MSN message passing, or an SMS cellular phone message delivery. The message
can be delivered to one person or a collection of people with a specific role.

Fig. 5. The GUI of Event Action Set-up

6 Conclusion

In this paper, we introduced the ALBM active cluster system that provides
proactive management. The architecture of the ALBM active cluster and its un-
derlying components are presented. As an active switch, the TM is in charge of
routing the client packet to one of the servers according to its scheduling algo-
rithm and policy, performing network address translation on the packets flowing
through them. In order to applying system-level and service-level management
to the active cluster system, a proactive ALBM framework is introduced. It col-
lects system information and processes them according to system state changes.
The system-level framework considers performance counters of resource states
by probing, processing, making a decision, and performing an action based on
state changes of resource utilization. The experimental results on adaptive load
balancing are presented in terms of system-level proactive management. Adap-
tive scheduling algorithms result in a good performance compared to the non-
adaptive ones for a realistic heavy-tailed workload. Besides, a proactive event
message service tool is introduced for providing effective services and manage-
ment.

A Proactive Management Framework in Active Clusters 239

References

1. Gregory F Pfister: In Search of Clusters, 2nd Ed. Prentice Hall PTR (1998)
2. Daniel A. Menasce: Trade-offs in Designing Web Cluster. IEEE Internet Comput-

ing, Volume:6 Issue:5 Sep/Oct (2002) 76 ?80
3. Ana-Maria Cretu, Voicu Groza, Abdul Al-Dhaher, Rami Abielmona: Performance

Evaluation of a Software Cluster. IEEE Information and Measurement Technology
Conference May (2002) 1543-1548

4. Jeffray S. Chase: Server switching: yesterday and tomorrow. Internet Applications
(2001) 114-123

5. Valeria Cardellini, Emiliano Casaliccho, Michele Colajanni, Philip S. Yu: The State
of the Art in Locally Distributed Web-server Systems. IBM Research Report,
RC22209(W0110-048) October (2001) 1-54

6. Ronald P. Doyle, Jeffrey S, Chase, Syam Gadde, Amin M Vahdat: The trickle-
down effect: Web caching and server request distribution. In Proceedings of the
Sixth International Workshop of Web Caching and Content Distribution, 2001

7. Lee Breslan, Pei Cao, Li Fan Graham Phillips, Scott Shenker: Web Caching and
Zipf-like distributions: Evidence and implications. In Proceedings of IEEE infocom
Mar (1999)

8. TurboLinux: Turbo Linux Cluster Server 6 user guide. http://www.tubolinux.com,
(2002)

9. LVS documents, http://www.linuxvirtualserver.org/Documents.html
10. Wensong Zhang, Shiyao Jin, Quanyuan Wu: Scaling Internet Service by LinuxDi-

rector. High Performance Computing in the Asia-Pacific Region, 2000. Proceed-
ings. The Fourth International Conference/Exhibition, Volume: 1, (2000) 176-183

11. Wensong Zhang: Linux Virtual Server for Scalable Network Services. Linux Sym-
posium 2000, July (2000)

12. M. Wangsmo: White paper: Piranha ? load-balanced web and ftp clusters.
http://www.redhat.com/support/wpapers/piranha (1999)

13. J. Trocki: mon: Service monitoring daemon. http://www.kernel.org/software/mon
14. Eunmi Choi: Performance Test and Analysis for an Adaptive Load Balancing

Mechanism on Distributed Server Cluster Systems. 2004 Future Generation Com-
puter Systems, Elsevier Science, Vol. 20. No. 1, (2004, will be appeared)

15. M. Brunner: A Service Management Toolkit for Active Networks, IEEE Network
Operations and Management Symposium(NOMS) April (2000) 265-278

16. Marcus Brunner: Active Networks and its Management, IEEE Universal Multiser-
vice Networks (ECUMN) Oct (2000) 414-424

17. Marcus Brunner, Rolf Stadler: Service Management in Multiparty Active
Networks, IEEE Communications Magazine, Vol:38 Issue:3, March (2000) 144-151

18. Jiani Guo, Fang Chen, Laxmi Bhuyan, and Raj Kumar: A Cluster-Based Active
Router Architecture Supporting Video/Audio Stream Transcoding Service, IEEE
Proceedings of International Parallel and Distributed Symposium (IPDPS) (2003)
44

	Introduction
	The ALBM Active Cluster Architecture
	Adaptive Load Balancing Mechanism

	Proactive ALBM Framework
	Architecture for Collecting Performance Counters
	Architecture for Event Collection

	An Experiment with Adaptive Mechanism
	Proactive Event Messaging Service Tool
	Conclusion

