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Abstract. Previous research showed that supervised dimensionality reduction us-

ing Neighborhood Component Analysis (NCA) enhanced the performance of 3-

class problem emotion recognition using ECG only where features were the sta-

tistical distribution of dominant frequencies and the first differences after apply-

ing bivariate empirical mode decomposition (BEMD). This paper explores how 

much NCA enhances emotion recognition using ECG-derived features, esp. 

standard HRV features with two difference normalization methods and statistical 

distribution of instantaneous frequencies and the first differences calculated us-

ing Hilbert-Huang Transform (HHT) after empirical mode decomposition 

(EMD) and BEMD. Results with the MAHNOB-HCI database were validated 

using subject-dependent and subject-independent scenarios with kNN as classi-

fier for 3-class problem in valence and arousal. A t-test was used to assess the 

results with significance level 0.05. Results show that NCA enhances the perfor-

mance up to 58% from the implementation without NCA with p-values close to 

zero in most cases. Different feature extraction methods offered different perfor-

mance levels in the baseline but the NCA enhanced them such that the perfor-

mances were close to each other. In most experiments use of combined standard-

ized and normalized HRV-based features improved performance. Using NCA on 

this database improved the standard deviation significantly for HRV-based fea-

tures under subject-independent scenario. 
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1 Introduction. 

Previous research has reported that applying supervised dimensionality reduction 

(SDR) significantly enhanced the performance of emotion recognition using ECG from 

the MAHNOB-HCI database [1]. To be more specific, the Neighborhood Components 

Analysis (NCA) outperformed the Linear Discriminant Analysis (LDA) and the Maxi-

mally Collapsing Metric Learning (MCML), and the SDRs were only applied to fea-

tures resulted from one method, i.e. the statistical distribution of dominant frequencies 
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and the first differences after applying the bivariate empirical mode decomposition 

(BEMD) to ECG signals, which showed its superiority in the absence of the SDR [2].  

Apparently, analysis on the previous research has suffered from the number of fea-

ture extraction methods. We did not know how well the NCA can enhance the perfor-

mance of the same system using features from other methods. This is the main research 

question addressed in this paper because conclusions based on the one feature extrac-

tion method may lead to wrong interpretation. 

We applied the NCA only to features calculated using other methods, i.e. standard 

HRV analysis with normalization and standardization, statistical distribution of instan-

taneous frequency based on Hilbert-Huang Transform (HHT) after applying empirical 

mode decomposition (EMD) and bivariate empirical mode decomposition (BEMD), 

while other SDR methods were subject to future works. The results were validated un-

der subject-dependent and subject-independent scenarios using kNN as a classifier. 

The paper has been organized in the following way: the first section gives brief in-

troduction, including a gap in the previous research. Literature studies about supervised 

dimensionality reduction and research in emotion recognition follows it with the main 

research question appears at the end of this section. The next section discusses detail 

methods we used in this study, including a block diagram to explain the process visu-

ally. Succeeding this section, we present experimental results along with the discus-

sions about the findings. The last section provides conclusions and some future works 

2 Literature Studies. 

2.1 Supervised Dimensionality Reduction 

The SDRs use classes of the samples to guide the dimensionality reduction (DR) pro-

cess such that distances among points belong to the same class are decreased while 

increasing the distances among points belong to different class. Some proposed algo-

rithms were, e.g. Neighborhood Components Analysis (NCA) [3], Maximally Collaps-

ing Metric Learning [4], Large Margin Nearest Neighbor (LMNN) [5], Supervised Di-

mensionality Mixture Model (SDR-MM) [6], Support Vector Decomposition Machine 

(SVDM) [7], etc.  

As was mentioned in the Introduction section that this paper focused on NCA only, 

the following was a brief mathematical background about the NCA, as proposed by 

Goldberger et al. [3]. The NCA works based on Mahalonobis distance measure 
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within kNN framework, where 

 AAQ T  (2) 

is a positive semidefinite (PSD) learning matrix to a certain space. The algorithm aims 

to find the projection matrix, A, such that the classifiers perform well in the transformed 

space. 
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By maximizing a stochastic variant of the leave-one-out (LOO) kNN score on the 

training data, the NCA makes no assumption about the shape of the class distribution 

or the boundaries between them. Since the LOO classification errors of kNN suffers 

from discontinuity, a differentiable cost function based on stochastic (“soft”) neighbor 

assignments in the transformed space was introduced, 
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Eq. (3) assigns the probability of point i belongs to the class of selected point j, among 

k points as its neighbor. When point i chooses several neighbors and they might belong 

to different classes, total probability that point i belongs to class }|{ jii ccjC  , 

is defined as 
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The main idea is to maximize cost function 
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The NCA has been implemented in the drtoolbox, a Matlab® toolbox for dimension-

ality reduction [8]. Experiments in this study used this toolbox after slightly modifying 

the algorithm, see section 3.2. 

2.2 Literature Review 

The MAHNOB-HCI database [9] is one of the affect recognition databases which in-

cludes ECG signals as one of the peripheral physiological signals. Other affect recog-

nition databases which include ECG signals are RECOLA [10], Decaf [11], and Augs-

burg [12]. DEAP also provide signals from the heart activities but they were quantified 

as Heart Rate Variability (HRV) measured using Blood Volume Pulse (BVP) on finger 

[13]. In this paper, we use the MAHNOB-HCI database, which involved 27 subjects 

(11 males and 16 females) stimulated with pictures and video clips. The data includes 

the following synchronized signals: 

• 32-channel EEG. 

• Peripheral physiological signals (ECG, temperature, respiration, skin conductance). 

• Face and body videos using 6 cameras. 

• Eye gaze. 

• Audio. 
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Many feature extraction methods for ECG-based emotion recognition have been pro-

posed. HRV-based features using the standard HRV analysis were quite popular in 

many applications. This method requires at least 5 minute or even hours of ECG signal 

to get reliable analysis [14]. There are a number of large cross-sectional studies which 

suggest to use other methods, some of them are non-linear point-process [15], wavelet 

analysis [16], Recurrent Plot [17], and empirical mode decomposition-based techniques 

[18]. 

Ferdinando et al. [19] used standard HRV analysis to get features for emotion recog-

nition in 3-class of valence and arousal, to provide baseline for the recognition using 

ECG signal only from the MAHNOB-HCI database. Using SVM classifier, the 

achieved accuracies were 43% and 48% for valence and arousal respectively based on 

10-fold cross validation. The accuracies were slightly above chance level and close 

enough to the ones based on all peripheral physiological signals. There was no DR 

applied to the acquired features even for feature selection. 

Apparently, the standard HRV analysis was not suitable for ECG signals from the 

MAHNOB-HCI database because the signal length varies from 35-117 seconds. In-

spired by Agrafioti et al. [18], EMD and BEMD analysis were employed [2]. Using 

statistical distribution of the dominant frequencies estimated from spectrogram analysis 

after employing BEMD analysis to ECG as features, the achieved accuracies using kNN 

were 56% and 60% for valence and arousal respectively based on the subject-dependent 

scenario. Validated under subject-independent scenario, the accuracies were 60% and 

59% for valence and arousal correspondingly. Features based on statistical distribution 

of instantaneous frequencies estimated using Hilbert-Huang Transform (HHT) 

achieved less than 50% of accuracies for both valence and arousal. The only DR tech-

nique used in these experiments was feature selection. 

Using SDRs implemented in drtoolbox [8], NCA, MCML, and LMNN, perfor-

mances of the system using statistical distribution of dominant frequency after applying 

BEMD analysis to ECG from the same database were enhanced [1]. The NCA outper-

formed the other method by improving the performance significantly from 56% to 64% 

and from 60% to 66.1% for valence and arousal respectively in subject-dependent sce-

nario. Under subject-independent scenario, the enhancement only worked for arousal 

by improving the performance from 59% to 70%. 

Although the NCA showed promising results [1], the evidences reviewed in this sub-

section seem to suggest evaluating how well the NCA can enhance the same system 

using different features, such as HRV- and HHT-based features. To our knowledge, no 

previous study has investigated the NCA, which was applied on the exactly same sys-

tem but using features from different methods. This study can open new finding about 

phenomena in NCA related to different feature extraction methods as the main research 

question addressed in this paper.  

3 Methods. 

Fig. 1 shows the block diagram of our method. ECG signals used in these experiments 

were downloaded from the database server under “Selection of Emotion Elicitation” 
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group. Sample from session #2508 was discarded as the visual inspection showed that 

it was corrupted, leaving 512 samples for further process. All measured signals have a 

synchronization pulse to separate response and baseline signals. The non-stimulations 

or relaxation stages are 30 seconds before and after stimulation part, and they must be 

separated to each other. We applied signal pre-processing methods suggested by 

Soleymani et al. [9] to remove baseline wandering and power line interference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Block diagram of the experiments 

3.1 Feature Extraction 

We used the standard HRV analysis to extract features from both baseline and response 

signal as suggested by Soleymani et al. [9], i.e. 

• RMS of the Successive Difference between adjacent R-R intervals (RMSSD). 

• Standard Deviation of the Successive Difference between adjacent R-R intervals 

(SDSD). 

• Standard Deviation of all NN intervals (SDNN). 

• Number of pairs of adjacent NN intervals differing by more than 50 ms (NN50). 

• Number of pairs of adjacent NN intervals differing by more than 20 ms (NN20). 

• NN50 count divided by the total number of NN intervals (pNN50). 

• NN20 count divided by the total number of NN intervals (pNN20). 

• Power spectral density for very low frequency (VLF), low frequency (LF), high fre-

quency (HF), and total power. 

• Ratio of HF to LF. 

• Poincaré analysis (SD1 and SD2). 

• Ratio of response to baseline features. 
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resulted 42 features: 14 from baseline, 14 from response, and 14 from the ratios of 

response to baseline. We normalized them to [-1,1] and standardized them based on 

mean and standard deviation to get two sets of features. 

Another feature extraction method was based on the instantaneous frequency (IF) 

calculated using Hilbert-Huang Transform (HHT), see Eq. (6), from the intrinsic mode 

functions (IMFs) after either EMD or BEMD [2].  
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Specific to BEMD, a synthetic ECG signal, synchronized on R-wave event, was 

generated using a model developed by McSharry et al. [20], as the imaginary part of 

the complex ECG signals, while the original signal as the real part. Of note, the model 

only generated one cycle ECG signal as a template. By placing the template according 

to the R-wave event, a complex ECG signal was formed. This method was faster than 

generating one cycle ECG signal using the model for each detected R-wave event [2].  

This method has two drawbacks, at least. First, the connection between consecutive 

ECG templates is not smooth but it can be minimized by adjusting the start and end of 

ECG template very close to zero. However, this discontinuity issue brings small prob-

lem if it is kept as small as possible. Second, the synthetic ECG may have different 

shape at the beginning of the signal because there is no such guarantee of getting a 

complete PQRST wave at the beginning of the signal, see Fig. 2. For this reason, 256 

zeros were inserted at the beginning of the synthetic ECG and discarded them after the 

whole synthetic ECG was complete. 

 

Fig. 2. Synchronized synthetic ECG signal with its original ECG signal [2]. 
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Prior to applying EMD and BEMD, each samples was divided into 5-second seg-

ments, because both EMD and BEMD were sensitive to signal length, such they re-

sulted 5-6 IMFs plus residue [18]. Besides, the ECGs in the MAHNOB-HCI database 

have different length. The IMFs from both EMD and BEMD were subject to HHT to 

obtain the instantaneous frequencies (IFs) from each segment. Once this process was 

finished, all five IFs from each segment belonging from the same ECG sample were 

joined to represent five IFs of that ECG signal. Following this step was to calculate 14 

statistical distribution values, i.e. mean, standard deviation, median, Q1, Q3, IQR, 

skewness, kurtosis, percentile 2.5, percentile 10, percentile 90, percentile 97.5, maxi-

mum, and minimum, from IFs and the first differences as the features for classifier. 

Finally, we had another two groups of features and each group contained statistical 

distribution of IFs from one to five IMFs, resulting five different sets of features for 

each EMD and BEMD, see Table 1 for clarity. All acquired features were standardized 

based on mean and standard deviation (SD).  

Table 1. Feature configuration prior to feature selection. 

 HHT-based features after EMD HHT-based features after BEMD 

1 IMF 28 features 28 features 

2 IMFs 56 features 56 features 

3 IMFs 84 features 84 features 

4 IMFs 112 features 112 features 

5 IMFs 140 features 140 features 

3.2 Dimensionality Reduction. 

There were two DR processes prior to classification phase, i.e. feature selection using 

sequential forward floating search and the NCA. Feature selection is the simplest DR 

technique and requires no projection matrix. It only combines the available features 

into a new set, with reduced dimensionality, that offers the best performance. 

Using the reduced dimensionality from the previous stage, the NCA algorithm was 

applied to find a projection matrix able to reduce feature dimensionality while enhanc-

ing the performance. The initial projection matrix in the drtoolbox was set using random 

number such that each process produced different results and there was no guarantee 

that the optimum projection matrix could be acquired within single pass. For this rea-

son, the algorithm was modified to be iterative such that it stopped when there was no 

improvement, validated using leave-one-out, within 200 iterations. The SDR process 

was applied to the selected features having dimensionality higher than the target, 2D to 

9D, as in the previous study [1]. The highest possible dimensionality target, however, 

was 37 but it was different for each set of features. In particular, the performance anal-

ysis of the reduced dimensionality was problematic due to this limitation but we had to 

keep it similar to the previous one for the sake of equal methodologies [1]. The acquired 

projection matrices were saved for further processes.  
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3.3 Classifier and Validation Method. 

We used kNN as in the previous study [1] to make reliable comparisons before and 

after applying the NCA. kNN is one of the classifiers which gets benefits from DR 

because its reliability relies on the sample size. Using DR prior to building model with 

kNN saves more space for storage. Another reason related to kNN is about the compu-

tational speed. Using many samples to build a reliable model, kNN may suffer from the 

slow speed. This issue, however, was beyond the scope of this study because we only 

used 512 samples. 

Results in this study were validated using subject-dependent and subject-independ-

ent scenarios. Within the subject-dependent scenario, 20% of the samples were held out 

for validation while the rest of them were subject to training and testing using 10-fold 

cross validation. The model was built based on the projection of the selected features 

using saved projection matrix from previous stage. The whole validation process was 

repeated 1000 times, with new resampling in each repetition, to accommodate the Law 

of Large Numbers (LLN) such that the average was close enough to the real value.  

Subject-independent scenario evaluated if the features were ready for a general 

model where new samples were introduced to the classifier for recognition. Samples 

from one subject were excluded from building the model and used them to test the 

model. This process continued for all subjects and the reported performance was the 

average over all exclusion processes. We called this validation as Leave-One-Subject-

Out (LOSO) validation.  

3.4 Post-processing for the Final Feature Dimension 

Validations tests were designed so that they produced classification accuracy with sev-

eral dimensionalities to select the best one.  However, small differences between the 

accuracies may not be statistically significant. Specifically, there can be two accuracies 

close to each other while the feature vector dimensions are different. It would make 

sense to choose the one that has a lower dimension. The following procedure was there-

fore used to choose the final feature vector dimension:   

1. Find the best accuracy (namely, A1). 

2. If the best accuracy is occurred at the lowest dimensionality, then the best result is 

found (best result = A1). 

3. Otherwise, find the second-best accuracy (namely, A2) from the lower dimension-

ality and compare A1 to A2 using t-test with significance level 0.05. 

4. If the difference is statistically significant, then the best results is found (best result 

= A1). 

5. If the difference is not statistically significant, then the second-best turns to the best 

accuracy. Repeat process from step 2 until it reaches the lowest dimensionality. 
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4 Results and Discussions. 

We experimented with four sets of features extracted using different methods and then 

compare the results side-by-side. We provided the baseline performances for each set 

of features, evaluated the difference using t-test with significance level 0.05, and cal-

culated the improvement in percent to answer the main research question in this paper. 

Results from the previous study [1] were also presented. 

4.1 HRV-based features 

Table 2 shows the experiment results using standardized HRV-based features under 

subject-dependent scenario. The highest performances were 60% and 46% for valence 

4D and arousal 3D respectively. Using the post-processing procedure for the final fea-

ture dimension in section 3, the second highest performance in valence with lower di-

mensionality was at 2D and p-value as the result of significance test was close to zero, 

indicating that the difference was significant such that 60.0 ± 4.4 was the best result 

occurred at the lowest dimensionality. Applying the same rules for arousal, we com-

pared the one at 3D to 2D using t-test and resulted a very small p-value specifying that 

46.0 ± 4.1 in 3D was better than the other. Performances improved about 17% and 6% 

for valence and arousal respectively.  

Table 2. Results for standardized HRV-based features for subject-dependent scenario from each 

dimensionality. 

 Baseline 2D 3D 4D 5D 6D 

Valence 51.2 ± 4.2 57.8 ± 4.3 57.2 ± 4.2 60.0 ± 4.4 58.8 ± 4.4 59.4 ± 4.3 

Arousal 43.3 ± 4.2 45.2 ± 4.3 46.0 ± 4.1 44.2 ± 4.3 43.8 ± 4.1 44.2 ± 4.4 

 

Results from standardized HRV-based features within subject-independent scenario 

are presented in Table 3. For valence, the highest accuracy was at 4D but significance 

test against the one at 3D gave p-value 0.079 indicating that the difference was not 

significant such that result at 3D became the best one. Next, we compared result at 3D 

to 2D, the second highest result, and found that the difference was significant, brought 

61.4 ± 4.0 at 3D as the best result. For arousal, comparing the highest performance at 

3D, 42.8 ± 4.0, to the second highest one at 2D, 41.7 ± 4.2, emerged p-value 0.0866, 

such that result from 2D was chosen as the best result. Although the NCA worked well 

in valence, no evidence was found for improvement in arousal. 

Table 3. Results for standardized HRV-based features for subject-independent scenario from 

each dimensionality. 

 Baseline 2D 3D 4D 5D 6D 

Valence 54.1±11.3 55.2 ± 4.8 61.4 ± 4.0 62.8 ± 4.9 60.3 ± 4.6 61.5 ± 4.3 

Arousal 44.5 ± 8.0 41.7 ± 4.2 42.8 ± 4.0 36.9 ± 4.2 36.9 ± 4.1 42.0 ± 4.7 
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The same procedures were applied to all sets of features and the results were sum-

marized in Table 4-7 for valence and arousal within both scenarios. From the second 

column of those tables, it was evident that NCA improved all performances signifi-

cantly except for arousal in subject-independent scenario and it was even lower than its 

baseline. If we compared results from arousal for both scenarios, the second column of 

Table 5 and 7, they were either similar or even worse than the ones in [19] although the 

later used neither feature selection nor NCA. It was also shown here that the improve-

ments from the baseline was somehow small.  

If we now turn to experiment with normalized HRV-based feature, the third column 

of Table 4-7, it was apparent that NCA improved all performances significantly as 

shown by p-values at the last row. Compare to standardized HRV-based features, im-

provements for normalized HRV-based features were considerably better than the 

other. 

Surprisingly, experiments within subject-independent scenario showed that the SD 

reduced around 50% after applying NCA, indicating higher consistency among the rep-

etitions than the ones in baselines, but not in subject-dependent scenario. These were 

unexpected as validation using this scenario usually resulted high variation. 

These experiments also presented the fact that whether valence had higher accuracy 

than arousal and the other way around depended on the normalization method. This 

finding brought an idea to combine standardized and normalized HRV-based feature, 

select the most discriminant features, and then apply NCA to evaluate if this combina-

tion offers more powerful features than working individually. By combining these two 

sets of features, result for arousal under subject-independent scenario looked promis-

ing, see the fourth column of Table 4-7. Besides, the accuracies were even better than 

the ones when both sets of features worked individually. The selected features in this 

scheme were from both parties showing that combining these two set of features was a 

choice. 

4.2 HHT-based features 

Performances for recognition in valence and arousal using HHT-based feature after 

EMD analysis under both scenarios are presented in the fifth column of Table 4-7. Ap-

plying NCA to HHT-based feature after EMD analysis enhanced the performance for 

both valence and arousal in both scenarios significantly, indicated by p-values, with the 

largest enhancement occurred in arousal under subject-independent scenario, see Table 

7.  

The sixth column of Table 4-7 displays the summary of experiments using HHT-

based feature after BEMD analysis. The improvements were large and enhanced the 

performance significantly as well. Of note, the baselines of HHT-based feature after 

BEMD were mostly the smallest among all experiments such that it offered the largest 

improvement.  
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4.3 Summary of the experiments 

Table 4-7 present comparisons side-by-side for each emotional label under subject-de-

pendent and subject-independent scenarios. Generally, the NCA could improve the per-

formances in both valence and arousal within both scenarios. An exception occurred 

for valence in subject-independent scenario using spectrogram-based features after 

BEMD [1], see the most right column of Table 6, and arousal in the same scenario using 

standardized feature, see the second column of Table 7, as the NCA failed to make it. 

Although the baselines for different set of features had large differences, the results 

after applying NCA were quite good by neglecting the exceptional cases above. The 

lowest accuracies before NCA corresponded to the highest improvements and vice 

versa. These facts were interesting as the NCA could make the end results almost close 

to each other no matter the feature extraction method applied to ECG signals. To our 

knowledge, this interesting phenomenon has not been exposed before. 

Related to computational cost, HRV-based feature extraction offered the lightest one 

with moderate performances after feature selection process and good results after ap-

plying NCA. On the other hand, a method utilizing spectrogram after BEMD had high 

cost because of the spectrogram analysis parameters, i.e. four values of window size 

and nine values of overlap parameters, and process related to BEMD [2]. Moreover, the 

feature selection process and NCA must search for all parameter combinations. Fur-

thermore, the end results from spectrogram-based feature after BEMD analysis could 

not beat the ones from combined standardized and normalized HRV-based features alt-

hough the former won the competition on the baseline. 

Experiments under subject-independent scenario expect higher variances as the clas-

sifiers never learn the structure from training data [1, 2]. However, NCA was able to 

successfully reduce the SDs significantly for HRV-based features. Even more interest-

ing, the NCA lowered them such that the values were close to the other scenario. There 

was no such improvement from the other feature extraction methods. This finding was 

also interesting but it needs more studies with other databases and feature extraction 

methods, and is left for future work. 

5 Conclusions. 

Enhancements of ECG-based emotion recognition on the MAHNOB-HCI database, 

processed by several feature extraction methods, using NCA were presented. Generally, 

NCA could successfully enhance the performance on this database significantly and 

provided new baselines. Results using combined standardized and normalized HRV-

based features were superior, except for valence in subject-dependent scenario. Alt-

hough spectrogram-based features after BEMD analysis outperformed the other feature 

extraction methods when NCA was not applied [2], the results were completely differ-

ent after applying NCA as shown in Table 4-7.  
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Different feature extraction methods had different classifier performances but the 

NCA could make the results from different methods closer to each other. This fact was 

interesting to note because so far feature extraction methods were very critical. How-

ever, this observation needs more elaboration with other databases and feature extrac-

tion methods. 

Spectrogram-based features after BEMD analysis had a heavy computational cost 

and the performances after NCA were not as good as in the baseline. On the other hand, 

HRV-based features had a light computational cost but offered better results after NCA. 

Having higher baseline accuracy brought no guarantee that applying NCA would result 

in as good improvement as with lower baseline levels. 

The NCA reduced the SDs around 50% from the baseline on experiments using 

HRV-based features under subject-independent scenario. To our knowledge, such re-

sults have not been explored before in many experiments using NCA. However, con-

firmation using other databases but MAHNOB-HCI database remains as future work. 
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