
Non-functional Requirements Documentation in Agile

Software Development: Challenges and Solution Proposal

Woubshet Behutiye1, Pertti Karhapää1

 Dolors Costal2, Markku Oivo1 and Xavier Franch 2

1 University of Oulu, Pentti Kaiteran Katu 1, 90014 Oulu, Finland
2 Universitat Politècnica de Catalunya, Campus Nord, Jordi Girona, 1-3, 08034

Barcelona, Spain

{woubshet.behutiye,Pertti.karhapaa,markku.oivo}@oulu.fi

{dolors,franch}@essi.upc.edu

Abstract. Non-functional requirements (NFRs) are determinant for the success

of software projects. However, they are characterized as hard to define, and in

agile software development (ASD), are often given less priority and usually not

documented. In this paper, we present the findings of the documentation practices

and challenges of NFRs in companies utilizing ASD and propose guidelines for

enhancing NFRs documentation in ASD. We interviewed practitioners from four

companies and identified that epics, features, user stories, acceptance criteria,

Definition of Done (DoD), product and sprint backlogs are used for documenting

NFRs. Wikis, word documents, mockups and spreadsheets are also used for doc-

umenting NFRs. In smaller companies, NFRs are communicated through white

board and flip chart discussions and developers’ tacit knowledge is prioritized

over documentation. However, loss of traceability of NFRs, the difficulty in com-

prehending NFRs by new developers joining the team and limitations of docu-

mentation practices for NFRs are challenges in ASD. In this regard, we propose

guidelines for documenting NFRs in ASD. The proposed guidelines consider the

diversity of the NFRs to document and suggest different representation artefacts

depending on the NFRs scope and level of detail. The representation artefacts

suggested are among those currently used in ASD in order not to introduce new

specific ones that might hamper actual adoption by practitioners.

Keywords: Non-functional requirements, quality requirements, NFR, agile

software development, non-functional requirements documentation.

1 Introduction

Non-functional requirements (NFRs) also referred to as quality requirements [21], rep-

resent software requirements that describe how software should perform [5]. These, for

instance include software requirements about performance, usability, maintainability,

reliability, and security. NFRs are characterized as vague and hard to define [17] and

quite often result in being under/un-specified and undocumented. In particular, this is

mailto:markku.oivo%7d@oulu.fi

2

reflected in agile software development (ASD) where working software is prioritized

over comprehensive documentation [2].

ASD’s focus on “individuals and interaction over processes and tools” encourages

minimal documentation [2]. ASD relies on tacit knowledge of the team and leans to-

wards reducing the focus on requirements specification and documentation. Addition-

ally, ASD is characterized with short iterations and it focuses on the quick delivery of

working software. In such cases, developers face time pressure, mainly focus on deliv-

ery of functionalities and often do not give consideration to NFRs [6]. However, in such

scenarios, neglecting NFRs may result in documentation debt with further conse-

quences of increase in maintenance cost and effort [16].

NFRs play important role in the success of software systems [5, 9]. In ASD, existing

requirements engineering practices fail short regarding the documentation of NFRs. For

instance, user stories of ASD have limitations in specifying and documenting NFRs

[15]. When NFRs are not documented, traceability becomes difficult, the likelihood of

forgetting NFRs increases and consequences such as weak user acceptance may also

result [7].

The findings from the scientific literature acknowledge the significance of handling

NFRs in ASD [3, 8, 15]. The challenges of NFRs documentation in ASD, the limitations

of ASD for handling NFRs, solution proposals for handling NFRs in ASD and the need

for further investigation of the topic are reported frequently.

In this paper, we present the challenges of NFRs documentation in ASD and NFRs

documentation practices identified from scientific literature and an ongoing empirical

study in the Q-Rapids project 1[10], about managing NFRs in ASD. We also present

guidelines for addressing challenges of NFRs documentation in ASD.

The rest of the paper is structured as follows. Section 2 describes the related work

on challenges of documentation of NFRs and current ASD practices for documenting

NFRs. Section 3 presents analysis of NFRs documentation practices and challenges

identified from the ongoing empirical study about management of NFRs in ASD. Sec-

tion 4 presents guidelines proposal for addressing documentation of NFRs in ASD. Fi-

nally, section 5 presents the conclusion.

2 Related work

2.1 Non-functional Requirements Documentation Challenges and Practices in

Agile Software development

Research in the documentation and optimal integration of NFRs in ASD has paramount

importance considering the vague nature of NFRs [17] and limitations in documenta-

tion practices of ASD [15]. Consequently there have been many studies investigating

the topic area [8, 14, 15, 20]. In what follows, we present some challenges of NFRs

management and current practices for documenting NFRs in ASD.

ASD puts less emphasis on the documentation of NFRs. Instead, its reliance on the

continuous interaction with customers is thought to minimize the need for specifying

1 http://q-rapids.eu/

3

NFRs [20]. In ASD, NFRs are ill defined and rarely documented, and there are no for-

mal acceptance tests for NFRs. As a result, problems arise at later stages of develop-

ment [14].

The negligence of NFRs appears to be a major concern of many agile projects and

is reported frequently [4, 14, 17]. For instance, Cao and Ramesh [4] identified the ne-

glect of NFRs and minimal documentation as major challenges of agile requirements

engineering in an empirical investigation of 16 software development organizations.

According to their findings, NFRs are given less priority in the early stage of ASD as

customers instead prioritize core functionality. Consequently, minimal documentation

and negligence of NFRs in ASD result in challenges of scalability of the software, and

introduce difficulty for new members joining the development team.

Failure to consider NFRs in the early stages of software development may result in

poor quality software, increased maintenance costs and time [5]. Indeed, when NFRs

are omitted in the early stages of development, they result in major issues at later stages.

ASD methods face challenges in addressing specific NFRs such as security [1]. For

instance, Scrum’s lack of consideration for integrating security (NFRs) in the develop-

ment process opens vulnerability to the software [1]. Absence of documentation for

security, limited amount of time for testing security in sprints, and difficulty for inte-

grating security related activities are major security issues in Scrum.

ASD mainly utilizes index cards, paper prototypes and storyboards to document fea-

tures and requirements [14]. Practices such as user stories are used for documenting

high level requirements [4]. However, they have limitations for specifying and docu-

menting NFRs [11, 12, 15]. Martakis et al. [15], found that agile developers face chal-

lenges while using user stories for documenting NFRs such as security and internation-

alization.

Consequently, there have been proposals for integrating, planning and managing

NFRs in ASD (e.g. AFFINE framework, NORMAP, NORPLAN, security backlog for

Scrum etc.) [3, 8, 15]. Lightweight practices and systematic solutions that integrate

NFRs in ASD without compromising quality of software and agility of the development

process are of high importance.

3 Non-functional Requirements Documentation Practices and

Challenges in ASD Projects

We conducted case studies following [19], in four case companies that are part of the

Q-Rapids project, in order to synthesize knowledge regarding management of NFRs in

ASD. We collected data through semi-structured interviews and applied qualitative

analysis on the transcriptions of the interviews. The four case companies providing the

use cases (UCs) for the project are of varying size and domain. The first company has

over 900 employees while the second has over 600 employees. The third is large scale

global company with over 100,000 employees while the fourth has less than 100 em-

ployees. We conducted 12 interviews, with roles that include product owners, project

managers, developers and quality assurance engineers, DevOps Specialist, and Scrum

masters.

4

Agile practices and iterative development are applied in all the UCs, of which three

are close to Scrum. In UC1, the company follows in-house tailored agile and iterative

development. However, they do not have any fixed sprint cycles. In comparison, the

development applied in UC2 and UC4 is the closest to Scrum with daily sprints and

weekly, or biweekly sprints. In UC3, which is the large-scale company, Scrum, or var-

iations of it, is applied in some of the development teams at lower levels of the organi-

zation. In UC3, a team can apply any development model they see fit. Continuous in-

tegration is applied in all the UCs.

The interview findings reveal that the companies employ varying practices for doc-

umenting both functional requirements (FRs) and NFRs. UC1 prefers to focus effort on

development and documents requirements in detail only when implementing features

that the developers are unfamiliar with. NFRs are communicated through whiteboards

during meetings. On the other hand, UC2 and UC3 document both FRs and NFRs.

Partly this is enforced through standards that the companies must comply with. In UC2

requirements are documented in epics, features, and user stories, and NFRs are also in

the acceptance criteria and Definition of Done (DoD). Additionally, word documents,

PowerPoints and wikis are used for documentation during the development. Along the

process, the documentation in the wikis becomes more of a technical description of the

software and the connection to the original high level requirements is lost. The inter-

viewees suggested including more design documentation in the user stories to preserve

this link. Using Word and PowerPoint for documentation is perceived challenging, as

these documents become easily detached from the actual software. This is due to the

fact that it is easy to forget updating a certain document with every change to the code.

In the case of UC3, which is a large and distributed organization, documentation is

important as there are teams in different locations that may be working on the same

feature. There is complex backlog structure and all the requirements are also docu-

mented in features that are broken down into sub features and further into tasks that can

be coded. Additionally, NFRs are documented in DoD and acceptance criteria. At the

lower task level, however, there are no NFRs in the backlog as such, but the tasks need

to meet the DoD including quality criteria. In UC3, documentation of NFRs is identified

as problematic. Our interviewees find the requirements management tool under use and

complexity of backlogs difficult and stated that they are not able to identify dependent

NFRs. Additionally, internally inherited NFRs such as operability are rarely docu-

mented and prioritized. UC4 documents all the requirements (FRs and NFRs) in the

epics and user stories. DoD and acceptance criteria (at user story, task and ticket levels)

are used for documenting NFRs. Additionally, excel spread sheets, mock-ups, product

backlogs and sprint backlogs are used for documenting NFRs.

In summary, we observe that three of the UCs follow up procedures for documenting

NFRs in ASD. The UCs followed a formal approach to specify and document NFRs.

However, in one UC, NFRs were not documented and were rather communicated in

face-to-face meetings facilitated by whiteboards and flip charts. In such cases, compa-

nies relied on the tacit knowledge of the developers. These developers discuss NFRs in

meetings (e.g. daily stand-ups, sprint planning meetings) and avoid detailed documen-

tations. Table 1 summarizes NFRs documentation practices and challenges identified

from the UCs.

5

Table 1. Summary of NFRs documentation practices and challenges in ASD UC companies

Use

case

NFRs documentation practice NFRs documentation

challenge

UC1

NFRs are not formally documented, however com-

municated through white board and when neces-

sary documented in word documents

NFRs not documented properly

and resulted in the lack of trace-

ability of NFRs, difficulty for

new developers joining team

UC2

NFRs documented in epics, features, and user sto-

ries, acceptance criteria and DoDs, wiki pages,

word docs with FRS

Lower-level details are lost in

documentation, word and power

point documents disconnected

from actual software

UC3
NFRs documented in features, acceptance cri-

teria and DoDs in complex backlogs

Complexity of backlogs makes

it hard to identify dependent

NFRs, internally generated

NFRs are not documented

UC4

NFRs documented in epics, user stories, in DoD

and acceptance criteria (at user story, task and

ticket levels), in product and sprint backlogs.

Mockups, wireframes, word, spreadsheet are also

used for documenting NFRs while Whiteboards

and flip charts facilitate communication of NFRs.

Not reported by interviewees

Our findings reveal that companies may face challenges when they fail to document

NFRs properly. For instance, in UC1 when relying on tacit knowledge of developers’,

the traceability of NFRs becomes difficult in later stages of development. The inter-

viewees pointed out that this introduces challenge to new developers joining the team

as they will have limited visibility of the NFRs. Scientific literature depicts similar

findings [11]. On the other hand, difficulty in identifying interdependent NFRs in com-

plex backlogs is another challenge identified in UC3.

The significance of NFRs for the success of software projects and specific challenge

of ASD in documenting NFRs that is also reflected in the UCs, prompt us to propose

lightweight and systematic guidelines for documenting NFRs in ASD.

4 Guidelines Proposal for Documenting NFRs in ASD

In order to cope with the diversity of approaches to represent requirements in agile

methods, we take the following assumptions that do not compromise the general ap-

plicability of our approach: 1) FRs are specified using both epics and user stories, 2)

user stories may include one or more acceptance criteria and 3) user stories will be

derived from epics and this link will be recorded.

The system NFRs to document may be quite diverse. Remarkably the scope of NFRs

may vary significantly. A NFR may refer to quality properties of the entire system to

be developed but it also may define quality properties for a particular service, function

or system component [18]. We distinguish three different types of scope for NFRs:

6

system-wide for those that apply to the entire system, group-wide for those that apply

to a set of user stories (or a group of functionalities) and local for those that apply to a

single user story (or functionality). Additionally, the level of detail in which a NFR is

specified may vary. Accordingly, we distinguish among generic NFRs, i.e., specified

at a high level of abstraction (near to the notion of goal) [13], and detailed NFRs, i.e.,

specified as a concrete feature or tied to a concrete solution. Quite often, a generic NFR

may be specified in an earlier development stage and, later on, it may be refined into a

set of detailed NFRs that operationalize it (e.g. the generic NFR “The system must be

usable” may be refined into “The system must allow reaching any functionality in no

more than 3 clicks” among other detailed NFRs). All combinations of scope and detail

are possible when specifying a NFR. For instance, “The critical functions of the system

must take less than 0.25 seconds, 90% of the times” is group-wide and detailed while

“The functionality for checking the account balance must have a good response time”

is local and generic.

The variability of NFRs both in scope and detail suggests that there is not a single

representation artefact that is adequate to cope with all of them. Therefore, a proposal

for documenting NFRs in ASD should provide different artefacts for representing them

and a set of guidelines to select the most adequate representation depending on the

features of each specific requirement. In our opinion, the artefacts should preferably be

those currently used in ASD in order not to introduce new specific artefacts that might

damage the agility of the process and hamper actual adoption by practitioners. There-

fore, our guidelines proposal, summarized in Table 2, consists of using either ac-

ceptance criteria, user stories or epics to represent NFRs.

Table 2. Guidelines for documenting NFRs according to their scope and detail

Scope Detail Representation

artefact

Observation

Local Generic User story (NFR

user story)

With a link to the functional user story to which

it applies

Detailed Acceptance

criteria

Appearing in the functional user story to which it

applies

Group

wide

Generic Epic The description of the epic must clarify to which

group of functionalities it applies (e.g. “critical

functions of the system”)

Detailed (1) User story or

(2) Acceptance

criteria

(1) The description of the user story must clarify

to which group of functionalities it applies or in-

clude links to the user stories it applies

(2) Appearing in the functional user stories to

which it applies

System

wide

Generic Epic The description of the epic must clarify it is sys-

tem-wide (e.g. by referring to “the system”)

Detailed User story The description of the epic must clarify to which

group of functionalities it applies (e.g. “critical

functions of the system”)

7

In the following, we describe the rationale used in our proposal (see Table 2) to select

the adequate representation artefact for a NFR based on the scope and detail of the NFR.

The simplest case is that of local and detailed NFRs. They can be locally represented,

in the affected user story, as acceptance criteria, because these NFRs neither affect the

other user stories nor need further refinements. Conversely, local and generic NFRs

cannot be documented as acceptance criteria because they are not concrete enough.

Therefore we propose to document them as user stories that should be linked to the

functional user story to which they apply. Then, the acceptance criteria of this latter

user story may refine the generic NFR.

For system-wide NFRs, we propose to use epics if they are generic and user stories

if they are detailed. System-wide and generic NFRs are documented by epics because

they are high level qualities of the whole system and thus they are relevant requirements

that will probably need to be further detailed by means of user stories (derived from

that epic). These latter user stories will then be representing system-wide and detailed

NFRs.

For group-wide NFRs, our proposal is similar to that of system-wide NFRs. How-

ever, if they are detailed and the group of functionalities affected by the NFRs is small,

we propose, as an additional option to document them as acceptance criteria of the user

stories to which they apply (like local and detailed NFRs).

5 Conclusion

In this paper, we presented the findings of NFRs documentation practices in ASD pro-

jects. We identified that NFRs are documented together with FRs. The UCs applied

epics, features, user stories, acceptance criteria and DoD of user stories, and backlogs

to document NFRs. Whiteboard and flip charts are used to facilitate the communication

of NFRs in cases where they are not documented. The difficulty in the traceability of

NFRs, problems in identifying interdependent NFRs and detached documentation from

actual software, were among the challenges of NFRs identified in the UCs. Moreover,

we propose guidelines for documenting NFRs in ASD. The proposed guidelines

acknowledge diversity of NFRs and utilize existing ASD artefacts such as epics, user

stories and acceptance criteria for documenting NFRs. In addition, the guidelines con-

sider different levels for the scope and details of abstraction of NFRs.

Acknowledgments. This work is a result of the Q-Rapids project, which has re-

ceived funding from the European Union’s Horizon 2020 research and innovation pro-

gram under grant agreement N° 732253.

References

1. Azham, Z. et al.: Security backlog in scrum security practices. In: 2011 5th Malaysian

Conference in Software Engineering, MySEC 2011. pp. 414–417 (2011)

2. Beck, K. et al.: Agile Manifesto, http://agilemanifesto.org/.

8

3. Bourimi, M. et al.: AFFINE for enforcing earlier consideration of NFRs and human

factors when building socio-technical systems following agile methodologies. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). pp. 182–189 (2010)

4. Cao, L., Ramesh, B.: Agile Requirements Engineering Practices: An Empirical Study.

Software, IEEE. 25, 1, 60–67 (2008)

5. Chung, L. et al.: Non-Functional Requirements in Software Engineering. (2000)

6. Cysneiros, L.M., Yu, E.: Non-Functional Requirements Elicitation. In: do Prado Leite,

J.C.S. and Doorn, J.H. (eds.) Perspectives on Software Requirements. pp. 115–138

Springer US, Boston, MA (2004)

7. Eckhardt, J. et al.: On the Distinction of Functional and Quality Requirements in

Practice. In: Abrahamsson, P. et al. (eds.) Product-Focused Software Process

Improvement - 17th International Conference, PROFES 2016, Proceedings. pp. 31–47

(2016)

8. Farid, W.M., Mitropoulos, F.J.: NORPLAN: Non-functional Requirements Planning for

agile processes. In: 2013 Proceedings of IEEE Southeastcon. pp. 1–8 (2013)

9. Glinz, M.: On Non-Functional Requirements. 15th IEEE Int. Requir. Eng. Conf. (RE

2007). 21–26 (2007)

10. Guzmán, L. et al.: How Can Quality Awareness Support Rapid Software Development?

A Research Preview. In: Grünbacher, P.,Perini, A. (eds.) REFSQ 2017. LNCS, vol.

10153, pp. 167–173. Springer, Cham (2017). doi:10.1007/978-3-319-54045-0_12

11. Heikkilä, V.T. et al.: A Mapping Study on Requirements Engineering in Agile Software

Development. 2015 41st Euromicro Conf. Softw. Eng. Adv. Appl. 199–207 (2015)

12. Inayat, I. et al.: A systematic literature review on agile requirements engineering

practices and challenges,Computers in Human Behavior 51, 915–929 (2015)

13. Lamsweerde, A. Van et al.: Goal-oriented requirements engineering: a guided tour.

Proc. Fifth IEEE Int. Symp. Requir. Eng. 249–262 (2001)

14. De Lucia, A., Qusef, A.: Requirements engineering in agile software development. In:

Journal of Emerging Technologies in Web Intelligence. pp. 212–220 (2010)

15. Martakis, A., Daneva, M.: Handling requirements dependencies in agile projects: A

focus group with agile software development practitioners. In: Proceedings -

International Conference on Research Challenges in Information Science. (2013)

16. Mendes, T.S. et al.: Impacts of agile requirements documentation debt on software

projects. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing

- SAC ’16. pp. 1290–1295 (2016)

17. Paech, B., Kerlow, D.: Non-Functional Requirements Engineering - Quality is essential.

Proc. 10th Anniv. Int. Work. Require- ments Eng. Found. Softw. Qual. 237–250 (2004)

18. Pohl, K.: Requirements engineering: fundamentals, principles, and techniques. Springer

Heidelberg (2010)

19. Runeson, P. et al.: Case Study Research in Software Engineering. John Wiley & Sons,

Inc., (2012).doi:10.1002/9781118181034

20. Sillitti, A., Succi, G.: Requirements engineering for agile methods. In: Engineering and

Managing Software Requirements. pp. 309–326 (2005)

21. Wagner, S.: Software product quality control. Springer, Heidelberg (2013)

