
HAL Id: hal-01590522
https://hal.science/hal-01590522

Submitted on 19 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Private and Efficient Set Intersection Protocol for Big
Data Analytics

Zakaria Gheid, Yacine Challal

To cite this version:
Zakaria Gheid, Yacine Challal. Private and Efficient Set Intersection Protocol for Big Data Analytics.
17th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP-
2017), 2017, Helsinki, Finland. pp.149-164. �hal-01590522�

https://hal.science/hal-01590522
https://hal.archives-ouvertes.fr


Private and Efficient Set Intersection Protocol
For Big Data Analytics

Zakaria Gheid1 and Yacaine Challal1,2,3

1 Ecole nationale supérieure d’informatique,
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Abstract. Private Set Intersection (PSI) is a fundamental multi-party
computation primitive used to secure many political, commercial, and
social applications. PSI allows mistrustful parties to compute the inter-
section of their private sets without leaking additional information. PSI
protocols has been largely proposed for both the semi-honest and the
malicious settings. Nevertheless, the semi-honest setting does not suf-
fice in many realistic scenarios and security in the malicious setting is
built upon cryptographic schemes, which require hard assumptions and
induce a high computational cost. In this work, we propose a novel two-
party PSI protocol secure under the mixed model, where the server may
be semi-honest and the client may be malicious. We build our protocol
upon matrix algebra without using any cryptographic schemes or non-
standard assumptions and we provide simulation-based security proof.
Our protocol achieves a linear asymptotic complexity O(kv + kc) for
communications and server computations, where kv and kc are sizes of
participating parties’ sets. Besides, we compare empirical performance
of our solution to the insecure hashing solution used in practice. Exper-
imental results reveal efficiency and scalability of our new PSI protocol,
which makes it adequate for Big Data analytics.

Keywords: Multi-Party Computation, Private Set Intersection, Big Data
Analytics

1 Introduction

Private set intersection (PSI) protocol allows a client and a server to jointly
compute the intersection of their private input sets without leaking any ad-
ditional information. The client should learn the intersection and the server
should learn nothing. PSI functionality is a core building-block for a variety
of privacy-preserving Big Data applications such as relationship path discovery
in social networks [1], online recommendation systems [2], medical studies of
human genomes [3], suspects detection by government agencies [4] and other
applications [5, 6].



As a very active research field, PSI problem has been largely studied and
several protocols have been proposed for both the semi-honest setting (meaning
that the adversary follows the protocol specifications) and the malicious setting
(meaning that the adversary may deviate arbitrarily from the protocol) [7, 6].
However, there has been a poor adoption of PSI protocols in real applications
due to several reasons [7]. The semi-honest assumption provides weak security
guarantees and does not suffice for many realistic scenarios [8]. On the other
hand, PSI protocols that are secure against malicious adversaries achieve an
excessive overhead in communication and computation costs [7]. This is mainly
due to the strong assumptions that require to be satisfied.

Recently, there has been a great interest in improving the efficiency of malicious-
resistant PSI protocols [9, 6, 10]. Several works [11, 5] have achieved linear com-
munication and computation complexities under non-standard security models
as the Oracle [12] and the Common Reference String [13] models. Other works
[6] proposed efficient PSI protocols with linear cost under the standard model,
but, relying heavily on strong security assumptions and Homomorphic public
key cryptosystems [14]. Despite an efficient asymptotic complexity, homomor-
phic encryption induces a high computational overhead and so, does not meet
Big Data requirements [15].

Our Contribution. Facing the need for more efficient PSI schemes under
realistic security models, we propose a novel PSI protocol that is secure under
the mixed model of adversaries [16], where the client may be corrupted by a ma-
licious adversary and the server may be corrupted by a semi-honest adversary.
This model is more realistic than semi-honest one, since server entities are mostly
governed by laws requiring data privacy and security. We give a simulation-based
security proof for both cases where the client is corrupted and where the server
is corrupted. We build our protocol only upon matrix algebra without any cryp-
tographic scheme to cope with Big Data requirements in terms of computation
efficiency. We achieve a linear complexity in communication and server compu-
tation costs and we confirm the efficiency of our protocol through experimental
evaluations.

In Section 2, we provide a short survey on literature works in PSI field and we
discuss them. Section 3 is devoted to preliminaries and standard notations used
throughout this work. In Section 4, we present our methodology to build a novel
PSI protocol and we describe its design. In Section 5, we give a simulation-
based security proof using Real/Ideal paradigm [17]. In section 6, we analyse
asymptotic complexities of communications and computations involved in our
protocol. Then, we make experimental performance evaluations in Section 7 and
we end up this work by a final conclusion.

2 Related Work

Private set intersection (PSI) problem is a fundamental functionality that has
been largely studied due to its important applications. In this section, we review



important PSI protocols working in the standard (plain) model, where security
is based only on complexity assumptions.

Assume a client (C) and a server (V ) having private sets X and Y of sizes kc
and kv respectively. Two main approaches were used to solve PSI(X,Y), namely
Oblivious Polynomial Evaluation (OPE) [18] and Oblivious Pseudo-Random
Functions (OPRF) evaluation [19].

OPE based-PSI. In this approach, C defines a polynomial P (.) such that
P (x) = 0 for each x ∈ X, and sends to V homomorphic encryptions of the
coefficients of P (.). Then, V computes the encryption of (r.P (y) + y) for each
y ∈ Y , using homomorphic properties of the encryption system and a fresh
randomness r. Finally, C decrypts the received cyphertexts and gets either el-
ements of the intersection (if plaintexts match an element of X) or random
values. Following this approach, Freedman et al. [2] proposed two PSI protocols
for semi-honest and mixed models using balanced allocations. They incur linear
communications and linear client computations besides quadratic server com-
putations that can be reduced to O(kc + kv log log kc). Kissner and Song [20]
proposed OPE-based protocols that can involve more than two parties in semi-
honest and malicious settings. The former has a linear communication cost, but,
incurs O(kv.kc) computations. In the latter, authors rely on expensive generic
zero knowledge proofs to achieve correctness [5, 10]. Later, Dachman-Soled et
al. [21] proposed a PSI protocol based on [20]. They employ a secret sharing of
the polynomial inputs and avoid the use of generic zero knowledge proofs. Their
construction incurs communication of O(kv.k

2 log2kc + k.kc) and computation
of O(kv.kc.k logkc + kv.k

2log2kc), where k is a security parameter. Recently, [6]
proposed a more efficient OPE-based PSI protocol for malicious settings. Their
construction incurs O(kv + kc) communications and implies the computation
of O(kc + kv log log kc) under the strong Decisional Diffie-Hellman assumption
(strong-DDH). They introduce hashing technique into their construction and
implies the computation of O(kc + kv log kc) under the DDH assumption.

OPRF-based PSI. They rely on a secure computation of a pseudo random
function (PRF) fk(x) on key (k) introduced by the server (V ) and input (x) intro-
duced by the client (C), such that C should only learn fk(x), whereas V should
not learn x. PSI functionality was implemented using OPRF as follows: V defines
a random key (k) for a PRF fk(.) and computes the set fky = {fk(y) : y ∈ Y }.
Then, V and C executes an OPRF protocol where V inputs fk(.) and C inputs
the set X and gets the set fkx = {fk(x) : x ∈ X}. At the end, V sends the set
fky to C that evaluates fkx ∩ fky. OPRF was used by Hazay and Lindell [22]
to develop efficient PSI protocols secure against adversaries that are more real-
istic than semi-honest ones. They proposed a maliciously-secure protocol with
simulation-proof for one corruption case (the client only). Besides, they proposed
another PSI protocol secure under the covert model of adversaries, which is a
non-standard model between semi-honest and malicious [21]. Their protocols in-
cur O(kv.p(n) + kc) communications and computations, where elements of the



sets are taken from {0, 1}p(n). Jarecki and Liu [11] improved the protocol of [22]
to propose a more efficient PSI protocol secure in the presence of both mali-
cious parties in the Common Reference String Model [13], where it is assumed
that all parties have access to a common string chosen from a predetermined
distribution. Their protocol incurs O(kv + kc) communication and computation
costs, but, its security proof runs an exhaustive search on the input domain of
the PRF, which implies that the complexity of the simulator will grow with the
input domain of the PRF [6]. In addition, their construction requires a trusted
third party for a safe RSA generation [5]. Later, Hazay and Nissim [9] proposed
a PSI protocol secure in the setup of malicious parties and based on standard
cryptographic assumptions (without requiring a trusted third party). Authors
improved the work of [2] by introducing a zero-knowledge proof that C uses to
prevent it from deviating from the protocol and a technique based on a hiding
commitment scheme with an OPRF evaluation protocol to prevent deviation
of V from the protocol. Their protocol incurs O(kv + kc) communications and
O(kc + kv log log kc) computations. Moreover, Their construction is fairly com-
plicated and uses both OPE and OPRF approaches [6]. Recently, [6] introduced
more efficient OPRF-based PSI protocols with O(kv+kc) costs under the strong-
DDH assumption and O((kv+kc) log (kv+kc)) communication and computation
costs under the DDH assumption.

In this work, we propose a novel PSI protocol approach based on matrix
representation of the private sets. We use efficient matrix algebra without any
cryptographic operations and we provide security under the mixed model of
adversaries. Our protocol incurs O(kv + kc) communication and server compu-
tation costs while maintaining fairness. We provide a detailed discussion about
efficiency of our work in Section 6.2 and Section 7.2.

3 Preliminaries

In this section, we present preliminaries and standard security notations used in
this work. More specific notations will be described later.

3.1 Private Set Intersection

In what follows, we give a formal definition of the Private Set Intersection (PSI)
computation. Let C and V denote a client and a server. A private set intersection
(PSI) scheme is a two-party computation protocol between C and V , where C
holds a set of private inputs of size kc, drawn from some domain of size n,
and V holds a set of private inputs of size kv drawn from the same domain.
At the end of the protocol, C should learn which specific inputs are shared by
both C and V , whereas, V should learn nothing. Let X = {x1, ..., xkc} and
Y = {y1, ..., ykv} denote respectively C’s and V ’s sets of inputs, then, C learns
PSI(X,Y ) = X ∩ Y 7−→ {xi | ∃j : xi = yj}. This is a branch of multi-party
computation (MPC) problems [23].



3.2 Multi-Party Computation

Let us consider a set of participants that want to jointly compute the value
of a public function f relying on their private data. Let P1,...,Pn denote the
participants and v1,...,vn their private data respectively. We call Multi-Party
Computation (MPC) model the running process of f(v1, ..., vn). Let Π denote a
multi-party protocol executed by n participants (P1,...,Pn) in order to evaluate
the function f . Let v denote the set of inputs (v1, ..., vn) and sec denote the set
of security parameters.

Notation 1 Let viewΠE (w,sec)i denote the set of messages received by the party
Pi∈{1,...,n} along with its inputs and outputs during the execution E of Π on the
set of inputs w and security parameters sec.

Notation 2 Let outΠE (w,sec)i denote the output of the party Pi∈{1,...,n} by the
execution E of the protocol Π on the set of inputs w and security parameters
sec. Let outΠE (v,sec) denote the global output of all collaborating parties from the
same execution of Π, where

outΠE (w, sec) = ∪ni=1out
Π
E (w, sec)i (1)

In next section, we introduce a novel MPC protocol for private set intersection.
Later, we will use these MPC notations to prove the security of our proposal.

3.3 Privacy Threat Model

In MPC protocols, the possible security threat raising from a corrupted party
that participates to the execution of the protocol can be classified according to
the corrupting adversary’s model

Passive model (semi-honest) In this model, the corrupted parties are sup-
posed following the protocol’s specifications, yet they are allowed to analyse all
information gathered during the execution of the protocol.

Active model (malicious) In this model, the corrupted parties may randomly
deviate from the protocol specifications. The two common behaviors in such a
model are a) aborting the protocol untimely or b) injecting fake inputs.

Mixed model This is an extension of the above assumed behavioral models, in
which the adversary can either corrupt some parties actively, and other parties
passively. Thus, allowing each party to behave according to its corruption model
(active or passive).

4 A Novel Private And Efficient Set Intersection Protocol

In this section, we present our novel private set intersection protocol and we
describe its design.



4.1 Overview and motivation

The hash-based PSI solutions use a commutative one-way hash function to en-
crypt all items [24]. Each party encrypts its items with its own key, then, each set
is passed to the other party to be encrypted. Since, encryption is commutative,
encrypted values will be equal if and only if the original values were the same.
This hash-based scheme is very efficient, but, provides weak security guarantees
if the input domain is not large or does not have a high entropy [7]. One party
could run a brute force attack by applying all items that can be in the input
domain to the hash function and compare the results to the received hashes.

In this work, we introduce a novel matrix model that is secure against such
brute force attacks. To do this, we represent the private input sets as row-
matrices (each matrix corresponds to a private set and each row within it cor-
responds to an element in the set). Then, each party obfuscates its matrix by
performing a product with a random matrix chosen independently from the in-
put domain. Next, each party sends its resultant matrix to the other party to
be multiplied by the other random matrix. Since, matrix product is not com-
mutative, which is required for the correctness of the scheme, the two parties
will interchange the side of the matrix product (left multiplication and right
multiplication). At the end, the two resultant matrices will be checked for rows
equality as each row corresponds to an original element in the set.

4.2 Notational Conventions

In this work, we use a special typographical style to denote matrix tools that we
use to build our proposal. The used notational conventions are as follows.

– We represent matrices by capital letters in bold with one-underline, e.g. M.
– The set of all m-by-n matrices is denoted M(m,n).
– Elements of matrix are indexed between brackets, e.g. M[2, 5]. An asterisk

is used to refer to a whole row or column, e.g. M[1, ∗].
– The multiplication operator between two matrices is denoted ⊗.

4.3 Protocol Design

To introduce our novel private set intersection protocol (Π-SI), we consider a
client denoted C and a server denoted V having respectively X = {x1, ..., xk}
and Y = {y1, ..., yk} sets of private data and want to securely get the intersection
between their sets (Section 3.1). Assume for 1 ≤ i ≤ k and 1 ≤ j ≤ k: xi and
yj ∈ Rn. Let M1 and M2 denote random invertible matrices used by C and V
respectively to obfuscate their sets, where M1 ∈M(k, k) and M2 ∈M(n, n). Let
MX and MY denote the private sets X and Y respectively, represented as row
matrices, where MX ∈M(k, n) and MY ∈M(k, n). Without loss of generality,
we consider the case where the sets X and Y have the same size (k) and we
present the detail of Π-SI protocol in Algorithm1. Later, we describe the more
general case.



 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

ALGORITHM 1 (ᴨ-SI): A Private and Efficient Set Intersection Protocol 

INPUT. C s input is a set X = {x1, . . ., xk}, V s input is a set Y = {y1, . . ., yk }. 

The elements in the input sets are taken from a domain of size n.  

REQUIRE. 0 < k < n (where k is the size of the sets) 

PRE-PROCESSING.  

 

    STEP1.  performs the following 

1. Generates a random invertible M1 ϵ 𝕄 (k,k) 

2. Computes M1X = M1 ⨂ MX 

3. Sends M1X to V  

 

a.  Creates MX ϵ 𝕄 (k,n) with X  

b. V Creates MY ϵ 𝕄 (k,n) with Y  

 

   STEP2. V erforms the following 

4. Generates a random invertible M2 ϵ 𝕄 (n,n) 

5. Computes M1X2 = M1X ⨂ M2 

6. Computes MY2  =  MY  ⨂ M2 

7. Sends M1X2 and MY2 to  

 

   STEP3.  performs the following 

8. Computes  M1Y2 = M1 ⨂ MY2 

9. Compares M1X2[i,*] and M1Y2[j,*] 

such that for any (1≤i≤k) and (1≤j≤k), if 

M1X2[i,*]= M1Y2[j,*], then, MX[i,*]= 

MY[j,*]. Therefore, adds the row MX[i,*] to 

the set  (defined as an empty set). 

M1X 

OUTPUT.  returns  that contains all items of the intersection 

between X and Y. 

 

M1X2, MY2  

4.4 Generalization

In a more general case, we consider the client (C) having kc elements and the
server (V ) having kv elements. Then, V can simply creates several matrices
MYi ∈ M(k, n), where i > 1 (Instruction b. Algorithm1) and distributes its kv
elements on them. Thus, V will repeat instruction 6 for each MYi and will send⋃
i>1MYi instead of MY during instruction 7. At the reception, C will perform

instruction 8 and instruction 9 for each received MYi.



5 Security Analysis

In this section, we present a simulation-based security proof for our protocol
using the Real/Ideal model [17].

5.1 Real/Ideal Model

Let Π denote a multi-party protocol executed by m participants (P1,...,Pm) in
order to evaluate a function f . Let B denote the class of adversary that may
corrupt participants in Π. Let R and D denote respectively the real and the
ideal executions of Π on the set of inputs w and the set of security parameters
sec.

During a real execution (R) we consider the presence of an adversary de-
noted A that behaves according to the class B while corrupting a set of par-
ticipants Pi(1≤i≤m). At the end of R, uncorrupted parties output whatever was
specified in Π and the corrupted Pi outputs any random functions of their
viewΠR (w,sec)i.

During an ideal execution (D) we consider the presence of a trusted incor-
ruptible party denoted T , which receives the set of inputs w from all participants
in order to evaluate the function f in the presence of an adversary denoted S.
We assume S corrupts the same Pi as the correspondent adversary A of real
execution, and behaves according to the same class B before sending inputs to
T . By the end of D, uncorrupted participants output what was received from T
and the corrupted Pi output any random functions of their viewΠD (w,sec)i.

Definition 1. Let Π and f be as above. We consider Π a secure multi-party
protocol if for any real adversary A having a class B and attacks the protocol Π
during its execution on the set of inputs w and the set of security parameters sec,
there exists an adversary S in the ideal execution having the same class B and

that can emulate any effect achieved by A. Let
d≡ denote the distribution equality.

We formalize the definition of a secure multi-party protocol Π as follows

{outΠR (w, sec)} d≡ {outΠD(w, sec)} (2)

5.2 Security Proof

In what follows, we give security simulations of Π-SI protocol using Real/Ideal
paradigm. The allowed behavioural class of adversary is the mixed one (Section
3.3), where the client (C) is actively corrupted and the server (V ) is passively
corrupted.

Let A, S and T denote respectively a real adversary, an ideal adversary and
a trusted third party, where A and S have the same class. Let Π denote the
Π-SI protocol (Algorithm1), w denote the set of inputs {MX,MY}, sec denote
security parameters that will be presented below and PSI(X,Y ) denote the
private set intersection between X and Y , which are the private sets of C and



V respectively. For simplicity, we give a simulation for the specific case where
the sets X and Y have the same size (k). Next, we show how to generalize the
proof.

Theorem 1. Given a set of security parameters (sec) defined as sec = {(n, k) ∈
N2 : 0 < k < n}. Under these conditions, the protocol Π-SI defined in Algorithm1
is a secure multi-party protocol against an active corruption of C.

Proof. Assume C is actively corrupted by A. Then, it can only inject fake inputs
(MX) since aborting the protocol untimely will have no meaning. Assume C
sends a fake MX. In this case, S can emulate A by just handling the fake MX
and sends it to T , which performs the required computation and sends back
PSI(X,Y ) to C. Thereby, completing the simulation. At the end, the views of
C in Ideal and Real executions will be as follows

viewΠD (w, sec)C = {MX, PSI(X,Y )} (3)

viewΠR (w, sec)C = {MX,M1X2,MY2, PSI(X,Y )} (4)

Otherwise, M1X2 = M1X ⊗ M2, where M1X ∈M(k, n) and M2 ∈M(n, n).
According to security parameters (sec), we have k < n. This, preserves well the
privacy of M2. Thereby, M1X2 that contains (k × n) equations opposite to
(n× n) unknowns for C, will not involve meaningful information for it and can
be reduced from its view. Likewise, MY2 = MY ⊗M2, where MY ∈M(k, n)
and M2 ∈ M(n, n). Then, MY2 will contain (k × n) equations opposite to
((k×n)+(n×n)) unknowns for C, which does not involve meaningful information
for it and can be so, reduced from its view. After these reductions, the view of
C in real execution could be described as follows

viewΠR (w, sec)C = {MX, PSI(X,Y )} (5)

Thus, relying on (3) and (5) we get

{outΠR (w, sec)C}
d≡ {outΠD(w, sec)C} (6)

On the other hand, the uncorrupted V can not be affected by the corruption of
C since V does not require any output in real execution. Thus, T will simply
not send it any output during ideal execution. This, means that

{outΠR (w, sec)V }
d≡ {outΠD(w, sec)V } (7)

Through (6) and (7), we proved by simulation that all effects achieved by a
real active adversary corrupting C can also be achieved in an ideal execution.
Then, Π-SI is a secure multi-party protocol against active corruption of C
(Definition1).

Theorem 2. Given a set of security conditions (sec) defined as sec = {(n, k) ∈
N2 : 0 < k < n}. Under these conditions, the protocol Π-SI defined in Algorithm1
is a secure multi-party protocol against a passive corruption of V .



Proof. Assume V is passively corrupted. In this case, V should follow the specifi-
cation of the protocol Π-SI, yet, it is allowed to analyse all data gathered during
the execution. Then, S will just handle V ’s input and sends it to T , which
performs the required computation and sends PSI(X,Y ) to C while sending
nothing to V . Thereby, completing the simulation. At the end, the views of V
in Ideal and Real executions will be as follows

viewΠD (w, sec)V = {MY} (8)

viewΠR (w, sec)V = {MY,M1X} (9)

Moreover, M1X = M1 ⊗MX, where, M1 ∈M(k, k) and MX ∈M(k, n). Then,
since we defined 0 < k as security parameter (sec), we get (k×n)<((k×n)+(k×
k)). Thus, M1X that contains (k × n) equations opposite to ((k × n)+(k × k))
unknowns for V , will not involve meaningful information for it and can be so,
reduced from its view. After reduction, we obtain

viewΠR (w, sec)V = {MY} (10)

Thus, relying on (8) and (10) we get

{outΠR (w, sec)V }
d≡ {outΠD(w, sec)V } (11)

On the other hand, the uncorrupted C outputs what was received from T in
ideal execution, which is PSI(X,Y ) according to the simulation given above
and outputs what was specified int the protocol Π-SI in real execution, which is
PSI(X,Y ) (Algorithm1, Output section) . Then, we have

{outΠR (w, sec)C}
d≡ {outΠD(w, sec)C} (12)

Through (11) and (12) we proved by simulation that all effects achieved by a
real passive adversary corrupting V can also be achieved in an ideal execution.
Then, Π-SI is a secure multi-party protocol against passive corruption of V
(Definition1).

Corollary 1. Given a set of security conditions (sec) defined as sec = {(n, k) ∈
N2 : 0 < k < n}. Under these conditions, the protocol Π-SI defined in Algorithm1
is a secure multi-party protocol in the mixed model of adversary, where C is
actively corrupted and V is passively corrupted.

Proof. Corollary1 relies heavily on the Theorem1 and Theorem2 proved above,
while considering separately the case when the client (C) is corrupted and the
case when the server (V ) is corrupted. We assume that if both parties are cor-
rupted we are not required to provide security guarantees.

Note 1. To generalize the proof (Section 4.4), assume the client (C) has kc ele-
ments and the server (V ) has kv elements. This, will affect the view of C in real
execution when it is corrupted (Equation (4)), which will be defined as follows

viewΠR (w, sec)C = {MX,M1X2,
⋃
i>1

MYi2, PSI(X,Y )} (13)



Where MYi2= MYi ⊗M2 for i > 1 . According to security parameters (sec),
M2 is unknown for C (Proof Theorem1), then, each MYi remains private and
does not involve meaningful information for C and can be so, reduced from its
view. Likewise, M1X2 can be reduced from the view of C in Real execution
(Proof Theorem1). Thus, Theorem1 remains valid in the general case. On the
other hand, the the views of V when it is corrupted will be augmented with⋃
i>1MYi instead of MY. However, this will affect the views of V in both ideal

and real executions. Thus, Theorem2 remains valid in the general case.

6 Complexity Analysis

In this section, we analyse asymptotic complexities of communications and com-
putations involved in our protocol (Π-SI: Algorithm1, Section 4.3). We make
comparison with recent efficient protocols and we highlight our improvements.

6.1 Analysis

Let C and V denote a client and a server and kc and kv denote respectively the
number of elements in their sets (General case, Section 4.4), where each element
is assumed to be in Rn. As off-line operations do not affect significantly the
running time, we do not consider complexities of random matrices generation
(Algorithm1: Pre-processing).

In step 1, getting M1X requires O(k2
cn) computations and sending M1X

costs O(kcn). In step 2, the server (V ) performs O(kcn
2) operations to get

M1X2, then, it performs at most ((kv/kc)+1)O(kcn
2) to get the set

⋃
i>1 MYi2.

This, results in O((kv + kc)n
2). Moreover, sending M1X2 costs O(kcn) and

sending
⋃
i>1 MYi2 is bounded by O((kv + kc)n). In step 3, C should compute

M1Yi2 for each MYi2 received (i > 1), which requires at most O((kv.kc)n).
As a the length of elements (n) is assumed to be fixed for each application, we

can reduce the complexities formulas to get a communication cost of O(kv+kc), a
server computation cost of O(kv+kc) and a client computation cost of O(kv.kc).

6.2 Discussion

In communication cost, we have achieved a linear complexity of O(kv + kc). As
far as we know, this is the most efficient complexity achieved by protocols work-
ing under standard assumptions and secure against malicious clients. The client
computation cost is quadratic, bounded by O(kv.kc), which is the minimum re-
quired for the native set intersection verification. Moreover, our protocol brings
a significant improvement on the server side computations, costing a linear com-
plexity of O(kv + kc) without requiring any hard or non-standard assumption.
This efficient cost will ensure the scalability of our protocol for multi-client con-
texts. To the best of our knowledge, the only standard set intersection protocol,
which is secure against malicious client and that reached O(kv + kc) computa-
tions on the server side without requiring non-standard assumption is [6]. The



latter protocol is proven to be secure under the strong Decisional Diffie-Hellman
assumption. In contrast, our protocol does not require any cryptographic as-
sumption, which makes it more practical. In Table1, we summarize complexities
of some representative state-of-the art PSI protocols under the standard model.

Table 1: Complexity analysis of state-of-the art PSI protocols

Reference
Adversary

Model
Assumption Communication

Server
Computation

Client
Computation

[2] Semi-honest
Homomorphic

Encryption
O(kv+kc) O(kc + kv log log kc) O(kv+kc)

[20] Malicious
Homomorphic

Encryption
O(kv+ kc) O(kv .kc) O(kv.kc)

[9] Malicious
Decisional

Diffie-Hellman
O(kv+ kc) O(kc + kv log log kc) O(kv+ kc)

[6] Malicious
Decisional

Diffie-Hellman
O(kv+ kc) O(kc + kv log kc) -

[6] Malicious
d-strong Decisional

Diffie-Hellman
O(kv+ kc) O(kv+ kc) -

[10] Semi-honest
Homomorphic

Encryption
O(kv+ kc) O(kv) O(kc.kc)

[10] Malicious
Homomorphic

Encryption
O(kv + kc log kv) O(kv) + O(kv.kc) Mult. O(kv .kc)

Our Work Mixed
No Crypto-
Assumption

O(kv+ kc) O(kv+ kc) O(kv.kc)

7 Empirical Evaluation

In this section, we evaluate the computation performances of our proposed Π-SI
protocol and we make comparison with the efficient and insecure hashing scheme
used in practice.

7.1 Experimental environment and scenarios

In order to prove the efficiency of Π-SI protocol in practical scenarios, we eval-
uate the computational time required by a server (V) and a client (C) while
executing Π-SI protocol in a real environment. We make two experiments de-
noted E1 and E2 to simulate respectively the case of equal and unequal dataset
sizes. Let kv and kc denote the sizes of the set of V and the set of C respectively,
where each element within a set is assumed to be in Rn. Let mult and add denote
one multiplication and one addition respectively. We evaluate the computational
costs involved in Π-SI protocol (Algorithm1) as follows



Cost
(Π−SI)
V = n2(kv + kc) mult + n(n− 1)(kv + kc) add

Cost
(Π−SI)
C = nkc(kv + 2kc) mult + n(kc − 1)(kv + 2kc) add

For more realistic results, we compare the performance of our solution to the
hashing PSI scheme used in practice. We chose a simple and efficient commuta-
tive hash function H, such as Hk(x) = xk mod p, where k is a 32-bit security
parameter and p is a 32-bit random prime. Let exp and mod denote respectively
one exponentiation and one modulo. We evaluate the hashing scheme as follows

Cost
(hashing)
V = Cost

(hashing)
C = n(kv + kc) exp+ n(kv + kc) mod

We make evaluations on the same elements using a custom simulator built
in Python and an Intel i5-2557M CPU running at 1.70 GHz and having a 4 GB
of RAM.

7.2 Results and discussion

Table 2: E1. Running time of Π-SI and the insecure hash solution over equal set sizes

kv
(kc=kv)

26 27 28 29 210

Server
Computation

Cost (s)

Π-SI 0.72 1.33 2.62 5.38 10.77

Hashing 0.50 1.28 2.76 5.64 11.40

Client
Computation

Cost (s)

Π-SI 0.50 2.06 8.04 32.53 129.35

Hashing 0.50 1.28 2.76 5.64 11.40

Table 3: E2. Running time of Π-SI and the insecure hash solution over unequal set sizes

kv
(kc = 26)

26 27 28 29 210

Server
Computation

Cost (s)

Π-SI 0.72 1.01 1.67 3.03 5.70

Hashing 0.50 0.97 1.72 3.18 6.08

Client
Computation

Cost (s)

Π-SI 0.50 0.69 1.01 1.69 3.04

Hashing 0.50 0.97 1.72 3.18 6.08



(a) Server computation cost (b) Client computation cost

Fig. 1: Running time of Π-SI and the insecure hash solution over equal set sizes of R7

elements

(a) Server computation cost (b) Client computation cost

Fig. 2: Running time of Π-SI and the insecure hash solution over unequal set sizes of
R7 elements with (kc = 26)

E1 expriment. In E1, we evaluated the running time of Π-SI and hashing
protocols over server (V) and client (C) sets having equal sizes (kv=kc). We
varied the size of the sets in the range {26, 27, 28, 29, 210} of elements belonging
to Rn (n=27) and we sketch results in Table2 and Figure1. Regarding server
computation cost, Π-SI protocol has a short efficiency distance (0.x s) lower
than the hashing scheme for small sets (26,27). Then, Π-SI execution revealed a
slower increasing rate than the hashing scheme, which makes its more efficient



for big sets (28,29). This efficient increasing rate presented by Π-SI is due to the
use of efficient arithmetic operations (addition, multiplication) compared to the
expensive operations involved in the hashing solution (modulo, exponentiation).
Regarding the client computation cost, the hashing solution outperforms Π-SI
with at most one order of magnitude (×10), which is very efficient compared to
existing solutions [7].

E2 expriment. In E2, we simulated the case of unequal set sizes, which is
more realistic. For this, we fixed the size of the client set to kc= 26 elements of Rn
(n=27) and we varied the size of the server sets in the range {26, 27, 28, 29, 210}.
Results presented in Table3 and Figure2 reveal a very efficient level of Π-SI
that outperforms the hashing solution on the server side for big sets (28,29).
Regarding the client computational cost, Π-SI presented a slow increasing rate
that makes it more efficient than the hashing solution. This efficiency presented
by Π-SI on the client side contrary to E1 is due to the linear dependability of
the client computational cost on the server set size. These results, confirm the
adequacy of Π-SI protocol to be implemented on servers having Big Data sets.

8 Conclusion

In this paper, we have proposed a novel two-party Private Set Intersection pro-
tocol named (Π-SI). We have built this protocol upon efficient matrix algebra
without any cryptographic scheme to cope with Big Data sets. Through security
analysis conducted with the standard real/ideal paradigm, we have proved the
privacy protection ensured by (Π-SI) against a semi-honest server and a mali-
cious client. (Π-SI) involves linear asymptotic complexities for communication
and server computations, which makes it scalable for multi-client settings. Be-
sides, across empirical evaluations performed on Big Data sets (210 elements of
R7), we have confirmed the efficiency level provided by (Π-SI) protocol compared
to the insecure hashing solution used in real applications.
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