
Robust and Practical Depth Map Fusion for
Time-of-Flight Cameras
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Abstract. Fusion of overlapping depth maps is an important part in
many 3D reconstruction pipelines. Ideally fusion produces an accurate
and nonredundant point cloud robustly even from noisy and partially
poorly registered depth maps. In this paper, we improve an existing
fusion algorithm towards a more ideal solution. Our method builds a
nonredundant point cloud from a sequence of depth maps so that the
new measurements are either added to the existing point cloud if they are
in an area which is not yet covered or used to refine the existing points.
The method is robust to outliers and erroneous depth measurements as
well as small depth map registration errors due to inaccurate camera
poses. The results show that the method overcomes its predecessor both
in accuracy and robustness.
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1 Introduction

Merging partially overlapping depth maps into a single point cloud is an essential
part of every depth map based 3-dimensional (3D) reconstruction software. A
simple registration of depth maps may lead to a huge number of redundant
points even with relatively small objects. That will make the further processing
very slow.

The amount of points could be reduced afterwards by simplifying the cloud
but it is more reasonable to aim directly at a nonredundant point cloud. This
will save both time and needed memory capacity.

In this paper, we further develop a method which merges a sequence of depth
maps into a single nonredundant point cloud [7]. The method takes the mea-
surement accuracy of obtained depths into account and merges nearby depth
measurements into a single point in 3D space by giving more weight to the more
certain measurement. Thus, only those points that do not have other neighbour-
ing points are added to the cloud. The proposed method significantly reduces
the amount of outliers in the depth maps and rejects incorrectly measured or
badly registered points.



Fig. 1. Illustration of the multipath interference error in time-of-flight cameras. Left: A
Poisson reconstructed surface [6] created from a point cloud which was back projected
from a single depth map. Right: the same surface part but now created from the output
point cloud of the proposed method.

One major issue in time-of-flight cameras, such as Kinect V2, is the problem
called multipath interference [13]. It occurs when the depth sensor receives mul-
tiple scattered or reflected signals from the same direction and causes a positive
bias to the depth measurements. As illustrated in the left part of Figure 1, the
problem especially occurs in concave corners, which in this case are formed by
the table and the backrests of the chairs. Our method, proposed in this paper,
is able to correct those errors as shown in the right part of Figure 1.

2 Related work and our contributions

Fusion of depth maps from the aspect of 3D reconstruction has been studied
widely during recent years [4, 11, 21, 9, 18]. The most relevant work regarding to
our work is the one presented in [11]. There, the authors proposed a depth map
fusion method which is capable of building 3D reconstructions from live video
in real time. The method is designed for passive stereo depth maps, and thus,
does not use uncertainties for depth measurements.

Since the release of Microsoft Kinect, the interest in the real-time reconstruc-
tion has increased widely. These methods mostly represent the models as voxels
[16, 19, 17, 14, 1] which means that their resolution is limited by the available
memory. However, this restriction is successfully avoided especially in [14] but
this method is designed for live video, and therefore, it may not work that well
with wide baseline depth maps. Choi et al [1] have also achieved impressive re-
sults recently. In their method, the loop closures play a significant role which
have to be taken into account when capturing the data. The voxel based ap-
proach is also used in [3] in the merging of depth maps with multiple scales but
the depth maps were acquired with a range scanner or with a multi-view stereo
system.

Kyöstilä et al proposed a method where the point cloud is created iteratively
from a sequence of depth maps so that the added depth maps do not increase the
redundancy of the cloud [7]. That is, starting with a point cloud, back projected
from a single depth map, the method either creates new points to the cloud
from other depth maps if they are in an area which has not yet been covered
by other points or uses the new measurements to refine the existing points. The



refinement merges nearby points by giving more weight to measurements that
have lower empirical, depth dependent variances.

However, Kyöstilä’s method is mainly designed for merging redundant depth
maps and it cannot handle outliers. In addition, the method was designed for
the first generation Kinect device (Kinect V1), and thus, it does not take all
the characteristics of the newer Kinect device (Kinect V2) into account. These
differences and our solutions are discussed in more detail in Section 2.1.

2.1 Our contributions

As described in Section 2, the method in [7] cannot handle outliers and does
not work properly with Kinect V2. Regarding to our method, the most essential
difference between the Kinect devices is the depth measuring technique. Kinect
V1 calculates the depths using an infrared dot pattern projected into the space,
whereas Kinect V2 is based on time-of-flight (ToF) technique and predicts the
depths from the phase shift between an emitted and received infrared signals [15].
Generally, the measurements acquired with Kinect V2 are more accurate, but
in certain cases the sensor might receive multiple reflected or scattered signals
from the same direction which might cause significant measurement errors as
presented in Figure 1. This multipath interference problem [13] is not taken into
account in [7].

Thus, in this paper we propose three extensions to the method in [7] to
overcome its weaknesses. The extensions provide three different ways to measure
the errors which occur in ToF measurements and our method tries to replace
and refine the erroneous points with more accurate measurements from other
redundant depth maps. That, is the contributions of this paper are

1. pre-filtering of depth maps to reduce the amount of outliers,
2. improved uncertainty covariance to compensate for the measurement vari-

ances and make the method more accurate and
3. filtering of the final point cloud based on a simple visibility violation rule to

reduce the amount of erroneous and badly registered measurements due to
the multipath interference [13] and incorrect camera poses, respectively.

The experiments show that the extensions significantly improve the results
when compared with [7] which make the proposed method a potential post-
processing step for methods like ORB-SLAM [12] or [2]. In addition, the nonre-
dundant point clouds produced with the proposed method can be further trans-
formed into a mesh, like e.q. in [11, 1], using [6] or [8] for example.

3 Method

As presented in Figure 2, the proposed method takes a set of depth maps and
calibrated RGB images with known camera poses as input and outputs a point
cloud. The method improves the algorithm described in [7] with three extensions
which are marked with darker boxes in Figure 2. Similarly to [7], our method
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Fig. 2. An overview of the proposed fusion pipeline. In this paper, we propose three
extensions (rectangles with a grey background) to the fusion algorithm in [7].

can be used as a pipeline to process one depth map at a time and therefore the
only thing that limits the size of the reconstruction is the available memory for
storing the created point cloud.

The pipeline consists of three steps: 1) depth map pre-filtering, 2) actual
depth map fusion with re-aligned uncertainty ellipsoids and 3) post-filtering of
the final point cloud. The steps are described in more detail in the following
sections. Section 3.1, describes the pre-filtering step. The re-aligned uncertainty
ellipsoids extension is described together with the fusion step in Section 3.2 and
the filtering of the final point cloud is presented in Section 3.3.

3.1 Pre-filtering of depth maps

Typically, backprojected Kinect depth maps (both V1 and V2) have outliers or
inaccurate measurements near depth edges and near the corners of the depth
image. Usually, their distances to the nearest neighbouring points are much
above the average. To remove such measurements from the depth maps, we first
calculate a reference curve which describes the average distance from a point to
its nth nearest neighbour (NN) (n = 4 in all our experiments) in the 3D space at
a certain depth. The left part of Figure 3 presents the calculation of a reference
distance at depth dz for one pixel. The final reference distance at depth dz is the
average of such distances of all pixels. The average distances are calculated for
depths from 0.5m to 4.5m with 0.1m interval and the reference curve (blue solid
line in the right sub figure) is then acquired by fitting a line to these values.

Now in the pre-filtering, the distance dm to the 4th nearest neighbour is cal-
culated for every pixel in the input depth map and compared with the reference
value dref at the same depth. The measurement is removed as an outlier if

dm >
dref√

0.3
. (1)

The red dashed line in the right part of Figure 3 illustrates the equation. That
is, the measurements whose distance value is above the line are removed.

3.2 Improved depth map fusion

The actual depth map fusion is based on [7] with two exceptions: 1) the device
dependent parameter values were calibrated for Kinect V2 and 2) the orienta-
tions of uncertainty ellipsoids were improved to match with the ToF measuring
technique. The details are described later in the section.

That is, starting with an initial point cloud, backprojected from a single
depth map, the next depth maps are merged with the existing cloud so that the



new measurements are either added to cloud if there is no other points nearby
or used to refine the existing measurements without increasing the point count.
As described in Section 2, the refinement gives more weight to the measurement
with lower empirical variance, i.e. uncertainty. The uncertainty of a measurement
is described as a covariance C which determines the location uncertainty of the
measurement in x, y and z directions as depth dependent variances

C =

λ1(βxz/
√

12)2 0 0

0 λ1(βyz/
√

12)2 0
0 0 λ2(α2z

2 + α1z + α0)2

 , (2)

where z is the measured depth and λ1, λ2, βx, βy, α2, α1 and α0 are parameters
which were calibrated for Kinect V2 using the approach presented in [7].

The covariance matrix corresponds to an ellipsoid in the 3D space and in [7]
it is aligned so that the z-axis of the ellipsoid is parallel to the optical axis of the
camera. However, as described in Section 2.1, Kinect V2 measures the depth by
comparing the phase shift between the emitted and received signals which travel
to the sensor along the line of sight. Therefore, in the proposed method, the
covariance ellipsoids are aligned parallel to the line of sights, which means that
their orientations depend on the locations of the measurements in the original
depth maps. That is, given the rotations R between the world frame and the
camera coordinate frame and Rlos between the optical axis of the camera and
the line of sight, the covariance C can be expressed in the world frame with

Cworld = RTRlos
TCRlosR (3)

As in [7], an existing measurement is refined by the new measurement nearby.
First, the refined location is calculated using the best linear unbiased estimator
(BLUE) [10], which gives

p′e = pe + C′eCn
−1(pn − pe), (4)
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Fig. 3. Illustration of the calculation of the reference distances (left) and the reference
and cut-off curves (right). The reference distance for the backprojected pixel (green
circle) is the distance to its 4th nearest neighbour. The value of reference curve (blue
solid line) at the depth dz is the average of such distances of all backprojected pixels
at the depth dz. The pre-filtering removes points whose distance to the 4th nearest
neighbour is above the cut-off curve (red dashed line).



where pe is the location estimation of the existing point which has been added
to the cloud earlier, pn is the new measurement with the covariance Cn and C′e
is the covariance of the refined point defined by

C′e = (Ce
−1 + Cn

−1)−1, (5)

where Ce is the covariance of the existing measurement estimation.
Now, the Mahalanobis distances d1 and d2 between p′e and pe and p′e and

pn, respectively, are calculated using the corresponding covariances

d1 =

√
(p′e − pe)Ce

−1(p′e − pe) (6)

d2 =

√
(p′e − pn)Cn

−1(p′e − pn) (7)

If both distances are below the threshold τ , the existing estimate is updated
with

pe ← p′e and Ce ← C′e. (8)

3.3 Post-filtering of the final point cloud

If in the refinement part of the fusion, at least one of the distances d1 and
d2 (Eqs. (6) and (7), respectively) is bigger than the threshold τ , the existing
measurement is not updated but the measurements might violate the visibility
of each other depending on their locations. To solve possible visibility violations,
we need normals for every point. The normals are estimated by a plane fitted
to the k nearest neighbours of the point (k = 50 in all our experiments) in the
original back projected depth map.

In this paper, we consider three alternatives, illustrated in Figure 4, how the
measurements may locate with respect to each other. In the first case, point A
occludes point B but they are far away from each other so that is not a visibility
violation. Next, the point C is occluding point D nearby but this time the normal
of measurement D is not pointing towards the half space where the camera under
consideration is located, and therefore, this is not a visibility violation either. In
the third case, the point E occludes the nearby point F whose normal is towards
the camera. In this case, there is a visibility violation because it is very unlikely
that both of these measurements really exist in the scene. In practice, the points
are near enough when the distance between them is less than 10% of the depth
of the new measurement. This kind of violation may occur due to the inaccuracy
of the camera poses or calibration, noise or the multipath interference.

The post-filtering consists of two parts. The first part is built-in to the depth
map fusion and it collects some point-wise statistics which are utilized in the
second part that does the actual filtering after the fusion. The statistics are two
values which record the number of merges and the number of visibility violations.

That is, if two points that project onto the same pixel are not close enough to
be merged together but still violate the visibility of each other in the 3D space,
either the existing measurement or the new one is probably an outlier or too
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Fig. 4. Three alternatives considered in this paper how the points that project onto
the same pixel may locate in the 3D space. The lowest case is the only one causing
a visibility violation between points because the points are nearby and their normals
point towards the same half space where the camera under consideration is located.

inaccurate to be added to the final cloud of points. If the existing measurement
has already been merged with another point more than once, it can be consid-
ered more reliable and the visibility violation value of the new measurement is
incremented by one. Otherwise, the reliability is based on an unreliability weight
w = (1/cos(α))2, where α is the angle between the line of sight and the normal
of the point, i.e. the bigger the angle the more unreliable the point is and the
violation value of the more unreliable measurement is incremented.

Finally in the second part when the fusion has stopped, the points whose
visibility violation count is bigger than the value which measures the count of
merges, are removed from the cloud.

4 Experiments

The experiments were carried out using three data sets captured with Kinect
V2: CCorner, Office1 and Office2. The last two are complicated office environ-
ments whereas the first one is a simple concave corner bounded by floor and two
walls. Figure 5 presents a sample image of each data set. The checker boards
on CCorner data set were used to acquire the poses of the cameras as well as
to create a ground truth for quantitative evaluation. The data sets consist of
RGB images and depth maps and they were captured with Kinect by moving
the device around the room and holding it still while capturing. The sets were
captured so that the depth maps had redundant measurements and sequential
RGB images had common areas with rich texture in order to gain as good camera
pose estimations as possible as described below.

Kinect device was calibrated using the method in [5] which was slightly mod-
ified in order to use it with Kinect V2. In the office data sets, the camera poses
were obtained via structure from motion using VisualSFM1. The calibration pa-
rameters, the depth maps and the sparse point cloud, produced by SfM, were
used to set the scale of the obtained poses to match with the metric system used
by the depth sensor of Kinect V2. The poses, the depth maps and the RGB
images were then fed to the algorithm pipeline.

The method in [7] was used as a baseline in the evaluations. The results
presented in the following sections show step by step how each extension iter-

1http://ccwu.me/vsfm/



Fig. 5. Sample images of the data sets used in the experiments. From left to right:
CCorner, Office1 and Office2.

atively enhances the results made with the baseline algorithm. In Section 4.1,
we present the enhancement achieved with pre-filtering. Then, Section 4.2 com-
pares the results produced by our method and the baseline extended with the
pre-filtering, and finally, in Section 4.3 the influence of every extension, including
the pre-filtering (PRF), re-aligned covariances (RAC) and post-filtering (POF),
is shown by three quantitative analyses.

4.1 Depth map pre-filtering

Figure 6 illustrates the pre-filtering result on a single depth map. As expected,
the filtering removes measurements near depth edges and image corners where
the outliers typically exist or the measurement accuracy is worse due to the
lens distortion. In addition, the filtering removes points in darker areas where
measurement noise is bigger and on surfaces whose normal create too big angle
with the optical axis of the camera and thus are unreliable. The redundancy in
the input depth maps guarantees that the removed points does not make holes
in the final point cloud.

Fig. 6. An illustration of the depth map pre-filtering. Left: the original depth map,
right: the filtered depth map. The filter removes incorrect or inaccurate measurements
near depth edges and image corners. In the fusion, the holes are filled with more
accurate points from other depth maps.

In Figure 7, we present the results of Office2 data set after the depth map
fusion made with the baseline algorithm and the baseline extended with the
pre-filtering. In the figure, the improvement is clearly visible. The filtering has
removed a vast majority of the outliers around the laptop as well as from the air
beyond the wall (the green solid ellipses) for example. The filtering also improves
the details in the view like the area in front of the two computer screens (the
red dashed ellipse).



Fig. 7. Comparison between Office2 results made with the baseline algorithm without
(left) and with the depth map pre-filtering. The filtering removes a great number of
outliers around the laptop and from the air beyond the wall (the green solid ellipses).
Pre-filtering also enhances the visibility of the details (the red dashed ellipse).

4.2 Re-aligned covariances and post-filtering

Figure 8 shows the comparison of the results made with the baseline method
extended with the pre-filtering and the proposed method. Our method is able to
remove the outliers between the backrests of the chairs and the table as shown in
the top part of the figure (green rectangles), but as the bottom part of the figure
illustrates, the method is also able to remove the incorrect measurements under
the table (red dashed ellipses) and the misplaced measurements above (green
solid ellipses). The incorrect measurements below the table have suffered from
the multipath interference via backrest of the chair and Kinect had obtained too
long distances for those measurements (cf. Figure 1). The misplaced measure-
ments above the table exists due to an inaccurate pose of the camera where the
measurements originate from.

The noise on the measured surfaces is usually parallel to the line of sight
and therefore, by re-aligning the covariance also parallel to that line helps the
refinement to move the point in the right direction. The post-filtering instead
handles the overlapping points by preserving the one which seems to be more
reliable. For example, if the same surface is captured in two ways; first so that the
surface in perpendicular to the camera and second so that the surface is slanted
and may more probably suffer from multipath interference, the perpendicularly
measured points remain in the cloud and others are removed.

4.3 Quantitative analyses

In the last experiment, the methods and extensions were tested against each
other with three quantitative analyses. First, Table 1 illustrates an overview of
the sizes of the used data sets and the sizes of the final results. The abbreviations
PRF, RAC and POF refer to the proposed extensions to the baseline method,
i.e. pre-filtering, re-aligned covariances and post-filtering, respectively. As the
table shows, every extension increases the ratio of reduction of the point count.

Then the results from CCorner data set were compared against the ground
truth consisting three planes defined by the backprojected checker board cor-
ners. The extrinsic parameters of the cameras were obtained by the non-linear



Fig. 8. Comparison between Office1 results made with the baseline algorithm with pre-
filtering extension (left) and with the proposed method (right). The proposed method is
able to significantly decrease the amount of outliers between the table and the backrests
of the chairs (green rectangles) as well as incorrect measurements below the table (red
dashed ellipses) and misplaced measurements above (green solid ellipses).

optimization where the errors between the detected and projected checker board
corners were minimized while the intrinsic parameters of the camera were kept
constant. Now for each fusion result, the distances from the points to the nearest
plane (floor, right wall or left wall) were calculated and presented as cumulative
error curves shown on the left in Figure 9. The value on the y-axis is the per-
centage of points whose error is below the value on the x-axis. 100% contains all
the points in each fused point cloud (absolute point counts are listed in Table
1).

As shown in the left sub figure, each extension enhances the accuracy of
the fusion. Especially the re-aligned covariance extension significantly improves
the result (the red square curve versus the green diamond curve). Pre-filtering
and post-filtering bring only moderate improvement in this data set because,
due to the simplicity of the data set, the amount of outliers is moderate and
practically there are no badly misplaced measurements because the camera poses
were acquired relatively accurately as described earlier.

Table 1. An overview of the sizes of used data sets and achieved point reduction ratios.
Dataset CCorner Office1 Office2

Method [7] PRF PRF+RAC PRF+RAC+POF [7] PRF PRF+RAC PRF+RAC+POF [7] PRF PRF+RAC PRF+RAC+POF

View count 59 98

Original
point count

9 307 296 16 690 662 20 400 588

1 299 555 1 123 701 955 161 939 730 5 930 663 4 533 418 4 408 269 4 352 962 6 777 222 5 578 252 5 382 525 5 221 117

Ratio of 
reduction

86.0% 87.9% 89.7% 89.9% 64.5% 72.8% 73.6% 73.9% 66.7% 72.7% 73.6% 74.4%

Final 

114

point count



The right part of Figure 9 was produced with the voxel based evaluation
method presented in [20]. The figure illustrates the coverage and the compact-
ness of the reconstructions. The coverage is presented as Jaccard index indicating
the proportion of the ground truth which is covered by the reconstruction within
a certain threshold. The coverage value is calculated between the voxel repre-
sentations of the ground truth and the reconstruction so the above-mentioned
threshold is the width of a voxel edge. The compactness is presented as a com-
pression ratio which is the ratio of the number of points in the ground truth
and the reconstruction. Now, one can see from Figure 9 that the completeness
of the result made with the proposed method is at least equal to that of the
baseline method depending on the width of a voxel while the compression ratio
is clearly better. That is although the pre-filtering may also have removed some
possible correct points on slanted surfaces, that did not make any holes in the
reconstruction.

5 Conclusion

In this paper, we proposed a method for merging a sequence of overlapping depth
maps into a single non-redundant point cloud. Starting with a point cloud back
projected from a single depth map, the method iteratively adds points from
other depth maps so that the new measurements refine the existing points in
overlapping areas. The refinement is based on an uncertainty covariance calcu-
lated for every measurement. The proposed method improves the algorithm [7]
with three extensions: 1) depth map pre-filtering, 2) depth map fusion with di-
rected uncertainty covariances and 3) post-filtering of the final point cloud. The
performance of each extension was demonstrated with several experiments. The
proposed method outperformed the baseline algorithm both in robustness and
accuracy.
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Fig. 9. Evaluation of the leftover errors after the fusion pipeline (left) and evaluation
of the coverage (Jaccard index) and compactness (compression ratio) of the recon-
structions (right) [20]. PRF, RAC and POF refer to the proposed extensions, i.e. pre-
filtering, re-aligned covariances and post-filtering, respectively. Jaccard index indicates
the proportion of the ground truth which is covered by the reconstruction within the
certain threshold represented by the width of a voxel. Compression ratio is the ratio of
the number of points in the ground truth and the reconstruction.
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