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Abstract. Edge computing paradigm allows computation to be moved
from the central high powered Cloud or data center to the edge of the
network. This paradigm often enables more efficient data processing near
its source and sends only the data and knowledge that have value over the
network. Our study focuses on performing semantic reasoning at the edge
computing devices, which requires transferring ontologies to the edge de-
vices. This paper presents different representations for transferring Web
Ontology language (OWL) version 2 ontologies to the edge. We evalu-
ate different representations in an experimental IoT system with edge
nodes and compare lengths of different syntaxes and their computation
effort of building models in Cloud and edge computing devices in terms
of processing time.
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1 Introduction

Internet of Things (IoT) systems not only gather a large quantity of data gen-
erated by things, but also focus on how data can be processed, visualized, and
possibly acted upon. A new computing paradigm, edge computing, calls for per-
forming data analytics and knowledge generation to occur at the periphery of
the network. In the edge computing paradigm, sensors and connected devices
transmit data to nearby edge computing devices, such as gateway devices that
process or analyze the data, instead of delivering it to the Cloud or a remote
data center. Major benefits of edge computing are improving time to action and
reducing response time; conserving network resources and addressing battery life
constraint; supporting security and privacy sensitive services and applications;
and enabling scalable distributed data processing. In general, to enable the vision
of edge computing in a typical IoT system, the information at edge computing
devices is pushed from Cloud services and pulled from IoT devices [1][2].

Compared with traditional base stations, just simply forwarding data traffic
but do not actively processing the data, edge computing devices include more
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computing and storage capabilities. Hence, more advanced functions can be de-
ployed on edge computing devices. For example, when the increment of the
raw data is produced from the IoT devices but not all raw data is useful, edge
computing devices process a considerable amount of the raw data, which saves
bandwidth and reduces the latency. Moreover, the edge computing devices are
close to end users, the response time will be predictable if the data is processed
at edge computing devices [1].

We focus on utilising Semantic Web technologies in the edge computing de-
vices of IoT systems. Semantic Web technologies give information well-defined
meaning, better enabling computers and people to work in cooperation. One
essential property is its universality powered by the “anything can link to any-
thing” property of hypertext links. Semantic reasoning derives facts that are not
explicitly expressed. To enable semantic reasoning functions, computers have to
access structured collections of the information and sets of inference rules that
they can use to conduct automated reasoning. Hence, Semantic Web community
offers a set of languages that express data, knowledge, and rules for reason-
ing about the data. Knowledge is typically modeled with ontologies, which is a
taxonomy defining the classes of objects and relations among them.

The components in IoT systems could reach a shared understanding by ex-
changing knowledge. This is especially important for edge computing devices in
IoT systems, because they often share a part of an ontology from a compre-
hensive ontology on the Cloud or a server machine. In our earlier research, we
studied how semantics could be embedded in the data generated by tiny IoT
devices, and how the benefits of semantics could be utilized without sacrificing
the efficiency of IoT in terms of energy consumption and reasoning latency [3][4].
In this paper, we focus on transferring ontologies to edge computing devices and
developing knowledge models to perform semantic reasoning. We compare and
evaluate different syntaxes for Web Ontology Language (OWL) version 2 [5] in
an experimental IoT system with edge computing devices. We present a com-
parison of lengths of different syntaxes and their required computation effort of
building models in Cloud and edge computing devices in terms of processing
time. In our experiments, we demonstrate that by changing from a standard
syntax to a lightweight syntax, it is possible to reduced 47.2% of data when we
transfer the Semantic Sensor Network (SSN) ontology [6] ontology.

The remainder of this article is organized as follows. We present different
syntaxes with examples in Section 2 and details of our experiment results in
Section 3. We conclude the article with proposing future research directions in
Section 4.

2 OWL 2 and Syntaxes for Transferring Ontologies

2.1 OWL 2

OWL 2 is a W3C standardized ontology language for the Semantic Web with
formally defined meaning. Before the development and standardization of OWL
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and OWL 2, there were plenty of ontology languages, such as KL-ONE [7], F-
logic [8], SHOE [9], DAML-ONT [10], OIL [11], and DAML+OIL [12]. These
efforts finally lead to developing OWL, a comprehensive ontology language for
the Semantic Web. OWL is a standard Semantic Web language based on De-
scription Logic [13]. The main building blocks of OWL are concepts representing
sets of objects, roles representing relationships between objects, and individuals
representing specific objects. With OWL, complex concepts can be described
through constructors that define the conditions on concept membership. OWL
2 is a revised extension of OWL, which is now commonly called OWL 1. OWL 2
extends OWL 1 with qualified cardinality restrictions and property chains. More-
over, OWL 2 provides support for defining properties to be reflexive, irreflexive,
transitive, asymmetric, and to define disjoint pairs of properties. Three profiles,
namely OWL 2 EL, OWL 2 QL, and OWL 2 RL, have been developed for bal-
ancing expressive power and reasoning efficiency, targeting different application
scenarios. OWL 2 EL is suitable for applications utilizing ontologies to define
very large numbers of classes and properties. OWL 2 QL can be tightly inte-
grated with Relational Database Management Systems and can hence benefit
from relational database technology. OWL 2 RL is suitable for applications that
require scalable reasoning without sacrificing too much expressive power [14].

OWL 2 provides a rich collection of constructs for forming descriptions, and
is compatible with existing Web standards. An OWL 2 ontology consists of a
set of axioms which place constraints on sets of individuals and on the types
of relationships between them. These axioms provide semantics by allowing sys-
tems to explicitly infer additional knowledge based on the data provided. OWL 2
provides a bidirectional mapping from the OWL Functional Syntax to Resource
Descriptoin Framework(RDF) Graphs. This means that OWL can then be seri-
alized into any RDF representations such as RDF/XML and Notation 3 (N3).
Most current OWL tools utilize RDF/XML as the default syntax for serializing
ontologies.

2.2 OWL 2 Syntaxes

An ontology can be developed with IRIs and a set of axioms. There are different
languages for storing, sharing, and editing IRIs and axioms in OWL 2 ontolo-
gies. Among them, RDF/XML is the officially recommended exchange syntax by
W3C, and others have been designed for particular purposes and applications. In
this section, we compare different syntaxes for OWL in brief and we illustrates
different syntaxes with an example in Appendix, which is a part of SSN ontology
[6]. This small part of SSN ontology consists of simple concepts of Input class
and Output classes and some relations of them, including label, source, disjoint
Class, etc.

RDF/XML is the primary and widely supported syntax, as it is recommended
by W3C. Because OWL supports a bidirectional mapping to RDF triples, it is
convenient to be combined in RDF/XML. Other RDF based representations
share this benefit, for example N3 and Turtle. However, RDF/XML is a ver-
bose representation for OWL and can hence be difficult to read by human users.
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For example, RDF/XML requires nesting and reification for complex class ex-
pressions, which results RDF verbose and difficult to read. Moreover, parsing
RDF/XML requires two steps which means that much more memory is required
for storing the ontology in memory. Turtle is more readable than RDF/XML and
also widely supported. W3C selects Turtle as one of the syntaxes for OWL 2 and
widely used tools and APIs such as Jena and the OWL API support Turtle.

OWL functional syntax is designed to be easier for OWL 2 specification
purposes and to provide a foundation for the implementation of OWL 2 tools.
Functional syntax is a simple text based syntax that is used as a bridge between
the structural specification and concrete representations.

The design of RDF/XML makes it difficult to utilize off-the-shelf XML tools
for tasks other than parsing and rendering it. Standard XML tools like XPath
or XSLT do not work well with RDF/XML representations of ontologies [15].
Moreover, serializing OWL and OWL 2 requires resources, as OWL needs to be
first mapped to RDF, and then RDF needs to be serialized to XML. To overcome
these difficulties, OWL/XML is invented as a concrete syntax for a more regular
and simpler XML syntax. The syntax is essentially derived directly from the
Functional Syntax. However, OWL/XML suffers from verbose syntax and this
often slows down parsing.

Manchester syntax [16] is designed for editing and presentation purposes. It
provides for OWL ontologies a compact text based representation that is easy to
read and write. The primary motivation for the design of the Manchester OWL
syntax is to produce a syntax that can be used for editing class expressions.
This effort has been extended so that it is possible to represent complete ontolo-
gies, and Manchester Syntax is now standardized by W3C. Different from above
mentioned syntaxes, the Manchester syntax gathers together information about
names in a frame-like manner. Manchester Syntax is cumbersome for represent-
ing some axioms in OWL, such as general class axioms.

Another recent effort is to serialize RDF in JSON format. The W3C RDF
working group compares alternative JSON formats for RDF with examples.
Based on this comparison, JSON-LD [17] is considered as the most promis-
ing format and becomes a W3C recommendation in early 2014. JSON-LD is
designed to be completely compatible with JSON and it has a slightly better
expressive power than the RDF model. This means that in practice it can be
considered to be a JSON serialization for RDF. JSON-LD requires minimal effort
from developers to transform normal JSON to JSON-LD. Only two keywords
(@context and @id) need to be known for utilizing the basic features.

Entity Notation (EN) and Entity Notation Schema (EN Schema) [18] are
lightweight knowledge representations for resource-constrained devices. Resource
usage of CPU, memory, bandwidth, and energy for encoding and decoding these
representations are considered at design time. EN is designed as a syntax of RDF
and EN Schema extends the design for representing OWL 2 ontologies. Both EN
and EN Schema have complete packet and short packet. The complete packet
has a structure resembles the triple structure of RDF and OWL. The compact
format can shorten the representation with templates and prefixes.
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Attempto Controlled English [19] is a machine-oriented Controlled Natural
Language (CNL), that is, a precisely defined subset of the English language,
designed for writing unambiguous and precise specification texts for knowledge
representation. Attempto Controlled English supports a bidirectional translation
into and from OWL 2. Other representations with similar design goals are Syd-
ney OWL syntax [20] and Ordnance Survey’s Rabbit [21]. However, we are not
aware of its compatibility with OWL 2. Schwitter et al. compared these three
representations with examples [22]. However, we do not consider these languages
suitable for transferring ontologies in IoT systems.

3 Experiments and Analysis

We present two experiments to evaluate different syntaxes of OWL 2 ontologies
in a previous Section. We focus on 1) length comparison of different OWL 2 syn-
taxes and 2) computation effort of building a same Jena model in the Cloud and
an edge computing device with different OWL 2 syntaxes in terms of processing
time.

3.1 Length comparision for OWL2 syntaxes

Our first experiment is to evaluate different OWL 2 syntaxes with a set of seven
ontologies, which are well known and widely utilized in pervasive computing,
IoT, and other domains. These ontologies include COBRA-ONT [23], IoT-Lite
ontology [24], Socially Interconnected Online Communities(SIOC) ontology[25],
SSN ontology, and the Organization Ontology[26]. COBRA-ONT includes a col-
lection of ontologies for describing vocabularies in an intelligent meeting room
use case. We are testing with COBRA-ONT ontologies version 0.6 which con-
tains ebiquity-geo, ebiquity-meetings and ebiquity-actions ontologies. The IoT-
Lite ontology is a lightweight ontology to represent IoT resources, entities, and
services. It is also a meta ontology that can be extended in different domains. The
SSN ontology describes the sensors, observations and related concepts in perva-
sive environments. SIOC ontology is designed for describing online communities
such as forums, blogs, mailing lists, and wikis. The Organization ontology is de-
signed to enable publication of information on organizations and organizational
structure including governmental organizations etc. It is designed as a generic,
reusable core ontology that can be extended or specialized for use in particular
situations. It is also a meta ontology that can be extended in different domains.

Figure 1 presents the comparison of the lengths of different syntaxes, in-
cluding Functional syntax, EN Schema, Turtle, Manchester syntax, RDF/XML,
JSON-LD, N-Triple, and OWL/XML (from left to right). Our experiment shows
that sizes of different syntaxes vary for ontologies. Taking SSN ontology as an
example, the length of EN Schema is about 36.6% of N-Triple and about 52.8%
of RDF/XML. For IoT-Lite Ontology, the JSON-LD syntax is 5.2 times than
the Manchester syntax. In ebiquity-meeting Ontology, the ratio is 2.3 which is
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Fig. 1. Comparison of the lengths of different OWL 2 syntaxes.

the smallest among all the sets. The average ratio between the biggest format
and the smallest one is 3.3 times.

In general, EN Schema, Turtle, and Manchester syntax are more compact
than the other syntaxes. Especially, EN Schema is the most compact syntax for
four ontologies, including COBRA-ONT ebiquity-meeting, SIOC, SSN, and the
Organization Ontology. JSON-LD, N-Triple and OWL/XML appear to be the
most verbose format. The RDF/XML is among the medium size. OWL/XML
makes the biggest size ontologies in four out of eight ontologies. According to
the results of this comparison, EN Schema, Turtle and Manchester syntax are
considered to be optimized syntaxes when IoT system developers require to
minimize the communication load for transferring ontologies. However, some
syntaxes may have benefits of transferring certain structures in ontologies, for
example, Turtle minimizes the lengths of representations of complex classes in
most ontologies. Therefore, when certain structures are dominant in a ontology,
it is often easier to select an optimized syntax.

3.2 Comparison of building ontology models with OWL 2 syntaxes

The second experiment focuses on building Jena models with different OWL
syntaxes. The experiment is executed under a simulated IoT environment. Fig-
ure 2 presents a general architecture of the IoT system with edge nodes. The
system consists of a IoT node layer, edge computing devices, and a Cloud server.
The IoT node layer consists of end-point device such as sensors and single-chip
devices. These devices are regraded as IoT nodes which can detect the environ-
mental situation and generate real-time data. But the capacities of these device
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are limited. Therefore, the edge devices and the Cloud server are required for
complex data processing tasks. The edge computing devices are often physically
closed to the IoT nodes. with the capabilities of semantic modelling and pro-
cessing, edge computing devices, such as smart mobile phones, can receive small
ontologies and perform fast reasoning tasks. In regard of heavy reasoning task,
edge computing devices send the data to Cloud server to process. The Cloud
server is assumed to have unlimited computing power, but physically far from
the IoT nodes. The response time is often slow because of the network latency.
The IoT system enables transferring part of an ontolgogy to support the seman-
tic reasoning tasks. The distribution of reasoning tasks utilizes the resources of
an IoT system to its best and offers predictable response time for users.

In this experiment, we utilize LG Nexus 5X phones with Android OS ver-
sion 6.0.1 for edge computing devices. The Nexus 5X has six CPU cores, which
consists of four Quad-core 1.44 GHz Cortex-A53 processors and two dual-core
1.82 GHz Cortex-A57 processors, running on Qualcomm MSM8992 Snapdragon
808 chip-set. It has 2GB RAM and 32GB storage. We utilize Amazon M4 Deca
Extra Large Cloud as Cloud server, which has 160 GB memory with 124.5 EC2
Compute Units.

Fig. 2. A general architecture for IoT systems with edge computing nodes.

In our experiment, we evaluate the performance of different OWL 2 syn-
taxes by comparing the required time of building ontology models with Jena
framework in an edge computing device. We again use the previously men-
tioned seven ontologies with different syntaxes and we include sample ontology
in OWL 2 primer in this test. Figure 3 presents the Jena OntModel building time
(in millisecond) among different ontologies with five selectd syntaxes, including
RDF/XML, JSON-LD, Turtle, EN Schema, and N-triple. EN Schema is not di-
rectly supported by Jena, so we add one step to transfer EN Schema to Turtle
and the transferring time is around 20 milliseconds. In the Jena framework, a
RDF graph is built as a model and is implemented with the “Model” interface.
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The Jena framework includes object classes to represent graphs, resources, prop-
erties, and literals. The interfaces representing resources, properties, and literals
are called Resource, Property, and Literal respectively. For ontology, Jena use
OntModel, which is an extension to the InfModel interface. Jena wraps an un-
derlying model with this ontology interface, that presents a convenient syntax
for accessing the language elements. We utilize OWL API to transfer syntaxes.
To keep the minimum size of the ontology, all the transformed ontologies only
contain the OWL axioms and annotation, while the comments are removed. We
keep space characters as it is necessary for structure and separating elements.

Fig. 3. Comparision of building ontology models with Jena framework with OWL2
syntaxes.

We find that for all ontologies, JSON-LD requires longer time than the other
four syntaxes and the other four syntaxes consume comparable amount of time.
RDF/XML, Turtle, and N-Triple appear to be the shortest format. In ebiquity-
meeting Ontology, the JSON-LD format reading time is 27% longer than the
shortest RDF/XML one. JSON-LD reading time is 23% longer than the smallest
one for all the test cases in average.

Figure 4 presents the different OntModel building time on the Cloud with
the increase of ontology size. The X-axis of Figure 4 represents the size of the
above mentioned ontologies. The Y-axis represents the modelling time on the
Cloud (in millisecond). We notice a linear increment with the incremental size
of ontologies. However, with larger amount of ontology data, Figure 4 shows
the processing time is increasing but considerably slower than the increasing of
the data size. For example, the largest ontology is 23 times than the smallest
one but the required modelling time is only 20 % with Turtle syntax. From
this experiment, we consider loading a large ontology, which often enables rich
functions, but does not introduce too much modelling time for a Cloud server.
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Fig. 4. Jena model building time by length.

4 Conclusions and Future Work

Transferring ontologies to edge computing devices enables intelligent functions
for IoT systems, such as developing semantic models and performing reasoning.
This paper presents different OWL 2 syntaxes for transferring ontologies to edge
computing devices for developing knowledge models. Our main contribution is
a comparison of the length of different syntaxes and their computation effort
of building models in edge computing devices and Cloud in terms of processing
time. Our experiments show that implementing semantic functions and services
are practical solutions in edge computing devices.

However, there are challenges for introducing semantic functions and services
in edge computing devices of IoT systems. First, scalability is a challenge as the
tasks need to be deployed and performed on different devices based on real capa-
bilities of these devices and communication networks. We need to minimize the
overall cost in order to find an efficient deployment of tasks on to edge comput-
ing devices with different capabilities. Second, dynamic extensibility challenge
of IoT systems should be addressed. When new IoT devices are sending data to
edge nodes, how to balance the semantic functions with different edge computing
devices to utilize their resources to their best? A flexible and extensible design
is important to address this challenge. Third, data reliability and veracity chal-
lenges rise from the sensing and communication of data in IoT systems. Some
solutions to handle unreliable conditions should be considered.

As future research, we will address these challenge of dynamic linking data
from data sources to edge computing devices to achieve reasoning efficiency
of whole IoT systems. Moreover, we will tackle the challenge of data veracity
and variety to support intelligent decision making in IoT systems with edge
computing devices.

Acknowledgments. The first author would like to thank Jorma Ollila Grant
of Nokia foundation for funding this research.

Appendix

Example of SSN ontology with RDF/XML syntax:
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<owl:Class rdf:about="http://purl.oclc.org/NET/ssnx/ssn#Input">

<rdfs:label>Input</rdfs:label>

<owl:disjointWith rdf:resource="http://purl.oclc.org/NET/

ssnx/ssn#Output"/>

<dc:source>http://marinemetadata.org/community/teams/ontdevices

</dc:source>

<rdfs:seeAlso>http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Model#Process

</rdfs:seeAlso>

<rdfs:isDefinedBy>http://purl.oclc.org/NET/ssnx/ssn</rdfs:isDefinedBy>

<rdfs:comment>Any information that is provided to a process for its use.

</rdfs:comment>

</owl:Class>

<owl:Class rdf:about="http://purl.oclc.org/NET/ssnx/ssn#Output">

<rdfs:label>Output</rdfs:label>

<rdfs:comment>Any information that is reported from a process.

</rdfs:comment>

<dc:source>http://marinemetadata.org/community/teams/ontdevices

</dc:source>

<rdfs:isDefinedBy>http://purl.oclc.org/NET/ssnx/ssn</rdfs:isDefinedBy>

<rdfs:seeAlso>http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Model#Process

</rdfs:seeAlso>

</owl:Class>

Example of SSN ontology with Turtle syntax:

<http://purl.oclc.org/NET/ssnx/ssn#Input>

a owl:Class;

rdfs:label "Input";

owl:disjointWith <http://purl.oclc.org/NET/ssnx/ssn#Output>;

dc11:source "http://marinemetadata.org/community/teams/ontdevices";

rdfs:seeAlso "http://www.w3.org/2005/Incubator/ssn/wiki/

SSN_Model#Process";

rdfs:isDefinedBy "http://purl.oclc.org/NET/ssnx/ssn";

rdfs:comment "Any information that is provided to a process for its use.".

<http://purl.oclc.org/NET/ssnx/ssn#Output>

a owl:Class;

rdfs:label "Output";

rdfs:comment "Any information that is reported from a process.";

dc11:source "http://marinemetadata.org/community/teams/ontdevices";

rdfs:isDefinedBy "http://purl.oclc.org/NET/ssnx/ssn";

rdfs:seeAlso "http://www.w3.org/2005/Incubator/ssn/wiki/

SSN_Model#Process".

Example of SSN ontology with functional syntax:

Ontology:

AnnotationProperty: dc11:source

AnnotationProperty: rdfs:comment

AnnotationProperty: rdfs:isDefinedBy

AnnotationProperty: rdfs:label
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AnnotationProperty: rdfs:seeAlso

Datatype: rdf:PlainLiteral

Class: <http://purl.oclc.org/NET/ssnx/ssn#Input>

Annotations:

rdfs:isDefinedBy "http://purl.oclc.org/NET/ssnx/ssn",

rdfs:label "Input",

rdfs:seeAlso "http://www.w3.org/2005/Incubator/ssn/wiki/

SSN_Model#Process",

dc11:source "http://marinemetadata.org/community/teams/ontdevices",

rdfs:comment "Any information that is provided to a process

for its use."

DisjointWith: <http://purl.oclc.org/NET/ssnx/ssn#Output>

Class: <http://purl.oclc.org/NET/ssnx/ssn#Output>

Annotations:

rdfs:isDefinedBy "http://purl.oclc.org/NET/ssnx/ssn",

rdfs:seeAlso "http://www.w3.org/2005/Incubator/ssn/

wiki/SSN_Model#Process",

dc11:source "http://marinemetadata.org/community/teams/ontdevices",

rdfs:comment "Any information that is reported from a process",

rdfs:label "Output".

DisjointWith: <http://purl.oclc.org/NET/ssnx/ssn#Input>

Example of SSN ontology with OWL/XML syntax:

<Ontology

<Declaration><Class IRI="http://purl.oclc.org/NET/ssnx/ssn#Output"/>

</Declaration>

<Declaration><Class IRI="http://purl.oclc.org/NET/ssnx/ssn#Input"/>

</Declaration>

<Declaration><AnnotationProperty abbreviatedIRI="dc11:source"/>

</Declaration>

<DisjointClasses>

<Class IRI="http://purl.oclc.org/NET/ssnx/ssn#Input"/>

<Class IRI="http://purl.oclc.org/NET/ssnx/ssn#Output"/>

</DisjointClasses>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="dc11:source"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Input</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">

http://marinemetadata.org/community/teams/ontdevices</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:comment"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Input</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">

Any information that is provided to a process for its use.</Literal>

</AnnotationAssertion>
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<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:isDefinedBy"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Input</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">

http://purl.oclc.org/NET/ssnx/ssn</Literal></AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Input</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">Input</Literal></AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:seeAlso"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Input</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">

http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Model#Process</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="dc11:source"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Output</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">

http://marinemetadata.org/community/teams/ontdevices</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:comment"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Output</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">

Any information that is reported from a process.</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:isDefinedBy"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Output</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">

http://purl.oclc.org/NET/ssnx/ssn</Literal></AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Output</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">Output</Literal></AnnotationAssertion>

<AnnotationAssertion><AnnotationProperty abbreviatedIRI=rdfs:seeAlso"/>

<IRI>http://purl.oclc.org/NET/ssnx/ssn#Output</IRI>

<Literal datatypeIRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

PlainLiteral">

http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Model#Process

</Literal></AnnotationAssertion>

</Ontology>
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Example of SSN ontology with Manchester syntax:

Ontology:

AnnotationProperty: dc11:source

AnnotationProperty: rdfs:comment

AnnotationProperty: rdfs:isDefinedBy

AnnotationProperty: rdfs:label

AnnotationProperty: rdfs:seeAlso

Datatype: rdf:PlainLiteral

Class: <http://purl.oclc.org/NET/ssnx/ssn#Input>

Annotations:

rdfs:isDefinedBy "http://purl.oclc.org/NET/ssnx/ssn",

rdfs:label "Input",

rdfs:seeAlso "http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Model

#Process",

dc11:source "http://marinemetadata.org/community/teams/ontdevices",

rdfs:comment "Any information that is provided to a process for its use."

DisjointWith: <http://purl.oclc.org/NET/ssnx/ssn#Output>

Class: <http://purl.oclc.org/NET/ssnx/ssn#Output>

Annotations:

rdfs:isDefinedBy "http://purl.oclc.org/NET/ssnx/ssn",

rdfs:seeAlso "http://www.w3.org/2005/Incubator/ssn/wiki/

SSN_Model#Process",

dc11:source "http://marinemetadata.org/community/teams/ontdevices",

rdfs:comment "Any information that is reported from a process.",

rdfs:label "Output"

DisjointWith:<http://purl.oclc.org/NET/ssnx/ssn#Input>

Example of SSN ontology with JSON-LD:

[{"@id":"http://purl.oclc.org/NET/ssnx/ssn#Input",

"@type":

["http://www.w3.org/2002/07/owl#Class"],

"http://www.w3.org/2000/01/rdf-schema#label":

[{"@value":"Input"}],

"http://www.w3.org/2002/07/owl#disjointWith":

[{"@id":"http://purl.oclc.org/NET/ssnx/ssn#Output"}],

"http://purl.org/dc/elements/1.1/source":

[{"@value":"http://marinemetadata.org/community/teams/ontdevices"}],

"http://www.w3.org/2000/01/rdf-schema#seeAlso":

[{"@value":"http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Model#

Process"}],

"http://www.w3.org/2000/01/rdf-schema#isDefinedBy":

[{"@value":"http://purl.oclc.org/NET/ssnx/ssn"}],

"http://www.w3.org/2000/01/rdf-schema#comment":

[{"@value":"Any information that is provided to a process for

its use."}]},

{"@id":"http://purl.oclc.org/NET/ssnx/ssn#Output",

"@type":["http://www.w3.org/2002/07/owl#Class"],

"http://www.w3.org/2000/01/rdf-schema#label":
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[{"@value":"Output"}],

"http://www.w3.org/2000/01/rdf-schema#comment":

[{"@value":"Any information that is reported from a process."}],

"http://purl.org/dc/elements/1.1/source":

[{"@value":"http://marinemetadata.org/community/teams/ontdevices"}],

"http://www.w3.org/2000/01/rdf-schema#isDefinedBy":

[{"@value":"http://purl.oclc.org/NET/ssnx/ssn"}],

"http://www.w3.org/2000/01/rdf-schema#seeAlso":

[{"@value":"http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Model#

Process"}]},

{"@id":"http://www.w3.org/2002/07/owl#Class"}]

Example of SSN ontology with EN Schema:

<owl:Class http://purl.oclc.org/NET/ssnx/ssn#Output

a owl:Class

rdfs:isDefinedBy http://purl.oclc.org/NET/ssnx/ssn

rdfs:seeAlso http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Model#Process

rdfs:label "Output"

rdfs:comment "Any information that is reported from a process."

dc11:source http://marinemetadata.org/community/teams/ontdevices>

<owl:Class http://purl.oclc.org/NET/ssnx/ssn#Input

a owl:Class

rdfs:isDefinedBy http://purl.oclc.org/NET/ssnx/ssn

rdfs:seeAlso http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Model#Process

rdfs:label "Input"

rdfs:comment "Any information that is provided to a process for its use."

owl:disjointWith http://purl.oclc.org/NET/ssnx/ssn#Output

dc11:source http://marinemetadata.org/community/teams/ontdevices>
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