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Abstract. Local Binary Pattern histograms from Three Orthogonal
Planes (LBP-TOP) has shown its promising performance on facial ex-
pression recognition as well as human activity analysis, as it extracts fea-
tures from spatial-temporal information. Originally, as the calculation of
LBP-TOP has to traverse all the pixels in the three dimensional space to
compute the LBP operation along XY, YT and XT planes respectively,
the frequent use of loops in implementation shapely increases the compu-
tational costs. In this work, we aim to fasten the computational efficiency
of LBP-TOP on spatial-temporal information and introduce the concept
of tensor unfolding to accelerate the implementation process from three-
dimensional space to two-dimensional space. The spatial-temporal infor-
mation is interpreted as a 3-order tensor, and we use tensor unfolding
method to compute three concatenated big matrices in two-dimensional
space. LBP operation is then performed on the three unfolded matrices.
As the demand for loops in implementation is largely down, the compu-
tational cost is substantially reduced. We compared the computational
time of the original LBP-TOP implementation to that of our fast LBP-
TOP implementation on both synthetic and real data, the results show
that the fast LBP-TOP implementation is much more time-saving than
the original one. The implementation code of the proposed fast LBP-
TOP is now publicly available?.

1 Introduction

Feature extraction, for a long time, plays an important role in image processing
and pattern recognition. Specifically, feature extraction constructs dimensionality-
reduced values from the large amount of original data to describe the statistical
characters, and facilitates recognition tasks such as facial expression recogni-
tion, object detection, texture classification, etc. There are a variety of methods
for feature description, including geometric feature-based methods, shape-based
methods and appearance-based methods [1], among which appearance-based
methods are the most widely used ones. Appearance-based methods extract the
image features in spatial domain and learn the feature extraction scheme based
on the relationship between the components or points within the space [2].

* These two authors contributed equally.
! The implementation code of the proposed fast LBP-TOP can be downloaded at
http://www.ee.oulu.fi/research/imag/cmvs/files/code/Fast_LBPTOP_Code.zip
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Local Binary Pattern (LBP) [1] is one of the most popular and efficient
appearance-based feature descriptors [3,4]. It has proven to be highly discrimi-
native and its invariance to monotonic gray-level discrepancies makes it a robust
feature descriptor in two-dimensional space. In general, an LBP operator mea-
sures each pixel of a given image by thresholding its neighborhood with the value
of the center pixel and forms the results into a binary pattern. Then, the occur-
rence histogram based on the resulted binary patterns can be computed over an
image or a region of the image, which is proven to be a powerful feature descrip-
tor. Now, due to its discriminative power and computational simplicity, LBP is
broadly utilized in image pattern recognition. Moreover, it receives tremendous
success in facial expression recognition as it is insensitive to illumination varia-
tions and well describes subtle appearance details of the local features on human
faces [5].

As LBP is proven to be of high performance as well as low computational
cost, it is frequently applied in pattern recognition on static images. Following
the steps of LBP, Zhao et al. [6] started to explore appearance-based feature
descriptors on dynamic or temporal information, which combines appearance
and motion. Hence, Local Binary Pattern histograms from Three Orthogonal
Planes (LBP-TOP) was proposed. LBP-TOP is an extension of LBP from two-
dimensional space to three-dimensional space including spatial and time domain.
More specifically, LBP-TOP regards the pixel in a three dimensional space with
spatial and temporal properties and computes the LBP of each pixel on three or-
thogonal planes, and finally formulates three occurrence histograms correspond-
ing to the three orthogonal planes. LBP-TOP not only inherits merits from LBP
which is insensitive to illumination variations, translations or rotations, but also
extends its applications to high dimensional video feature analysis. Moreover,
LBP-TOP has shown its promising performance on facial expression recognition
as well as human activity analysis, as it is capable to analyse appearance changes
from a sequence of images [7-11].

However, as LBP-TOP operates on three dimensional spatial-temporal in-
formation, the computational cost also sharply increases compared to LBP on
two dimensional static images. Suppose there is an image with frame width W
and height H, the total number of LBP operations over all the pixels on the
image is (W x H) times. Now we have another sequence of dynamic images with
the same image size of width W and height H and the number of frames T,
LBP-TOP needs to be applied to this three dimensional matrix. Then the total
number of LBP operations over all the pixels climbs to (3 x W x H x T') times.
Moreover, as LBP-TOP traverses all the pixels to compute LBP operations on
XY, YT and XT planes respectively, it results in a frequent usage of nested loops
in implementation. The use of complicated nested loops in implementation al-
ready heavily affects the computational time of LBP-TOP, let along the steep
rise in computational costs, especially when we need to analyse a long sequence
of images.

In this paper, we aim to fasten the computational efficiency of LBP-TOP
for feature extraction on spatial-temporal information and introduce the con-
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cept of tensor unfolding to accelerate the implementation process from three-

dimensional space to two-dimensional space. Therefore, we propose a fast LBP-

TOP implementation method which unfolds the 3-order tensor of spatial-temporal
information to 2-order tensors and performs LBP operations over the 2-order

tensors. The proposed fast LBP-TOP implementation method benefits from op-

timized codes with reduced nested loops and largely saves the computational

costs compared to the original implementation.

The contribution of this paper are two folds:

1. We propose a fast LBP-TOP implementation method that takes the ad-
vantage of tensor unfolding method to simplify the LBP-TOP implementation
from a three-dimensional space to a two-dimensional space. The tensor unfolding
method largely reduces the demand of loops in codes, such that the computa-
tional cost is substantially reduced.

2. We perform experimental comparisons of the proposed fast LBP-TOP
implementation method to the original one. The results show significant im-
provements in terms of computational cost.

2 Related Work

2.1 Local Binary Patterns

The local binary patterns (LBP) has proven to be a simple yet very efficient
operator for feature description. The LBP operator is derived from a general
definition of texture in a local neighborhood, and was firstly proposed by Ojala
el al. in 1996 [12]. Tt can be regarded as a unifying methodology other than
traditionally divergent statistical and structural models of texture analysis. Now
it is broadly utilized in fields such as face expression recognition and analysis [13,
14], biomedical image processing [15] and texture analysis [16].

Given a texture or an image, suppose that we computes the LBP opera-
tion over all the pixels. For each pixel, a certain range of its neighborhood is
pre-defined for the LBP operator. In this work, P counts for the number of
neighboring pixels around the central one, while R refers to the radius of a cir-
cle with the P equally spaced neighbors surrounding the central pixel. Figure 1
presents the distributions of the neighborhood of a given pixel with different
settings of P and R.

Now, we perform a basic LBP operation over a pixel with its neighborhood
setting as P = 8 and R = 1 as is shown in the example in Figure 2. Then,
we assume that the intensity value of the center pixel is g., while the intensity
values of its circular neighborhood are g,(p =0, ..., P — 1). Here we threshold
the neighbourhood by the intensity value of its center, namely

B:b(s(go_gc)’s(gl _gc)""vs(gp—l _gc))v (1)

s(n) = {1’ " 2

0, n<0

where
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Fig. 1. Examples of central pixel with different settings of circular neighborhoods. Each
grid represents a pixel and the pixel values are bilinearly interpolated if the sampling
point is not right in the center of a pixel. The white points represent the central pixel
and the black points refer to its neighboring pixels being selected.

7 6 3 1 0 0 1 2 4
8 7 ) ] 0 128 g Binary: 11110001
Decimal: 241
7 9 8 1 1 1 64 | 32 | 16
Example Thresholded Weights

Fig. 2. LBP operation with neighborhood settings as P = 8 and R = 1. The exam-
ple block is shown on the left with intensity values and the neighborhood points are
thresholded by the central pixel. Then the results are formulated into a bit-wise binary
pattern, and the corresponding weights are used to compute the decimal value of the
local binary pattern.

After thresholding the neighborhood using Equation 1 and Equation 2, we
formulate the results into a bit-wise binary pattern as shown in Figure 2. Thus,
this (P = 8, R = 1) circular neighborhood results in a final binary pattern as
11110001. Then we calculate the decimal value of the local binary pattern as
follow:

P—-1
LBPpr =Y s(gp—gc)2" (3)

p=0

After computing all the LBP decimal values over all the pixels on the image,
we finally construct the occurrence histogram with all the results. The computed
LBP histogram adopts uniform patterns so that the histogram has a separate bin

for every uniform pattern and all nonuniform patterns are assigned to a single
bin.
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2.2 Local Binary Patterns from Three Orthogonal Planes

Following the steps of LBP on static image analysis, Zhao et al. [6] proposed the
Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) to analyse
videos with motions.

The spatial-temporal information can be regarded as a set of volumes in
the (X,Y,T) space, where X and Y represent the spatial coordinates, while T
denotes the frame index (time) in temporal domain. Hence, the neighborhood
of each pixel no longer fall in a two dimensional space, where LBP operation
can be used to extract features into histograms. Instead, we need to compute
feature descriptor in the three dimensional space (X,Y,T). Thus, LBP-TOP is
proposed to describe the spatial-temporal information in the three dimensional
space.

Similar to LBP, LBP-TOP also computes the local binary patterns of a cen-
ter pixel by thresholding its neighborhood. However, as the spatial-temporal
information falls in a three dimensional space, LBP-TOP decomposes the three
dimensional volume into three orthogonal planes: XY, XT and YT as is shown
in Figure 3. The XY plane represents the appearance feature in spatial domain,
while the XT plane describes a visual impression of one row changing with time
and YT captures the features of motion for one column in temporal space. Then,
LBP values are extracted for all pixels from the XY, XT and YT planes, de-
noted as XY-LBP, XT-LBP and YT-LBP. In such a representation, a sequence
of images are encoded by the appearance (XY-LBP) and two spatial tempo-
ral (XT-LBP and YT-LBP) co-occurrence statistics. Finally, the LBP-TOP is
computed by concatenating the histograms from all the three orthogonal planes
including XY, XT and YT into a single histogram.

Note that when computing LBP-TOP over the spatial-temporal information,
we also define a neighborhood in the three dimensional space for LBP coding.
Rx, Ry and R denote the radius of the sampling points surrounding the cental
pixel along X, Y and T direction respectively. And Pxy, Pxr and Pyr count
for the number of neighborhood points sampled on XY plane, XT plane and YT
plane respectively. In the experiments in Section 3, we will use these denotations
to differentiate various parameter settings of the defined neighborhood for LBP-
TOP implementation.

2.3 Revisit LBP-TOP from a Tensor Point of View

A tensor refers to a multi-dimensional matrix, or array of numbers. The order
of a tensor is defined by the number of dimensionality of the matrix required to
describe the data [17,18]. That is, an one-dimensional array is an 1-order tensor,
a two-dimensional matrix is a 2-order tensor and so forth.

Given a sequence of images with spatial-temporal information, they are usu-
ally regarded as a three-dimensional matrix, of which two coordinates label the
spatial information and the third represents the time span. We can also con-
sider the three-dimensional matrix as a 3-order tensor, of which the compo-
nents include spatial information as well as temporal information. This facilitates
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Fig. 3. Visualization of XY, XT and YT orthogonal planes on the spatial-temporal
information with volume 183 x 229 x 11 based on LBP-TOP algorithm. The image in
XY plane is a 70 x 70 clip, the image in XT plane is a 11 x 70 clip when y = 140, and
the image in YT plane is a 11 x 70 clip when = = 140 (the starting point is on the
left-top of the image).

spatial-temporal information analysis from a tensor point of view. Many previous
works achieve video analysis with tensor theory, for instance, Wang et al. [19, 20]
proposed a tensor independent color space to analyze micro-expression recogni-
tion on spatial-temporal information over different color channels, while Kim et
al. [21] proposed tensor canonical correlation analysis for action classification.

Given an N-order tensor 7 € RI*I2XxIN the element inside T is rep-
resented as T; 4,...iy, Where 41,42, iy denote the coordinate positions. In
practice, the spatial-temporal information are usually a video with a sequence of
frames. Thus, we denote the video as a 3-order tensor 7, which is a I1 x Iy x I3
matrix. I; is the height of the frame, I5 refers to the width of the frame, and I3
denotes the number of frames in temporal domain. Then, LBP-TOP traverses all
the elements 7;,;,:, inside the tensor 7 to compute LBP on the three orthogonal
planes I15, IoI5 and I I3 respectively.

2.4 Fast LBP-TOP Implementation Based on Tensor Unfolding

Given an N-order tensor T € RI1*12X*IN the tensor unfolding [22-24] T,, €
RInxUilzTnilnsalnsaIN) contains the element 7;,4,...4,4, .y at the position
with row number i,, and column number that is equal to [(4,41 — 1)Lpga---
Iply - Tna] + [(ings = Dlnys - Ipli - In ]+ + [(ia — I3y Lo1] +
-+« +1i,_1. Figure 4 visualizes the unfolded results of the 3-order tensor. Tensor
unfolding is one of the simplest way to reduce the number of dimensions of a
matrix.

Then we apply tensor unfolding on the 3-order matrix, and receive three
2-order unfolded tensors as visualized in Figure 4.
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Fig. 4. Visualization of the three unfoldings of a 3-order tensor.

Apparently, the unfolded 2-order tensor 7(;) concatenates all the YT planes
into a large two-dimensional matrix. Similarly, the tensor 72y connects all the
XY planes and the tensor 7(3) concatenates all the XT planes.

Originally, LBP-TOP has to traverse all the pixels in the 3-order tensor to
compute the local binary patterns along XY, YT and XT planes respectively.
The huge demand of nested looping in implementation sharply increases the
computation costs. In this work, as we unfold the 3-order tensor to three two-
dimensional concatenated matrices, we can effectively accelerate the computa-
tion process by optimizing the codes with vectorization. Then, we reformulate
the unfolded tensors back to 3-order tensor and computes occurrence histograms
for each orthogonal planes. The pseudo code of the original LBP-TOP implemen-
tation is illustrated in Algorithm 1, while that of the proposed fast LBP-TOP
implementation is shown in Algorithm 2. Apparently, the proposed fast LBP-
TOP implementation largely reduces the usage of nested loops and optimizes
the codes through vectorization that uses matrix and vector operations.
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Algorithm 1: Original LBP-TOP implementation.

Data: Video data V, where [H, W, T] = size(V). Rx, Ry and Rp are radius of
neighborhood along X, Y and T direction respectively, and Pxy, Pxr and Py are
numbers of neighborhood points on XY, XT and YT plane respectively.

Result: LBP occurrence histograms on XY, XT and YT plane, namely HISTxy, HISTx T,

and HISTyr respectively.

fori= Ry toT — Ry — 1 do

for j = —Rp to Ry do

| Framemxwx(j+Rp+1) = VExwxt, where t =i+ j + 1;

end

for yc =1 to H do

for zc =1 to W do

CenterVar = Frame(yc, zc, Rr);

// Compute LBP on XY plane for center pixel with neighborhood

(Pxy,Rx,Ry).

LBPcentervar =LBP_PIXEL(CenterVar, Pxy, Rx, Ry);

Update HISTxy with the value of LBPcentervar;

// Compute LBP on XT plane for center pixel with neighborhood

(P)(T,RX7 RT)

LBPcentervar =LBP_PIXEL(CenterVar, Pxy, Rx, Rr);

Update HISTx 1 with the value of LBPcentervar;

// Compute LBP on YT plane for center pixel with neighborhood

(Pyr,Ry,Rr).
LBPcentervar =LBP_PIXEL(CenterVar, Pxy, Ry, Rr);
Update HISTyr with the value of LBPcentervar;

end

end
end

3 Experiments

Usually, LBP-TOP is performed over the spatial-temporal information for fea-
ture extraction and the extracted features are utilized for further pattern recog-
nition or classification. In most of the cases, the extracted LBP-TOP features
facilitate data training process for pattern recognition. Thus, in the experi-
ment, we imitate the feature extraction process for data training to evaluate
the performance of the original LBP-TOP implementation and the proposed
fast LBP-TOP implementation. More specifically, we extract LBP-TOP features
on spatial-temporal information with the same extraction strategy but different
implementations (original LBP-TOP and fast LBP-TOP), to evaluate the per-
formance improvements of the proposed fast LBP-TOP implementation. We
implement the fast LBP-TOP on Matlab R2014b. The original implementation
of LBP-TOP is provided by the corresponding authors in Matlab version?.

We compared the computational time of the original LBP-TOP implemen-
tation and our fast LBP-TOP implementation on both synthetic and real data.
Firstly, we compared the computational time of the original LBP-TOP imple-
mentation to our fast LBP-TOP implementation on synthetic data. Firstly, we
evaluate the computational time by averaging 50 randomly simulated video sam-
ples with varying settings of the neighborhood, as is shown in Table 1. Ap-
parently, the proposed fast LBP-TOP implementation effectively improves the

2 The original implementation code of LBP-TOP method can be downloaded at
http://www.cse.oulu.fi/CMV /Downloads/LBPMatlab



LBP-TOP: a Tensor Unfolding Revisit 9

Algorithm 2: Fast LBP-TOP implementation.

Data: Video data V, where [H, W, T] = size(V). Rx, Ry and Rp are radius of
neighborhood along X, Y and T direction respectively, and Pxy, Pxr and Py are
numbers of neighborhood points on XY, XT and YT plane respectively.

Result: LBP occurrence histograms on XY, XT and YT plane, namely HISTxy, HISTx T,

and HISTyr respectively.

// Simple zero padding is used but not limited in this pseudo code.

// 1. Operations on XY plane.

Planexy =zeros (H,2 X Rpr + W X R);

// Unfold the 3-order tensor to 2-order tensor.

Planexy (:, Rt +1: end — Rp) = Unfold (V,[H,W x T]);

/* Unfolding can be done through permute and reshape in Matlab for example. */

// Compute LBP on XY plane with neighborhood (Pxy,Rx,Ry).

LBPxy =LBP_PLANE(Planexy, Pxy,Rx,Ry);

/* LBP on all the pixels on a 2D plane is implemented through vectorization instead of
loops. */

// Reformulate the 2-order tensor to 3-order tensor.

LBPxy =Reformulate(LBPxy,[H —2 X Ry, W, T));

HISTxy :Histogram(LBny);

// 2. Operations on YT plane.

Planeyr =zeros (T,2 X Rx + W x H);

Planeyr(:,Rx +1:end — Rx) = Unfold (V, [T, W X H]);

// Compute LBP on YT plane with neighborhood (Pyr, Ry, Rr).
LBPyr =LBP_PLANE(Planeyr, Py, Ry, Rr);

LBPyr =Reformulate(LBPyr, [T —2 X Ry, H, W]);

HISTyr =Histogram(LBPyr);

// 3. Operations on XT plane.

Planexr =zeros (W,2 X Ry + W x T);

Planexr(:, Ru +1: end — Ry) = Unfold (V, [W, T x HJ);

// Compute LBP on XT plane with neighborhood (Pxr,Rx, Rr).
LBPxr =LBP_PLANE(Planexr, Pxt, Rx, Rr);

LBPx1 =Reformulate(LBPxr, [T — 2 X Ry, W, H]);

HISTxr =Histogram(LBPxr);

computational costs, especially when the sizes of the videos are large or the
neighborhood settings are complicated. Further, we randomly formulate video
clips of different frame size and time length to evaluate the computational cost of
the original LBP-TOP implementation and the proposed fast LBP-TOP imple-
mentation. The results are illustrated in Figure 5. From Figure 5(a), it is easy to
perceive that as the frame size increases, the computational time of the original
LBP-TOP implementation sharply increases while that of the fast LBP-TOP
implementation has no remarkable change. Similarly, in Figure 5(b), when the
length of the video clip increases, our fast LBP-TOP implementation reveals
significant advances on computational time than the original LBP-TOP imple-
mentation. Hence, the fast LBP-TOP implementation is proven to be much more
time-saving than the original LBP-TOP implementation in all cases especially
for spatial-temporal information of high volume.

Then, we evaluate the computational time on real data based on three
databases: CASME II [25], SMIC [26] and Cohn-Kanade [27]. All of the three
databases are video clips with spatial-temporal information. CASME 1T is a
micro-expression database of micro facial movements with high temporal and
spatial resolution. SMIC is a spontaneous micro-expression database for analyz-
ing people’s deceitful behaviors. The Cohn-Kanade AU-Coded Facial Expression
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Table 1. Average computational time of the original LBP-TOP implementation and the fast LBP-
TOP (FLBP-TOP) on 50 randomly simulated video samples. The numbers of sampled points of the
neighborhood Pxy, Pyt and Pxr are set equal (denoted as P), and the radius Rx ,Ry and Rrp
are set equal as well (denoted as R). ‘Inc.” refers to the increasing rate of computational time from
LBP-TOP to FLBP-TOP.

W H | T |P|R|LBP-TOP(s)|[FLBP-TOP(s)] Inc.
64643081 1.58 0.06 26.85
64|64 30|82 1.38 0.05 26.59
6464|3083 1.19 0.05 22.56
64| 64 | 30 |16[2 7.66 0.10 78.72
64|64 |30 |16|3 7.43 0.10 72.69
6464|6081 3.17 0.18 17.59
6464|608 |2 2.88 0.17 16.91
6464|6083 2.60 0.17 15.71
64| 64 | 60 |16(2 9.65 0.38 25.36
64|64 |60 |16|3 9.28 0.39 23.57
64|64 1808 |1 9.59 0.56 17.21
64|64 180 8 |2 8.92 0.56 15.94
64|64 (180| 8 |3 8.23 0.54 15.31
64 | 64 [180|16(2 17.42 1.21 14.42
64 | 64 |180|16|3 16.61 1.21 13.75
128[128] 30 | 8 |1 6.25 0.36 17.41
128(128[30 | 8 |2 5.69 0.35 16.15
128(128[ 30| 8 |3 5.05 0.32 15.92
128|128 30 |16 2 13.21 0.77 17.19
128|128 30 |16|3 12.45 0.69 18.14
128(128| 60 | 8 |1 12.88 0.74 17.43
128(128| 60 | 8 |2 12.09 0.71 17.07
128]128| 60 | 8 |3 11.31 0.72 15.67
128|128 60 16| 2 21.66 1.54 14.07
128]128] 60 |16]3 20.77 1.53 13.56
128|128(180| 8 |1 39.71 2.26 17.60
128(128(180| 8 | 2 37.64 2.18 17.29
128|128(180| 8 | 3 36.15 2.17 16.68
128(128(180(16| 2 54.82 4.66 11.76
128]128]180|16| 3 52.93 4.63 11.43
256/256/500| 8 |1|  455.80 29.71 15.34
256(256(500| 8 [2|  448.61 27.09 16.56
256(256(500| 8 [3|  438.66 25.74 17.04
256(256/500(16|2|  586.64 55.33 10.60
256/256|500|16]3| 578.37 54.78 10.56

database is for research in automatic normal facial expression analysis and syn-
thesis and for perceptual studies.

On each database, we randomly select 5 patches from each facial expression
video clip of each subject, and Table 2 shows the computational time of the origi-
nal LBP-TOP implementation and the proposed fast LBP-TOP implementation.
In the table, we evaluate the performance of the original LBP-TOP implemen-
tation versus the proposed fast LBP-TOP implementation on three databases
with different settings of frame width and height. As we perform LBP-TOP on
all the video clips over each database, the temporal lengths are always the same
such that we eliminate the setting of parameter 7' in the table. The parame-
ters of neighborhood including the number of sampling points Pxy, Pxr and
Pyr and radius Rx, Ry and Ry are set according to Table 2. From Table 2,
it is obvious that the fast LBP-TOP implementation dramatically improves the
computational time by 31.19 times on average to the original LBP-TOP imple-
mentation.



LBP-TOP: a Tensor Unfolding Revisit 11

)
o
w
in

—— LBP-TOP —— LBP-TOP
30 Fast LBP-TOP 3 = Fast LBP-TOP
z z
@

E 25 £ 25
€ =
= 20 =z 2
g
E15 Eis
= =
£ a
E 10 g1
=]
Q o

5 0.5

0 % 20 40 60 80 100

0 50 100 150 200 250 300 o
Frame size (width = height) Number of frames
(a) (b)

Fig. 5. Comparisons of computational time of the original LBP-TOP implementation
and the fast LBP-TOP implementation. (a) shows the computational time of LBP-
TOP and Fast LBP-TOP when frame size increases, of which the x-axis represents the
equal lengths of width and height, and the neigborhood settings are Pxy = Pxr =
Pyr =8, Rx = Ry = Rr = 1, and the video length 7" = 30. (b) illustrates the
computational time of LBP-TOP and Fast LBP-TOP when video length increases,
where the neighborhood settings are Pxy = Pxr = Pyr =8, Rx = Ry = Rr =1
and the frame size is 30 x 30.

4 Discussions

The proposed fast LBP-TOP implementation takes the advantage of tensor un-
folding to reformulate the tree-dimensional matrix to two-dimensional matrices.
In future, this tensor unfolding method can be applied to any other descriptors
that extract features from spatial-temporal information, such as LGBP-TOP [28]
and SIFT-TOP [29]. Moreover, we implement the fast LBP-TOP codes on Mat-
lab as an example. Further, the fast LBP-TOP can be implemented on other
platforms that optimize codes through vectorization instead of nested loops,
such as Python, Octave, R, etc.

5 Conclusions

In this work, we propose a fast LBP-TOP implementation method to fasten the
computation efficiency of LBP-TOP for feature extraction on spatial-temporal
information. We introduce the concept of tensor unfolding to accelerate the im-
plementation process from three-dimensional space to two-dimensional space.
The proposed fast LBP-TOP implementation method benefits from the opti-
mization of codes with less nested loops and largely reduces the computational
cost compared to the original implementation. We compare the computational
time of the original LBP-TOP implementation and our fast LBP-TOP implemen-
tation on both synthetic and real data. The results show that our fast LBP-TOP
implementation is quite time-saving than the original one. In future, as parallel



12 Xiaopeng Hong, Yingyue Xu, Guoying Zhao

Table 2. Total computational time of the original LBP-TOP implementation and the fast LBP-TOP
(FLBP-TOP) implementation on three databases: CASME II [25], SMIC [26] and Cohn-Kanade [27].
As LBP-TOP is performed by selecting 5 patches on every video clip of each database, the temporal
lengths are the same for each comparison group such that video lengths T" are not listed. The numbers
of sampled points of the neighborhood Pxy, Pyr and Pxr are set equal (denoted as P), and the
radius Rx ,Ry and Rr are set equal as well (denoted as R). The column ‘Clips’ shows the total
number of video clips of each database. ‘Inc.” refers to the increasing rate of computational time
from LBP-TOP to FLBP-TOP.

Database |W/|H [Clips| P|R|LBP-TOP(s)|FLBP-TOP(s)| Inc.
30(30(1285 (4|1 834.14 20.58 20.58
30(30(1285(4 |2 704.42 18.74 18.74
30(30(1285 |81 1001.94 38.37 38.37
30(30( 1285|812 850.17 35.88 35.88

CASME II 50(50(1285 (4|1 2357.59 59.02 59.02
50(50( 12854 |2 2130.38 55.33 55.33
50150128581 2805.47 138.59 138.59
50(50[1285|8 |2 2495.50 128.60 128.60
30(30(2415 (4|1 462.69 12.71 12.71
30(30(2415|4 |2 367.43 11.07 11.07
30(30(2415 |81 569.51 25.79 25.79

Cohn-Kanade 30(30(2415 |82 465.13 22.53 22.53
50(50(2415 (4|1 1174.95 28.14 28.14
50(50(2415 4|2 970.90 25.08 25.08
50150(2415|8 |1 1402.63 54.44 54.44
50(50(2415|8 |2 1154.99 48.33 48.33
30(30(1640 4|1 527.54 13.71 13.71
30(30(1640 |4 |2 434.42 11.82 11.82
30(30(1640 8|1 638.04 25.77 25.77

SMIC 30(30]1640 |82 533.85 23.56 23.56
50(50(1640 4|1 1429.49 32.33 32.33
50(50(1640 |4 |2 1244.76 30.48 30.48
50(50(1640 8|1 1705.84 62.66 62.66
50(50(1640 | 8|2 1471.51 58.51 58.51

computing can be performed on two dimensional matrices, the computational
time of the fast LBP-TOP implementation can be further saved.
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