Skip to main content

Survey on Models and Methodology for Emergency Relief and Staff Scheduling

  • Conference paper
  • First Online:
Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM 2016)

Abstract

Decision support is required for effective planning on all kinds of scheduling scenarios. The stochastic scenarios and uncertainty in demands make the scheduling task complex. Multiple objectives in terms of cost, timing window, priorities and travel routes are the driving factors in the scheduling task. These objectives are often associated with given constraints like time, cost, resource limit etc. To meet all these objectives with the given constraints, it requires effective scheduling methods. Among different application areas of scheduling, emergency relief and staff scheduling are two domains which present major challenges for the scheduling research. These two areas provide analogy with many other areas of scheduling. Issues like finding appropriate locations and establishing them in appropriate group, discovering effective path for routing and making efficient plan for distribution and servicing are major challenges for these two and related scheduling cases. This paper covers a survey study on some of the recent papers of these areas that highlights the problem formulations, technologies, methods and algorithms applied. It provides a literature review on technologies and algorithms applied in the area of emergency case relief scheduling and staff scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beamon, B.M., Balcik, B.: Performance measurement in humanitarian relief chains. Int. J. Public Sect. Manag. 21(1), 4–25 (2008)

    Google Scholar 

  2. de la Torre, L.E., Dolinskaya, I.S., Smilowitz, K.R.: Disaster relief routing: integrating research and practice. Socio-Econ. Plann. Sci. 46, 88–97 (2012)

    Article  Google Scholar 

  3. Altay, N., Green III, W.G.: OR/MS research in disaster operations management. Eur. J. Oper. Res. 175, 475–493 (2006)

    Google Scholar 

  4. Anaya-Arenas, A.M., Renaud, J., Ruiz, A.: Relief distribution networks: a systematic review. Ann. Oper. Res. 223, 53–79 (2014)

    Google Scholar 

  5. Özdamar, L., Demir, O.: A hierarchical clustering and routing procedure for large scale disaster relief logistics planning. Transp. Res. Part E 48, 591–602 (2012)

    Article  Google Scholar 

  6. Yi, W., Kumar, A.: Ant colony optimization for disaster relief operations. Transp. Res. Part E 43, 660–672 (2007)

    Article  Google Scholar 

  7. Yuan, Y., Wang, D.: Path selection model and algorithm for emergency logistics management. Comput. Ind. Eng. 56, 1081–1094 (2009)

    Article  Google Scholar 

  8. Zheng, Y.-J., Ling, H.-F.: Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach. Soft. Comput. 17, 1301–1314 (2013)

    Article  Google Scholar 

  9. Zhi-Hua, H., Sheng, Z.-H.: Disaster spread simulation and rescue time optimization in a resource network. Inf. Sci. 298, 118–135 (2015)

    Article  Google Scholar 

  10. Rawls, C.G., Turnquist, M.A.: Pre-positioning of emergency supplies for disaster response. Transp. Res. Part B 44, 521–534 (2010)

    Article  Google Scholar 

  11. Campbell, A.M., Jones, P.C.: Prepositioning supplies in preparation for disasters. Eur. J. Oper. Res. 209, 156–165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barzinpour, F., Esmaeili, V.: A multi-objective relief chain location distribution model for urban disaster management. Int. J. Adv. Manuf. Technol. 70, 1291–1302 (2014)

    Article  Google Scholar 

  13. Zhang, J.-H., Li, J., Liu, Z.-P.: Multiple-resource and multiple-depot emergency response problem considering secondary disasters. Expert Syst. Appl. 39, 11066–11071 (2012)

    Article  Google Scholar 

  14. Mete, H.O., Zabinsky, Z.B.: Stochastic optimization of medical supply location and distribution in disaster management. Int. J. Prod. Econ. 126, 76–84 (2010)

    Article  Google Scholar 

  15. Zhi-Hua, H.: A container multimodal transportation scheduling approach based on immune affinity model for emergency relief. Expert Syst. Appl. 38, 2632–2639 (2011)

    Article  Google Scholar 

  16. Roorda, M.J., Cavalcante, R., McCabe, S., Kwan, H.: A conceptual framework for agent-based modelling of logistics services. Transp. Res. Part E 46, 8–31 (2010)

    Article  Google Scholar 

  17. Jiuh-BiingSheu, Y.-H.C., Lan, L.W.: A novel model for quick response to disaster relief distribution. Proc. East. Asia Soc. Transp. Stud. 5, 2454–2462 (2005)

    Google Scholar 

  18. Chou, J.-S., Tsai, C.-F., Chen, Z.-Y., Sun, M.-H.: Biological-based genetic algorithms for optimized disaster response resource allocation. Comput. Ind. Eng. 74, 52–67 (2014)

    Article  Google Scholar 

  19. Camacho-Vallejo, J.F., Gonz_alez-Rodríguez, E., Almaguer, F.J., Gonz_alez-Ramírez, R.G.: A bi-level optimization model for aid distribution after the occurrence of a disaster. J. Cleaner Prod. 105, 134–145 (2015)

    Google Scholar 

  20. Tzeng, G.H., Cheng, H.J., Huang, T.D.: Multi-objective optimal planning for designing relief delivery systems. Transp. Res. Part E 43, 673–686 (2007)

    Article  Google Scholar 

  21. Sheu, J.-B.: An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transp. Res. Part E 43(2007), 687–709 (2007)

    Article  Google Scholar 

  22. Sheu, J.-B.: Dynamic relief-demand management for emergency logistics operations under large-scale disasters. Transp. Res. Part E 46, 1–17 (2010)

    Google Scholar 

  23. Ahn, C.W., Ramakrishna, R.S.: A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Trans. Evol. Comput. 6(6), 566–579 (2002)

    Google Scholar 

  24. Nagata, Y., Braysy, O., Dullaert, W.: A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows. Comput. Oper. Res. 37, 724–737 (2010)

    Article  MATH  Google Scholar 

  25. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time –windows. Comput. Oper. Res. 40, 475–489 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, Y.-H., Batta, R., Rogerson, P.A., Blatt, A., Flanigan, M.: A logistics model for emergency supply of critical items in the aftermath of a disaster. Socio-Econ. Plann. Sci. 45, 132–145 (2011)

    Article  Google Scholar 

  27. Chunguang, C., Xiang, M., Xiaoyu, S., Bo, G.: Emergency goods scheduling model and algorithm during initial stage of disaster relief. Int. Conf. Logistics Syst. Intell. Manag. 3, 1518–1521 (2010)

    Google Scholar 

  28. Zidi, K., Mguis, F., Borne, P., Ghedira, K.: Distributed genetic algorithm for disaster relief planning. Int. J. Comput. Commun. 8(5), 769–783 (2013)

    Google Scholar 

  29. D’Uffizi, A., Simonetti, M., Stecca, G., Confessore, G.: A simulation study of logistics for disaster relief operations. Procedia CIRP 33, 157–162 (2015)

    Article  Google Scholar 

  30. Aghamohammadi, H., Mesgari, M.S., Molaei, D., Aghamohammadi, H.: Development a heuristic method to locate and allocate the medical centres to minimize the earthquake relief operation time. Iran. J. Publ. Health 42(1), 63–71 (2013)

    Google Scholar 

  31. Baky, I.A.: Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems. Fuzzy Sets Syst. 160, 2701–2713 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. LoÂpez GonzaÂlez, E., RodrõÂguez FernaÂndez, M.A.: Genetic optimisation of a fuzzy distribution model. Int. J. Phys. Distrib. Logistics Manag. 30(7/8), 681–696 (2000)

    Google Scholar 

  33. Özdamar, L., Yi, W.: Greedy neighborhood search for disaster relief and evacuation logistics. In: IEEE Intelligent Systems, pp. 541–1672 (2008)

    Google Scholar 

  34. Chang, F.-S., Jain-Shing, W., Lee, C.-N., Shen, H.-C.: Greedy-search-based multi-objective genetic algorithm for emergency logistics. Expert Syst. Appl. 41, 2947–2956 (2014)

    Article  Google Scholar 

  35. Kergosien, Y., Lenté, C., Billaut, J. C.: An extended multiple travelling salesman problem. In: 4th Multidisciplinary International Conference on Scheduling: Theory and Applications (2009)

    Google Scholar 

  36. Mankowska, D.S., Meisel, F., Bierwirth, C.: The home health care routing and scheduling problem with interdependent services. Health Care Manag. Scipp. 17, 15 (2014)

    Article  Google Scholar 

  37. Akjiratikarl, C., Yenradee, P., Drake, P.R.: PSO-based algorithm for home care worker scheduling in the UK. Comput. Ind. Eng. 53(4), 559–583 (2007)

    Article  Google Scholar 

  38. Begur, S.V., Miller, D.M., Weaver, J.R.: An integrated spatial DSS for scheduling and routing home-health-care nurses. Interfaces 27(4), 35–48 (1997)

    Article  Google Scholar 

  39. Lin, C.-C., Kang, J.-R., Chiang, D.-J., Chen, C.-L.: Nurse scheduling with joint normalized shift and day-off preference satisfaction using a genetic algorithm with immigrant scheme. Int. J. Distrib. Sensor Netw. 2015, 1–10 (2015)

    Google Scholar 

  40. Lin, C.-C., Kang, J.-R., Hsu, T.-H.: A memetic algorithm with recovery scheme for nurse preference scheduling. J. Ind. Prod. Eng. 32(2), 83–95 (2015)

    Google Scholar 

  41. Bai, R., Burke, E.K., Kendall, G., Li, J., McCollum, B.: A hybrid evolutionary approach to the nurse rostering problem. IEEE Trans. Evol. Comput. 14, 580–590 (2010)

    Article  Google Scholar 

  42. Constantino, A.A., Dario, L.S., de Melo, E.L., de Mendonça, C.F.X., Rizzato, D.B., Romão, W.: A heuristic algorithm based on multi-assignment procedures for nurse scheduling. Ann. Oper. Res. 218, 165–183 (2013)

    Google Scholar 

  43. Fan, N., Mujahid, S., Zhang, J., Georgiev, P., Papajorgji, P., Steponavice, I., Neugaard, B., Pardalos, P.M.: Nurse scheduling problem- an integer programming model with a practical application. In: Pardalos, P.M., Georgiev, P.G., Papajorgji, P., Neugaard, B. (eds.) Systems Analysis Tools for Better Health Care Delivery. Springer Optimization and Its Applications, vol. 74, pp. 65–98. Springer, New York (2013)

    Google Scholar 

  44. Felici, G., Gentile, C.: A polyhedral approach for the staff rostering problem. Manag. Sci, 50, 381–393 (2004)

    Article  MATH  Google Scholar 

  45. Gao, S.C., Lin, C.W.: Particle swarm optimization based nurses’ shift scheduling. In: Proceedings of the Institute of Industrial Engineers Asian Conference, pp. 775–782 (2013)

    Google Scholar 

  46. Hadwan, M., Ayob, M., Sabar, N.R., Qu, R.: A harmony search algorithm for nurse rostering problems. Inf. Sci. 233, 126–140 (2013)

    Article  MathSciNet  Google Scholar 

  47. Maenhout, B., Vanhoucke, M.: An artificial immune system based approach for solving the nurse re-rostering problem. In: Proceedings of 13th European Conference on Evolutionary Computation in Combinatorial Optimization, pp. 97–108 (2013)

    Google Scholar 

  48. M’Hallah, R., Alkhabbaz, A.: Scheduling of nurses: a case study of a Kuwaiti health care unit. Oper. Res. Health Care 2, 1–19 (2013)

    Article  Google Scholar 

  49. Smet, P., De Causmaecker, P., Bilgin, B., Berghe, G.V.: Nurse rostering: a complex example of personnel scheduling with perspectives. Autom. Sched. Plann. Stud. Comput. Intell. 505, 129–153 (2013)

    Article  Google Scholar 

  50. Topaloglu, S., Selim, H.: Nurse scheduling using fuzzy modeling approach. Fuzzy Sets Syst. 161, 1543–1563 (2010)

    Google Scholar 

  51. Wright, P.D., Mahar, S.: Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction. Omega 41(6), 1042–1052 (2013)

    Article  Google Scholar 

  52. Wright, P.D., Vanhoucke, M.: Reconstructing nurse schedules: computational insights in the problem size parameters. Omega 41, 903–918 (2013)

    Article  Google Scholar 

  53. Cai, X., Li, K.N.: A genetic algorithm for scheduling staff of mixed skills under multi-criteria. Eur. J. Oper. Res. 125(2), 359–369 (2000)

    Article  MATH  Google Scholar 

  54. De Bruecker, P., Van den Bergh, J., Beliën, J., Demeulemeester, E.: Workforce planning incorporating skills: state of the art. J. Oper. Res. 243(1), 1–16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol. Comput. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  56. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraints handling with evolutionary algorithms—Part II. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 28(1), 26–37 (1998)

    Google Scholar 

  57. Ray, T., Tai, K., Seow, C.: Moltiobjective design optimization by an evolutionary algorithm. Eng. Optim. 33(3), 399–424 (2001)

    Article  Google Scholar 

  58. Ngatchou, P., Zarei, A., El-Sharkawi, M.A.: Pareto multi objective optimization. In: Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems (2005)

    Google Scholar 

  59. Bard, J.F., Purnomo, H.W.: Preference scheduling for nurses using column generation. Eur. J. Oper. Res. 164(2), 510–534 (2005)

    Article  MATH  Google Scholar 

  60. Todorovic, N., Petrovic, S.: Bee colony optimization algorithm for nurse rostering. IEEE Trans. Syst. Man Cybern. Syst. 43(2), 467–473 (2013)

    Article  Google Scholar 

  61. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  62. Redmond, S.J., Heneghan, C.: A method for initialising the K-means clustering algorithm using kd-trees. Pattern Recogn. Lett. 28, 8 (2007)

    Article  Google Scholar 

  63. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2007)

    Google Scholar 

  64. Stetco, A., Zeng, X.-J., Keane, J.: Fuzzy C-means++: fuzzy C-means with effective seeding initialization. Expert Syst. Appl. 42(21), 7541–7548 (2015)

    Google Scholar 

  65. Celebi, M.E.: Improving the performance of k-means for color quantization. Image Vis. Comput. 29(4), 260–271 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

The first and second authors are currently pursuing their PhD at the University of the West of Scotland under the Erasmus Mundus SmartLink scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupesh Kumar Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mishra, B.K., Sinthamrongruk, T., Pervez, Z., Dahal, K. (2017). Survey on Models and Methodology for Emergency Relief and Staff Scheduling. In: Fleming, P., Vyas, N., Sanei, S., Deb, K. (eds) Emerging Trends in Electrical, Electronic and Communications Engineering. ELECOM 2016. Lecture Notes in Electrical Engineering, vol 416. Springer, Cham. https://doi.org/10.1007/978-3-319-52171-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52171-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52170-1

  • Online ISBN: 978-3-319-52171-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics