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Abstract. In this work we describe a novel approach to online dense
non-rigid structure from motion. The problem is reformulated, incor-
porating ideas from visual object tracking, to provide a more general
and unified technique, with feedback between the reconstruction and
point-tracking algorithms. The resulting algorithm overcomes the limi-
tations of many conventional techniques, such as the need for a reference
image/template or precomputed trajectories. The technique can also be
applied in traditionally challenging scenarios, such as modelling objects
with strong self-occlusions or from an extreme range of viewpoints. The
proposed algorithm needs no offline pre-learning and does not assume the
modelled object stays rigid at the beginning of the video sequence. Our
experiments show that in traditional scenarios, the proposed method can
achieve better accuracy than the current state of the art while using less
supervision. Additionally we perform reconstructions in challenging new
scenarios where state-of-the-art approaches break down and where our
method improves performance by up to an order of magnitude.
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1 Introduction

Non-Rigid Structure-from-Motion (NRSfM) is a problem which has attracted
considerable interest in recent years, from application areas such as medical
imaging and the special effects industry. The problem is usually formulated as
the estimation of camera motion and of a time-varying 3D shape for an a priori
unknown object, using only a set of 2D point trajectories [1-4]. We propose a
modified formulation, where the task is completely unsupervised (with the only
input being a selection of what object to model). In other words, our task is to
estimate the camera motion and time-varying 3D shape of an a priori unknown
object from a previously unseen video-sequence, using only a bounding box in the
first frame. As far as the authors are aware, there is no previous work addressing
simultaneous tracking and non-rigid modelling from a monocular camera.
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The NRSfM problem is very challenging, due to the ambiguous separation of
2D observations into rigid camera motion and non-rigid object deformation. This
is exacerbated in the unsupervised scenario, where the observations are noisy,
contain outliers (due to matching failure) and may even belong to background
clutter. Despite these issues, we are able to successfully address the problem
by adapting techniques from 3D visual tracking. Online estimates of camera
trajectory and object shape can be fed back, to improve the accuracy of the
point tracking as the sequence progresses.

Another major contribution of this paper is that the traditional 3D object
model (defined as a 3D point cloud) is upgraded to a continuous 3D surface
using Gaussian Process shape modelling [5]. This makes it possible to segment
the object from the background, to reason about self-occlusions, and to intelli-
gently sample points in regions of low confidence (due to the probabilistic nature
of the model).

To the best of our knowledge, all state-of-the-art NRSfM techniques use 2D
point tracks as their input (with varying levels of density). In this publication,
we present a unified framework which jointly addresses the problems of 2D point
tracking and NRSfM directly on video frames. The additional 3D information
improves the 2D tracking far beyond what is possible from a generic stand-alone
system. In turn these more accurate point tracks help to refine future NRSfM
estimates.

The 2D tracks required by state-of-the-art techniques are often precomputed
(or taken from known annotations). For this precomputation, it is common to
work with a reference template or video frame, against which all other frames
are registered. This is important as the concatenation of frame-to-frame corre-
spondences (e.g. from optical flow) inevitably leads to an accumulation of errors
(drift). However, reference frames limit the possible applications of the technique.
In contrast, we address the problem of track drift explicitly, using multiple over-
lapping (both spatially and temporally) sets of dense trajectories, in addition to
easily localised sparse trajectories for long-term consistency. This obviates the
need for a reference frame, and makes it possible to process a wider range of
scenarios. These include strong rotations and self-occlusions, where there may
be zero overlap between the first frame and some frames later in the video.

Even though the proposed technique does not require any supervision
(beyond a single target bounding box), it extends easily to the more traditional
supervised scenarios using precomputed 2D tracks. Additional point correspon-
dences (such as tracks of SIFT features, regressed facial landmarks, etc.) can be
exploited within the framework to further improve performance.

One major issue in NRSfM research is the regularisation of non-rigid object
deformations. With unconstrained deformation, there is a trivial solution for
any set of observations, where the camera does not move and observations are
explained by complicated object deformations. To prevent this, the shape defor-
mation is usually defined as arising from a weighted combination of basis shapes.
In this paper we employ a novel set of constraints and regularisation, which
ensure that every basis shape represents an extreme (but feasible) pose of the
target object. Shape deformations are then constrained to lie within the feasible
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manifold (a convex subspace) formed by these basis shapes. This regularisation
renders the method very robust to overfitting.

To summarise, the primary contributions of this paper are: (1) a unified
framework to jointly solve the online (although not real-time), direct, template-
free NRSfM and point tracking tasks, (2) the use of Gaussian Process shape
model and (3) novel constraints to regularise the basis shape selection. The
source code of the method will be made available online.

2 Related Work

Most approaches to NRSfM are factorisation-based [6], as introduced by
Bregler et al. [7]. To simplify the problem, the orthographic camera model is used
[3,4,8,9]. This way, the 2D point locations (per frame) can be expressed as an
affine function of the 3D locations, which are in turn a linear combination of basis
shapes. The set of projection equations (for each 3D point and video frame where
it is visible) is then rewritten as a matrix-matrix multiplication. The projection
multiplication is decomposed (usually using SVD) back to the factors, yielding
the camera parameters (translation and rotation, for each frame), basis shape
mixing parameters (i.e. coefficients of the linear combination, for each frame)
and basis shape locations (for each point).

This problem is inherently ill-posed, having significantly more unknowns than
equations. To render it solvable, additional constraints are applied. In the origi-
nal paper [7], the low-rank constraint was applied, effectively setting/limiting the
number of basis shapes. All following approaches use this constraint and apply
additional constraints, priors, heuristics and regularisations. These include spa-
tial smoothness of shape [3,10-12] (the points lying close to each other in 2D tend
to lie close to each other in 3D); temporal smoothness of shape [1,3,9,10] (the
shape changes smoothly over time); temporal smoothness of camera poses [1,3]
(the camera trajectory is smooth in time); and inextensibility [11,12] and other
physics-based priors [1,13]. In this paper we propose an additional constraint,
that each basis shape must relate to a feasible target pose, greatly improving
the stability of the optimisation.

One limitation of the factorisation-based formulation is that it is conditional
on all 2D tracks spanning the length of the video. This condition is removed by
either estimating the missing data [14] or using methods based on Bundle Adjust-
ment (BA) [1,10], such as the proposed method. In this case, matrix factorisation
is replaced with global optimisation of the model parameters (basis shapes, mix-
ing coefficients and camera trajectory). Another reason for the use of Bundle
Adjustment is its ability to solve for more complicated camera models. Finally,
BA-based techniques also scale well in terms of memory and computation time.

Tablel compares the properties of selected state-of-the-art NRSfM
approaches. Although there are many more works, this comparison captures
general trends which can be observed in the field. All current techniques use
either a template, a precomputed set of 2D trajectories, or an RGBD camera to
address the task. To the best of the authors’ knowledge, there has been no prior
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Table 1. Comparison of state-of-the-art approaches for dynamic shapes reconstruction.

Property Zollhofer [15] Newcombe [16] Garg [17] Yu [18] | Proposed
Template-free v v v
Direct v v v v
Monocular RGB v v v
Online v v v v

approach to solve NRSfM which would be at the same time direct, template-free
and using only a single RGB camera.

3 Method

In this section, we present our novel formulation of the NRSfM problem. See
Fig. 2 for an overview of the proposed algorithm. Its input is a video-sequence
and optionally additional (independently estimated) trajectories. Its outputs are
the camera trajectory, reconstructed basis shapes (point clouds) and the mixing
parameters for each frame. From these, the time-varying shape can be recon-
structed at any frame (i.e. the instantaneous shape). Optionally, the shape can
be extracted in the form of an explicit polygonal mesh, parametrisable by the
coefficients.

As the first step (line 1 in Fig. 2) for the first frame, a bounding box is used
to specify the target. Within this boundary, sparse and dense 2D features are
extracted (lines 2 and 3) as detailed in Sect. 3.1. Optionally, further supervision
points can be supplied (line 4) from another source (such as regressed landmarks
in the case of a face sequence). These 2D points are backprojected to the dense
object model (see Sect.3.3 for details) and then duplicated K times to form
the initial basis shapes (line 5). The mixing coefficients are initialised to 1/K.
For more details on how the (time-varying) point clouds are represented, see
Sect. 3.2.

On every subsequent frame, we first track the existing 2D features in the new
image frame, as specified in Sect. 3.1 (lines 7 and 8). Using these 2D tracks and
their 3D correspondences, we estimate the current camera parameters (line 10).
Unless the camera has undergone significant motion (line 11 in Fig. 2), the algo-
rithm continues processing the next frame.

In the case where the camera has moved far enough since the last Bundle
Adjustment to provide a sufficient baseline for depth estimation, we jointly opti-
mise (line 13) all the variables in the system: basis shapes, their per-frame mix-
ing coefficients up to the current time and the camera trajectory to the current
frame. Bundle Adjustment is preferred over filtering and other methods since it
provides better performance given the same inputs [19]. Due to the novel regu-
larisation, the obtained basis shapes are well constrained and extremely stable,
which helps avoid difficulties with the basis ambiguity issue [8].

After the 3D point clouds have been optimised, the implicit model is retrained
(line 14). This model then provides the object/background segmentation, needed
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for creation of new points to be tracked. New dense tracks are initialised in the
whole image region containing the target object (line 16), while new sparse tracks
are initialised only where low confidence in the 3D shape renders them beneficial
(line 15). This directed sampling is the main advantage of tackling tracking and
reconstruction simultaneously. The corresponding 3D point clouds are initialised
by back-projecting the points locations to the model. See Sects. 3.1 and 3.3 for
details.

3.1 Obtaining Point Trajectories

Estimation of dense point tracks within a video sequence is inherently burdened
by the drift problem: concatenation of frame-to-frame point correspondences
leads to error accumulation, rendering long term dense trajectories unreliable.
This is traditionally countered by having a reference frame, to which all other
frames are registered, instead of concatenation. While this removes drift caused
by accumulation of errors, it adds the requirement to have a single frame which
overlaps all other frames. This in turn prevents application to sequences with
strong rotation and self-occlusion. We instead address this problem directly, by
limiting the temporal span of dense tracks to a fixed number of frames. Multiple
sets of these tracks are then created, overlapping in both time and space. These
are combined during the optimisation, being reconstructed in the common 3D
world. Additionally, for long-term consistency, sparse features are used, which are
easily localisable and can be tracked frame-to-frame more robustly. Furthermore,
the visibility of these sparse points is maintained based on the dense model
(i.e. due to self-occlusion) and the points may be redetected when they become
visible again, facilitating loop closures.

The dense features D! are sampled on a regular grid within the initial bound-
ing box (in the first frame), or within the area of the estimated object boundary
found by projecting the model into the current frame P(M|C?). The density
of these points is set by the user to control the trade-off between processing
time and level of model detail. After each BA, new dense features are created,
spanning the entire area of the projected model, to ensure overlap between the
subsets of dense trajectories within D!. The dense frame-to-frame tracks are
obtained by registering feature images obtained through deep-learning [20].

For the sparse tracks St, we extract SIFT and Hessian-Affine feature points,
which are specifically chosen to be robustly localisable over long timescales.
These are then tracked using pyramidal Lucas-Kanade. Unlike the dense features,
the temporal span of the sparse tracks is unlimited. This means that we do not
need to ensure spatial overlap between consecutive “batches” of tracks, as for
the dense points. Indeed, it is counterproductive to sample too many sparse
points within any particular region of the target object, as this results in wasted
computation. To prevent this, we employ the probabilistic nature of our model
which is based on Gaussian Processes and extract new features only in areas
with high uncertainty of the shape (i.e. where the new features will be the most
beneficial; see Sect. 3.3 for details).

For both sparse and dense tracks, background features may become included
in either the initial bounding box or later segmentation. For this reason, feature
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filtering takes place, based on their reconstructed 3D location relative to the
model. Features inconsistent with the model are considered outliers and are not
used in further computations.

3.2 Non-rigid 3D Reconstruction

Along with the majority of state-of-the-art approaches, we express the instanta-
neous 3D shape B? as a linear combination of basis shapes B:

B' = Ba'. (1)

This instantaneous shape can be projected to find the equivalent 2D observa-
tions:
it =P (Bt|Ct) , (2)

i.e. every 3D point in B! is projected by a camera with parameters C? to create
the concatenated 2D point matrix @if. The camera model used in our experiments
is full projective, however the approach generalises to any other camera model
(e.g. orthographic, spherical, etc.) as long as it provides a unique back-projection
(a 2D point to a 3D ray) for any 2D image location. This way we separate (for
every frame) the rigid motion as the camera motion (captured by C?) and the
non-rigid motion as the shape deformation (captured by at).

The common 3K-rank constraint used extensively throughout the NRSfM
literature, is equivalent to fixing the number of basis shapes to K. In this paper
we introduce a novel regularisation which forces the basis shapes to be mean-
ingful modes, or linearly independent “extremes”, of the target’s shape. This is
done via the following constraints:

lpa=1 and o; € [0;1], (3)

where «; is the j-th element of a. This effectively limits the targets shape to a
convex combination of the basis shapes (i.e. a finite K — 1 dimensional manifold
in the full shape space, e.g. a triangle on a 2D hyperplane for K = 3). This
is important during the optimisation process (see below) and is also useful for
modelling and visualisation.

The projection equation provides a simple geometric error to be minimised
during the rigid camera pose estimation:

Ct:argénian (ut—P(Bt|C))H (4)

where u? comprises the 2D sparse, dense and supervision points, and p is an

element-wise robust cost function, to provide outlier tolerance (similar to [21]).
This is minimised using the conditional gradient method.

There are two ways in which the instantaneous 3D shape for each frame could
be estimated. Firstly, the unknown set of coefficients a’ could be included as
parameters to Eq. (4) and estimated for each frame, jointly with the camera pose.
The second approach is to postpone the estimation of the mixing coefficients
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(al! «— a'~1) until the next bundle adjustment. Empirically we find that the
latter approach is more stable as it allows more observations and additional
regularisation to be used to constrain the non-rigid deformations.

Theoretically, there is nothing preventing BA from being executed on every
frame, however that would be excessively time-demanding (BA is the most
time-consuming stage of the algorithm even with sparse execution, see Table 3).
Requiring a baseline of sufficient width (non-negligible camera motion) between
two consecutive BA runs creates well-timed on-request executions on keyframes
characterised by equidistant camera poses.

The cost function optimised in BA is similar to (4), with several major dif-
ferences:

t
(i, 3l (7 = P (B0 |CT)]|+ 4a(A) + 44(8) + Ao (L)

(5)

st. 1ga” =1 and of €[0;1] Vj,7,

where A! includes all mixing vectors up to frame ¢ and C* contains all cameras
up to frame ¢. Since it is vital to update the mixing coefficients a@ during BA,
the combination of basis shapes needs to be expressed explicitly. The projection
errors are summed across all the frames seen thus far (a windowed version,
limited to a recent history may be considered if speed is an issue). The robust
cost function p employed here is the Cauchy loss, as provided by the Ceres Solver
[22]. Finally, there are additional priors and regularisations employed. Significant
effort is given to these throughout the literature, and sometimes they constitute
the major novelty of an article [10,23].

We employ the temporal smoothness of shape prior. This means the shape
cannot change suddenly over time. This is achieved by penalising fast changes
in the mixing coefficients:

t
Aa(AY) = wo Yy |l = a7|? (6)
T=2

where w, is an appropriate weighting.

In the proposed method, we want the basis shapes to be extremes (rare,
but feasible instances) of the shape variation. In other words, the instantaneous
shapes are required to span a (convex) subspace, tightly bounded by the basis
shapes. This renders the method very robust to overfitting. The first requirement,
that the instantaneous shapes span a limited space, is achieved by limiting the
a coefficients (Eq. (3)). The second requirement, that the bounding subspace is
tight around the observed poses, stems from the need to decouple the rigid and
non-rigid motions. Therefore we introduce the final regularisation term:

K i—1

As(B) =wp S5 B — By (7)

i=2 j=1

where wg is an appropriate weighting.
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Finally, to enforce the prior of temporal smoothness of camera trajectory, a
different cost is chosen. It is desirable to penalise sudden changes in camera
parameters without creating an energy inhibiting free camera motion in the
world. Therefore the following is used:

t .
1 if||C™"t - C7|| > bc
{ ’

A Ct == bl
() wc; 0 ifl|CT — C7|| < b

where 0¢ is a chosen threshold and wc is a large (relative to the other costs)
constant.

3.3 Object-Background Segmentation

For successful 2D tracking in the presence of background clutter, it is necessary
to segment the object of interest from the background. The reconstructed 3D
points can give a rough idea where the object is located, however they are not
sufficient for segmentation. For this reason, we keep a dense model of the object.
It is modelled as a Gaussian Process (GP) in polar coordinates, similarly to [24],
where the distance of the surface from the object centre is a function of its
bearing angles (azimuth and elevation).

The Gaussian Process is trained on the reconstructed 3D points, and is
retrained after every bundle adjustment as follows. Firstly, the 3D points in
a canonical shape (combined from the basis shapes B using ' averaged over the
history thus far) are expressed as vectors in polar coordinates, i.e. as a radius
r and a pair of angles (0, ¢) per point. All the points are then used as training
data, regressing the radius from the angles: r = GP(0, ¢|x), where « is the kernel
of the GP (in this work we use a combination of exponential, white-noise and
bias kernel; its parameters are optimised to maximise the observation likelihood
on the training data).

The model can be queried in any direction (0, ¢), yielding the local radius.
As a result, the model densifies the point cloud, fitting a continuous surface
to the sparse points. This way, it tells us where the object is; both in the 3D
space (reasoning about occupancy, intersections and self-occlusion) and in the 2D
image plane (the aforementioned object-background segmentation). Hence when
initialising new point tracks, these can be filtered to occupy only the target
area. The depth of the 3D features can then be initialised using the intersection
between rays from the camera centre and the shape model.

3.4 Final Model Extraction

This section deals with creation of an explicit 3D model, which is the final
product of any SfM algorithm. The GP model described above is implicit and
non-parameteric, i.e. while the object’s presence/absence can be queried at any
point, it has no discrete set of parameters or elements (e.g. vertices or edges), and
therefore cannot be simply stored for later use, without also storing the entire
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state of the system. Furthermore, it tends to oversmooth in both interpolated
and extrapolated regions. Finally, the canonical GP model cannot be warped
according to the mixing coefficients a. For these reasons, we produce another
model, which is a standard watertight triangular mesh. This model can be pro-
vided online, i.e. after processing every new frame, however that is usually not
required. The triangular model is created using Poisson reconstruction [25,26]
on the canonical shape B’. To achieve this, a set of surface normals N is esti-
mated from the GP model (by sampling points in a very close neighbourhood
and fitting a tangent plane), corresponding to every point in B’. The Poisson
equation is solved to find the hidden function H, whose gradient approximates
these normals

AH = VN. 9)

A collection of smoothed model vertices may then be selected from the Hj iso-
surface.

Since the task in NRSfM is reconstruction of time-varying shape, the model
needs to be non-rigid as well. The transfer of the deformation is achieved as
follows. Firstly, a rigid model is created using the canonical shape B’, analogously
to the GP model training. Every vertex of the mesh model is assigned a fixed
set of features in the cloud, determined as its k nearest neighbours (set to 3
in our experiments). Since for each 3D feature the offset of basis poses (from
the canonical shape) is known, the offset of basis poses of each vertex can be
computed as a mean of offsets of its k nearest neighbours. Since the topology
of the model does not change when performing the warp, its basis shapes differ
only by the vertex coordinates: these are computed by applying the offsets to
the canonical model.

Finally, the texture of the model is extracted from the image sequence. As
we only provide the model at the end, the sequence is processed again in the
second pass. The model is warped into the appropriate shape for each frame
using previously estimated mixing coefficients, and the texture of visible mesh
faces is updated. For every pixel of the texture, we keep a full-covariance normal
distribution in the RGB space and the mean is used as the resulting colour. The
observer “samples” are weighted according to the observation angle.

4 Experimental Results

4.1 Synthetic Experiments

We perform an initial quantitative evaluation on the synthetic CUBICGLOBE
dataset. This sequence contains a rotating globe which repeatedly warps into
cubic shape and then back to sphere. We report performance of the proposed
algorithm with a number of quantitative measures, comparing against several
state-of-the-art template-free NRSfM techniques which have source code avail-
able online. These include BALM [27], using Augmented Lagrange multipliers
to solve for the bilinear factorisation problem in the presence of missing data,
LITP [28], using isometric deformation instead of basis shape combination and
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SoftInex [12] which employs the material inextensibility prior as a soft constrain
in its energy function. These tests measure three important properties of a suc-
cessful NRSfM technique. Firstly its accuracy of modelling: the fit of the basis
shapes to a perfect cube/sphere (the error is expressed relative to the model size,
i.e. the sphere radius and half of the cube side). The second measured quan-
tity is the accuracy of camera tracking: camera rotation error measured in the
angle-axis representation as angular error of both the axis and the rotation angle
(since the global coordinate frame is not fixed, the rotation is measured as rela-
tive to the first frame). Finally, we measure the depth error of the instantaneous
point locations, as Spearman correlation (to overcome the inherent scale ambigu-
ity of the 3D reconstruction) between the measured and ground-truth depth. The
sequence will be made available online including all ground truth information,
such as shape, trajectory, depth, etc..

It is important to note that all three state-of-the-art comparison methods use
the orthographic camera model to simplify computation. This makes it more
challenging to evaluate the camera trajectory and depth correlations against
the ground truth. To resolve this issue a state of the art Perspective-n-Point
algorithm [29] with outlier rejection was used to find the optimal projective
camera pose, given the reconstructed 3D point clouds.

Since there are no ground-truth point tracks for this sequence, we provided
the state-of-the-art techniques with tracks obtained by our technique. LIIP and
SoftInex do not handle occlusions; therefore we run them only on a limited
portion of the sequence (the first 50 frames), with only those tracks, which are
visible in all 50 frames. Furthermore, the competing approaches do not directly
provide meaningful basis shapes. Therefore we use the instantaneous shape from
frames 30, 90 and 150 for cube, and 1, 60, 120 and 180 for sphere (where the
ground truth shape is pure). The table contains the best possible performance
for each of these.

See Table 2 for results. It is clearly visible that BALM failed completely on
this sequence, producing large reconstruction and camera rotation errors. Simi-
larly, the depth reported by BALM is not correlated to the GT depth. The results
of LIIP are significantly better, with much lower reconstruction errors and rota-
tion error reduced by an order of magnitude, compared to BALM. The average
depth correlation is 0.5. SoftInex produces even better 3D reconstructions, with
error comparable to the proposed method (although of only one side of the object
since it does not handle occlusions). The camera pose is less accurate than that

Table 2. Reconstruction results on the CUBICGLOBE sequence.

Cube (%) Sphere (%) | Axis (°) Angle (°) | Depth (%)
BALM 51 £54 14 £ 12 52.6 + 28.0 56.9 + 39.7| 5 £ 26
LITP 29 + 20 5+5 129 £204 81+44 | 50+ 29
Softlnex | 4+ 3 3+2 223+ 85 11.8+81 |79+ 13
Proposed| 3 +£3 3+3 04+08 35+1.4 |95+3
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of LIIP, the reported depth is nevertheless strongly correlated with the ground
truth.

The results of SoftInex demonstrate an interesting phenomenon. While the
per-frame point depth, returned by the algorithm (and used to infer the non-rigid
shape) is realistic, it is “flipped” in the z-direction for some frames (i.e. the object
side is turned inside out; this is probably due to the lack of temporal smoothness
constraint). For a fair comparison, we had to detect and correct this during our
experiments. Without this, the results of Softlnex are significantly worse, e.g.
the depth correlation drops to 16 %. When using the proposed method, the
reconstructed models cover the whole object (as visualised in Fig. 1) with very
low errors. The camera rotation demonstrates even better performance, with
error reduced by an order of magnitude due to its inherent ability to perform
tracking and modelling simultaneously. The depth estimated by the proposed
method is nearly perfect, reaching 95 % correlation with the observed depth.

Fig. 1. Example of input sequence and models output by our method: frames #60, 70,
80 and 90 of the sequence CUBICGLOBE.

See Fig. 3 for visualisation of the obtained mixing coefficients a! in the first
180 frames of the CUBICGLOBE sequence. The shape is changing from spherical
to cubic linearly, which was closely captured by the coefficient change. Notice
the “cropped” peaks, a typical artefact of the proposed method. This is caused
by the compactness prior, forcing the basis shapes (spherical and cubical in this
case) to lie close to each other and hence being unable to truly capture the very
extremes. It, however, does not significantly affect the overall performance, as
can be seen in both the qualitative (Fig. 1 and the supplementary material) and
quantitative (Table 2) results.

Table 3 shows a breakdown of the execution speed for the different algorithms.
It should be reiterated that the competing state-of-the-art techniques use point
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1: request bounding box from user

2: S! « detect initial sparse features

3: D! — initialise dense features

4: *£' — load any supervision features

5: B « initialise 3D point basis (S', D', £')

6: fort=2—T do

7 S' « track by Lucas-Kanade (S*™!)

8: D' « track by dense image registration (D'™")
9: *£' « load any supervision features

10: C' « estimate camera pose (B, S*, D", L")
11:  if ||C’ — C'|| > 6c then
12: C' —C
13: Optimise B, C'...C', a'...a’ by BA
14: M « retrain shape model (B,a!...at)
15: Stew — S'U detect sparse features (M)
16: Dl ew — D'U detect dense features (M)
17: end if
18: *Create and output explicit mesh model.
19: end for

Fig. 2. The proposed algorithm overview. Lines marked with * are optional.

1

05 F O !

0O 30 60 90 120 150 180
t

589

Fig. 3. Mixing coefficients & in the CUBICGLOBE sequence (GT shown dotted).

Table 3. Times of processing the first 180 frames of the CUBICGLOBE sequence. The
last row does not sum up to 100 % due to various overhead computations, visualisation,

1/0 wait, etc.

Tracking Reconstruction Modelling
BALM (s) 1357 248 372
LIIP (s) 1357 18768 372
SoftInex (s) 1357 5416 372
Proposed (s) 1357 3234 372
22% 52% 6%

tracks provided by the proposed method. Therefore the times for point tracking
and model training (necessary for tracking) should be included in their timings
for a fair comparison. These are marked in grey. It is also worth noting, that the
time for LIIP and SoftInex was consumed in computing reconstruction from only
260 tracks in 50 frames, while the others from nearly 20 000 tracks in 180 frames.
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BALM also has scaling issues in terms of memory usage. Operating on the same
point tracks used in the proposed approach, BALM consumed more than 200 GB
of RAM, two orders of magnitude more than the proposed algorithm.

4.2 Real Data Experiments

To show the performance of the proposed algorithm on real data, we firstly use
the recently published 300VW dataset [30-32]. In Fig. 4 we compare the perfor-
mance of the proposed technique against BALM on the 300VW:002 sequence.
When given only the sparse facial landmarks, BALM performs similarly to the
proposed technique. However, it has difficulties integrating noisier observations;
when BALM is provided with the denser internal trajectories generated by the
proposed method, it fails to produce a reasonable reconstruction. In contrast
the proposed technique is able to fuse these, to produce a far more detailed
reconstruction than from the landmarks alone. Figure5 shows the resulting

Fig. 4. Comparison of BALM (left two columns) against the proposed technique (right
two columns) on the 300VW:002 sequence. Results are shown using only the sparse
supervision (top row), and using the sparse supervision with additional densely esti-
mated trajectories (bottom row).

Fig. 5. Reconstructed model overlaid over frames from the 300VW:002 sequence. The
shape space visualises the weighted combination of the independent basis shapes. See
the supplementary material for an animated version of this figure.
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Fig. 6. Landmark tracking error on the 300VW:002 sequence, when using rigid and
non-rigid tracking and reconstruction. Left: error histogram, right: landmark error from
low (green) to high (red). (Color figure online)

reconstruction of our technique and the trajectory of the model in the shape
space defined by B.

It is not only the reconstruction which benefits from the proposed joint app-
roach. Using a non-rigid model can significantly improve tracking results as well.
This is demonstrated in Fig. 6, where results are compared between rigid and
non-rigid 3D tracking. For non-rigid objects, a “centre” is ill defined. There-
fore, a face-tracking scenario is used and the accuracy of landmark tracking is
measured. The error is defined as the distance between the GT and the land-
marks tracked using the non-rigid 3D model. For each landmark, the error is
averaged over all frames. It can be seen that the proposed method has a fraction
of landmarks tracked with near-zero error, while the rigid case has no “perfectly
tracked” landmarks. Additionally, the rigid variant has a significant portion of
landmarks tracked with errors around 20-30 px (mostly near the mouth where
the non-rigid deformation is the most pronounced). On average, the tracking
error is reduced from 17.44+14.1 to 10.8+£10.5 px by using a non-rigid model.

In Fig.7 we explore the performance of the proposed technique in the fully
unsupervised scenario, on the FACE [17] and T-SHIRT [33] sequences. See the

Fig. 7. Example of modelling results on FACE [17] (left) and T-SHIRT [33] (right). From
top to bottom: original video frames; video frames overlaid with the instantaneous
models; the instantaneous model on its own (untextured).
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(a) (b)

Fig. 8. (a) Details of the model obtained (directly) from the T-SHIRT sequence [33].
(b) Basis shapes obtained from the FACE sequence [17].

Table 4. Quantitative results on the T-SHIRT sequence.

PCA [33] Uncon. LVM [33] CLVM [33] DDD [18] | Proposed
Error (mm) | 18.44 15.50£1.78 14.794+0.90 7.05 17.824+4.72

supplementary material for resulting videos. The models generated by our app-
roach are similar to the results generated by state-of-the-art NRSfM techniques.
However, it should be re-emphasised that we solve a much more challenging prob-
lem: the fully unsupervised online scenario. As can be seen, all estimated target
poses are feasible and the estimated shapes model the deformations well despite
the lack of supervision. It is also obvious from the second row that estimates of
the rigid motion (i.e. the camera pose) are extremely accurate. In Fig. 8a, the
canonical T-SHIRT model (before cropping to contain only the region of interest)
is shown in detail. Notice the creases near the top of the model, caused by the
way the t-shirt is held. Figure 8b shows the basis shapes automatically identified
by our method and used in the reconstruction shown in Fig. 7 (with a wireframe
mesh overlaid to help visualise the 3D shape). Finally, Table4 brings quanti-
tative comparison on the T-SHIRT sequence. The results indicate the proposed
approach is competitive with state of the art, even though it does not use a
template or another kind of prior knowledge and operates directly on the raw
RGB images.

5 Summary

In this paper, a novel NRSfM algorithm was introduced. Its main advantage
over conventional NRSfM approaches is that it requires no external supervision
(e.g. pre-computed clean point tracks): everything required is computed directly
from the input video and the only external input is the target selection by a
bounding box in the first frame. It is able to autonomously create 3D models from
unseen video-sequences. The proposed algorithm is more generic than state-of-
the-art methods, with trivial extension to different camera models and additional
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priors, constraints and regularisations. In addition, it removes several important
limitations of conventional methods, most importantly it provides robustness
against strong target rotation and self-occlusion.

One of the limitations of the approach is the assumption that the object is
roughly compact. Therefore the model is unable to capture more complicated
shapes such as walking humans. This is however a limitation of virtually all
current model-free approaches.
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