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Abstract. Tensors are effective representations for complex and-viangng
networks. The factorization of a tensor provides a highligubow-rank com-
pact basis for each dimension of the tensor, which fadiiitahe interpretation
of important structures of the represented data. Many iegisensor factoriza-
tion (TF) methods assume there is one tensor that needs tedeengosed to
low-rank factors. However in practice, data are usuallyegated from different
time periods or by different class labels, which are represkby a sequence
of multiple tensors associated with different labels. Whep needs to analyse
and compare multiple tensors, existing TF methods are taideifor discover-
ing all potentially useful patterns, as they usually faititecover either common
or unique factors among the tensot$:if each tensor is factorized separately,
the factor matrices will fail to explicitly capture the corominformation shared
by different tensors, ang) if tensors are concatenated together to form a larger
“overall” tensor and then factorize this concatenateddenke intrinsic unique
subspaces that are specific to each tensor will be lost. Tiieaaf such an is-
sue is mainly from the fact that existing tensor factorizatnethods handle data
observations in annsupervisedvay, considering only features but not labels of
the data. To tackle this problem, we design a novel prolsdigiliensor factoriza-
tion model that takes both features and class labels of temsm account, and
produces informativeommon and unique factors of all tenssigultaneously.
Experiment results on feature extraction in classificaposblems demonstrate
the effectiveness of the factors discovered by our method.
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1 Introduction

In this paper we study the problem of probabilistically &acting a sequence of multi-
ple tensors for feature extraction from multi-mode tensaiad Various types of tensor
factorization methods have been proposed in the literaituckiding Tucker decompo-
sition [10], CP [3] (also known as PARAFAC), non-negativeder factorization [11],

and probabilistic tensor factorization [12]. These methadd their later variants can
be considered as higher-order generalizations of matatofezations. Most of these
existing methods are restricted to decomposing a singtarios of a tensor object in
an unsupervised manner. This raises the question of wiadegyrshould be used when
dealing with multiple tensor objects which are associat@ti wlass labels. Given a
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Fig. 1: Factorize all the tensors by our meth@dlF, where matrix factors discover
both common and unique patterns

tensor ofM modes, existing TF methods decompose the tensorlihtow-rank ma-
trix factors, each of which explains a compact basis of eactigrof the tensor. Two
common approaches for using TF to factorize a sequeneetehsors are:qption 1)
decompose each tensor separately — this approach genelatesank factor matrix
for each mode of each tensor, and does not necessarilyfidantiotentially impor-
tant “common factor” matrix that these tensors may sharépption 2 concatenate
all tensors along a certain mode to form one big tensor and deeompose it — in
contrast to the first option, this strategy may discard fdssunique factor” matrices
in the concatenated dimension, and only produces factatsatie a consensus of the
original tensors. Although it is possible to treat thesesteg as a data stream and use
sliding windows to analyse them incrementally [8,9], theuatdecomposition on each
element within each window is still limited to the above twations.

In this research we propose a novel strategy for probabaigf analysing multiple
tensors, and introduce the conceptommon factoreindunique factorsalong each
mode of all tensors. As demonstrated in Fib. 1, the commonesfadenoted byV)
along the first dimension of all tensors occupies a fractibtihe factor matrix, while
the remaining fraction is preserved for each tensor indégetty so that any unique
patterns that are discriminative to each tensor are alssepred. We will show that
when the tensors are associated with class labels, theifatton of both common and
unique factors is especially beneficial for feature extosc{dimension reduction) of
classification tasks. The strategy of decomposing commdrnuaitue factors provides
a flexible choice on the sizes of common and unique spacels,tsatthe preceding
two options become special cases of our proposed approdwn e common space
is empty (i.e., when the size ¥ in Fig.[1 is zero) we obtaioption 1, and when it is
set to the full size of the factor matrix (instead of a fragjiove obtainoption 2

In summary, we make the following contributions in this pape

1. We introduce the concepts of common factors and uniqueri@ decompos-
ing a sequence of tensors, and formulate the problem of appating low-rank
representations of tensors as simultaneously optimifiagpproximation of both
common and unique factors;

2. We propose #&MI'F (probabilistic multiple tensor factorization) model, whiin-
corporates both the common and unique factor matricesenltlgiin the factoriza-
tion process;

3. We perform empirical evaluations BMT'F on feature extraction for graph classifi-
cation, which demonstrates the power and effectivenesarahethod.



2 Related Work

Factorization methods for tensors that are essentiallgdrigrder generalizations of
those for matrices have been studied, such as the probialidissor factorization (PTF)
method [7,12]. As a multi-dimensional generalization oftrixafactorization, PTF is
more attractive than matrix factorization not only becatisensiders more dimensions
of information, but also because it usually allows for a weiglecomposition of a data
set into factors under mild conditions, which are usuallys§ad by real datd [6]. The
field of multi-task learning[[13] is also related to our resds however there is no
existing work in the multi-task learning domain that stutliithe problem for tensor
factorizations. Coupled tensor and/or matrix factoratinethods [5] are also closely
related to this research. However, no existing coupleafaation methods address the
problem of discovering both shared and unique factors sanabusly. It has also been
proposed to perform coupled tensor factorizatioris [1,34}4ing generalised learning
models. However, these papers only consider the case wkethetomposed factors
are all the same in the shared mode, and did not address hdactiver discriminant
factors from the shared identical mode between couplederator tensors.

Different from all the above literature, in this researchpvepose the first method
that simultaneously decomposes tensors into both commebuiaique factors, incor-
porating their class labels (or data generation sourcet)eirfactorization processes,
which significantly improve the effectiveness of the exteadeatures.

3 Tensor Factorization

Tensors are multidimensional (aka multi-mode) arrays. \&eote tensors with 3 or
more modes by calligraphic font (e.dv), denote matrices (tensors with 2 modes) by
boldface uppercase letters (eld), and denote vectors (tensors with 1 mode) by bold-
face lower letters (e.gu). In the following, we first briefly introduce preliminaried
PTF, and then elaborate the propoBdi F model. We give the definition of a standard
tensor factorization as follows:

3.1 Probabilistic Tensor Factorization

Given a M-mode tensot’ € R *--*"M gnd the desired low rank probabilistic ten-
sor factorization (PTF) method decompdsénto M matrix factordd,; € R™*" (d =
1,2,3,..., M), such that¥ ~ >°7_, uj ® uj.... ® u},, whereu), represents thgth
column of Uy, and® represents outer products. Taking 3-mode tensor as an exam-
ple, the element-wise expression of the decomposition eawtitten ask; ; , ~
S _1(U1)ri(Us)y j(Us)p e =< Ui, u-;, u¥ >. For ease of interpre;ations, we QSe,
Uy,...Uns, 0rUg|}Z, (or simplyU) to represent the operation’;_, uj @uj....@uj, in
the rest of the paper. Moreover, we will use the example ofoglertensor to represent
the more generic cases of M modes.

Standard PTF method [12] assumes Gaussian distributiotiedikelihood of ten-
sor observations given matrix factors:
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p(X|U1,U2,Us,0%) =TT T] I1 [N(Xijk‘ <ui,ul,uf >.,02)]Ii”j'k , @)
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whereX is a three-mode tensdd, , U, U3 are respectively the tensors factor matrices
in each mode, the inner product of column vectarsi{, uj, u% > is the mean of the
Gaussian distribution which has variancg and the binary indicataf; ;  equals 1 if
valued; ; ;. is observed and equals O otherwise.

3.2 Common and Unique Subspaces

Without loss of generality, we define and solve the problereafning common and
unique factors from multiple tensors by using the scendiwotensors (e.gm = 2in
the example of Figure 1). This scenario corresponds to tbeakbinary classes, where
each tensor contains instances from a class label. We oeniettgthy derivations for
m > 2 scenarios due to their close theoretical similarity torthe- 2 scenario. Assume
it is the first mode of tensors that we want to derive both comaued unique factors,
the probabilistic learning problem can be defined as follows

Definition 1. (Probabilistic multiple tensor factorization (PMTF)): G&n two M-mode
tensorsX; and X, PMTF probabilistically decomposes each of them as the ymbd
of M + 1 factor matrices so thatt; = [W|V] ® U ® Us... ® Up/" and “ Xy =
WIS ® T2 ® Ts... ® Typ,” hold simultaneously.

In this definition, we use[W|V]” and “[W|S]” to represent the first matrix factor
of each tensor, wheM is the common factor, and andS are respectively the unique
factors of the two tensors. Using the previous illustratiorFigure[1,V and S are
equivalent toJ; andU?. Since the common factor is located in the first dimension of
the tensorsW is of sizen; x s, whileV andS are of sizen; x (r — s), wheres is the
desired cardinality of the common factor matrix€ s < r). The concatenatiofV|V]
is of sizen; xr, aligning withU, andUs which are of sizew, x - andng x r respectively.

By using 3-mode tensors as an example, a graphical illistragpresenting the model
of PMTF is shown in Fig[B.
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The conditional probability of tensor data observationadslelled from:

A ; (I1);,4
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and

p(X2|W, S, K2, Kz, 05) = H {N((‘Xé)ijk‘ W (), (1Y) >70_§)1|(I2)i,j7k
o . )
x T [M(@2)igel < s' ), (15)s >, 03)] 277",
.5,k
where(I1); ;. and(12); ; » contain binary indicators that respectively representttwdre
the entries a{i, j, k} position ofX; andX, are observed. Factor matrices of both ten-

sors are modelled by Gaussian priors:

ny
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whered = 2 and 3,,, |, |5, andl are respectively identity matrices of sizéy s,

r—sbyr —s,r—sbyr — s, andr by r. The log-posterior probability of the factor
matrices is then:

Inp(W,V,S,Uq, Tg|X1, X2, O)
=Inp(X1|W,V,Us, U3, 07) + Inp(X2|W, S, K3, K3, 03) + In p(W|ow) + Inp(V]ov)
+ Inp(Slos) + lnp(Ud\dUd) + lnp(Td|aTd) +c’

where® = {o1,02,0w,0v,0s,00,,01,}, d = 2 and 3,C’ is a constant that is not
dependent on any of the parameters. By making use of the Ipifitypdensity function
of Gaussian distribution, maximizing the above functiordgiivalent to minimizing
the following sum of squared error:

min > (1) ((X)ige— < W' ud,uf )% 4 (X)ie— < v, uj, uf >)?)
i,7,k
+ D (I2)igk (((Xz)ijk— <wh ud,uf >)? 4 ((Xo)ije— < 8 ud, uf >)2)
i,5,k
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Where)\w = O'V\//Ul, Ay = U\//Ul, As = 03/02, /\Ud = Uud/Ul, )\Td = UTd/Ug
(d=2,3). The objective function in E@] 4 is convex with respgcieach matrix fac-
tor and can be minimized by gradient descent or block coatdidecent algorithms,
which both iteratively update one parameter at a time. Ineaperiments, we alternate
between optimizing the hyperparameters and updating thentes of matrix factors
with the hyperparameters fixed.

3.3 Applying PMTF for Supervised Feature Extraction

Given a set of graphs, each of which is associated with a s the graph classifi-
cation task is to predict the class of a new graph. Similaetoegal factorization-based



Table 1: Statistics of chemical compound data sets

Name |#graphsDescriptions |Name |#graphsDescriptions
AID83 27784Breast Cancer [AID81 40700 Colon Cancer
AID123 | 40152Leukemia AID1 4046QLung Cancer
AID33 40209Melanoma AlD47 40447 Nerve Cancer
AID109 40691 Ovarian CancenAlD41 27585 Prostate Cancer
AlD145 40164 Renal Cancer [AlD1481| 217968ATPase Inhibition
AID1416| 217968PERK InhibitionNAlD1446| 217968Janus Kinase

dimension reduction methods such as PCA (where each Fier@gmponent is used as
a new feature), we apply our factorization metiRMI'F as a feature extraction method
for classification problems, by making usetbé features (i.e., column vectors) defined
by the new low-dimension feature spad¥sV and S, in comparison to théeatures
defined by column vectors of matrix factors from standardoig@ation methodsThe
performance of the features selected by our method for griggkification is evaluated
in the next section.

4 Experiments and Analysis

We implemenPMI'F and PTF in Matlab by using the Tensor Toolbbk [2]. This toalbo
also contains an implementation of CP tensor decompositibith we use in the eval-
uation. All experiment results presented in this secti@nfeym 5-fold cross validation
with 10 repeated runs.

4.1 Data Sets

We applyPMTF to graph feature extraction and classification problem @mgbal com-
pound data sets, where each chemical compound is treategi@sta \We use bioassays
of anti-cancer activity and kinase inhibition (Aﬂ))he task is to predict whether a com-
pound is positive or negative in anti-cancer activitiesrokinase inhibition activities.
Details of these chemical compound data sets are reporfabis].

4.2 Feature Extraction for Graph Classification

In each data set we construct two tensors, one for each wlasse all unique types of
atoms found in a data set are converted to the labels of esrémd the lengths of bonds
between atoms are weights of the edges. So an entry of a tieresepunt, which tells
that for a certain compound, how many edges (bonds) coneetztic types of atoms
and have certain edge weights (lengths).

We compare the accuracy of classification on data pointegi@j into the new
low-dimension feature space produced by PRMIF and CP decomposition, where
we vary the settings of low ranks)(from 5 to 20. In PTF, all training data instances

LYhttp://pubchem ncbi . nl mni h. gov



Table 2: Comparisons of different methods in their effemtigss of feature extraction
for graph classification using logistic regression.

AUC from Logistic Regression  |AUC from SVMs with Quadratic Kernels
CP PTF GTF |PMIF|Bests| CP PTF GTF |PMTF| Bests
AID83 | 0.615| 0.568 | 0.511|0.727 17 | 0.535| 0.582 | 0.586 |0.610| 18
AID81 0.608 | 0.757 | 0.739 |0.762| 16 0.642 | 0.642 | 0.699 |0.738 11
AID123 | 0.686 | 0.761 | 0.695 |0.778 12 0.604 | 0.601 | 0.637 |0.646) 7
AID1 0.782 | 0.806 | 0.886 |0.884] 9 0.798 | 0.738 | 0.725|0.810 7
AID33 0.675| 0.595| 0.711 |0.806] 11 0.711 | 0.765 | 0.762 |0.822 15
AlD47 0.622 | 0.604 | 0.801 ({0.829] 10 0.792 | 0.774 | 0.752|0.791 9
AID109 | 0.797 | 0.628 | 0.741|0.799| 14 | 0.711| 0.761 | 0.757 |0.808 13
AlD41 0.680 | 0.554 | 0.728 |0.741 7 0.692 | 0.696 | 0.722|0.800 16
AID145 | 0.733 | 0.674 | 0.762 {0.891] 6 0.807 | 0.893 | 0.799 |0.891 11
AlID1481| 0.603 | 0.590 | 0.660 |0.799 9 0.720 | 0.696 | 0.705 |0.780| 18
AID1416| 0.674 | 0.646 | 0.721 |0.807] 13 0.780 | 0.652 | 0.697 |0.797] 9
AlD1446| 0.865 | 0.749 | 0.758 {0.901] 5 0.889 | 0.808 | 0.869 |0.904 6
Frd. test [v 0.006v 0.018v 0.051 Base| - |v 0.045v 0.03§v 0.002 Base| -

Data set$

are factorized together, so it only discovers common faabboth classes. In CP, ten-
sors belonging to differents classes are factorized seggrhence it only find unique

factors of the classes. We also include the GTF (Generdlisegled Tensor factoriza-
tion) method[[14] in our evaluations, which is built on gealesed linear models and
produces common factors on the common mode of tensors.

To test the distinctness of the new data points from diffecéasses under the new
low-dimension feature space, we use two types of classifteisarn from the new
data points, a linear classifier — logistic regression, andralinear classifier — support
vector machines (SVMs) with quadratic kernels (i.e., thmkEbetween twaectorized
data samples; andz; is: k(x;, 7;) = (1 + 27 x;)?).

The Friedman test is reported as one of the most approprietieatis for validat-
ing multiple classifiers among multiple data sets [4]. Tofoom the significance of
the superiority ofPMT'F, we perform Friedman tests on the sequences of AUC values
across all data sets, whepevalues that are lower than 0.05 reject the hypothesis with
95% confidence that the classifiers in the comparison aretatistically different. In
Tabled® we report the performance of the classifiers onrdiftsfactorization methods
when the rankis 20. In each data set the AUC value of the befstrpgng method is put
in boldface font. To show the diversity of the data sets, v8e ptesent the bestvalues
which are optimized from the training set of cross validatiBrom the lowp—values
shown in the bottom of Tablé€s 2, it is easy to see that the lvk-spaces produced by
PMTF are significantly better than the other corresponding natho distinguishing
the two class labels on each data set.

5 Conclusions and Future Work

In this research we focus on the problem of probabilistycfttorizing a sequence of
labelled tensors in order to improve tensor feature extrador supervised learning.



We formulate this problem into the task of discovering comrand unique factors from
multiple tensors. The propos&MIF model is a generic tensor factorization method
that can potentially be applied to many practical problews.have appliedPMTIF to
the problem of feature extraction (dimension reductiom)g@aph classification. Em-
pirical results demonstrate the superiority of the factissovered byPMTF over other
existing methods. We note that besides graphs, our methodlsa be applied to any
other data represented in multi-mode forms (such as imagksideos).

In future, we plan to investigate the use R¥ATF in collaborative filtering prob-
lems, where different tensors represent different domairsthe common/unique fac-
tors learned byPMTF can be helpful for building cross-domain recommendatiasi sy
tems. Besides, we also plan to apply the methdeldifF to other domains where tensor
representation are used, such as text mining and informegioieval.
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