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Abstract. Tensors are effective representations for complex and time-varying
networks. The factorization of a tensor provides a high-quality low-rank com-
pact basis for each dimension of the tensor, which facilitates the interpretation
of important structures of the represented data. Many existing tensor factoriza-
tion (TF) methods assume there is one tensor that needs to be decomposed to
low-rank factors. However in practice, data are usually generated from different
time periods or by different class labels, which are represented by a sequence
of multiple tensors associated with different labels. Whenone needs to analyse
and compare multiple tensors, existing TF methods are unsuitable for discover-
ing all potentially useful patterns, as they usually fail todiscover either common
or unique factors among the tensors:1) if each tensor is factorized separately,
the factor matrices will fail to explicitly capture the common information shared
by different tensors, and2) if tensors are concatenated together to form a larger
“overall” tensor and then factorize this concatenated tensor, the intrinsic unique
subspaces that are specific to each tensor will be lost. The cause of such an is-
sue is mainly from the fact that existing tensor factorization methods handle data
observations in anunsupervisedway, considering only features but not labels of
the data. To tackle this problem, we design a novel probabilistic tensor factoriza-
tion model that takes both features and class labels of tensors into account, and
produces informativecommon and unique factors of all tensorssimultaneously.
Experiment results on feature extraction in classificationproblems demonstrate
the effectiveness of the factors discovered by our method.
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1 Introduction

In this paper we study the problem of probabilistically factorizing a sequence of multi-
ple tensors for feature extraction from multi-mode tensor data.. Various types of tensor
factorization methods have been proposed in the literature, including Tucker decompo-
sition [10], CP [3] (also known as PARAFAC), non-negative tensor factorization [11],
and probabilistic tensor factorization [12]. These methods and their later variants can
be considered as higher-order generalizations of matrix factorizations. Most of these
existing methods are restricted to decomposing a single instance of a tensor object in
an unsupervised manner. This raises the question of what strategy should be used when
dealing with multiple tensor objects which are associated with class labels. Given a



Fig. 1: Factorize all the tensors by our methodPMTF, where matrix factors discover
both common and unique patterns

tensor ofM modes, existing TF methods decompose the tensor intoM low-rank ma-
trix factors, each of which explains a compact basis of each mode of the tensor. Two
common approaches for using TF to factorize a sequence ofm tensors are: (option 1)
decompose each tensor separately – this approach generatesa low-rank factor matrix
for each mode of each tensor, and does not necessarily identify a potentially impor-
tant “common factor” matrix that these tensors may share; or(option 2) concatenate
all tensors along a certain mode to form one big tensor and then decompose it – in
contrast to the first option, this strategy may discard possible “unique factor” matrices
in the concatenated dimension, and only produces factors that are a consensus of the
original tensors. Although it is possible to treat these tensors as a data stream and use
sliding windows to analyse them incrementally [8,9], the actual decomposition on each
element within each window is still limited to the above two options.

In this research we propose a novel strategy for probabilistically analysing multiple
tensors, and introduce the concepts ofcommon factorsandunique factorsalong each
mode of all tensors. As demonstrated in Fig. 1, the common space (denoted byW)
along the first dimension of all tensors occupies a fraction of the factor matrix, while
the remaining fraction is preserved for each tensor independently so that any unique
patterns that are discriminative to each tensor are also preserved. We will show that
when the tensors are associated with class labels, the factorization of both common and
unique factors is especially beneficial for feature extraction (dimension reduction) of
classification tasks. The strategy of decomposing common and unique factors provides
a flexible choice on the sizes of common and unique spaces, such that the preceding
two options become special cases of our proposed approach. When the common space
is empty (i.e., when the size ofW in Fig. 1 is zero) we obtainoption 1, and when it is
set to the full size of the factor matrix (instead of a fraction) we obtainoption 2.

In summary, we make the following contributions in this paper:

1. We introduce the concepts of common factors and unique factors in decompos-
ing a sequence of tensors, and formulate the problem of approximating low-rank
representations of tensors as simultaneously optimizing the approximation of both
common and unique factors;

2. We propose aPMTF (probabilistic multiple tensor factorization) model, which in-
corporates both the common and unique factor matrices inherently in the factoriza-
tion process;

3. We perform empirical evaluations ofPMTF on feature extraction for graph classifi-
cation, which demonstrates the power and effectiveness of our method.



2 Related Work

Factorization methods for tensors that are essentially higher order generalizations of
those for matrices have been studied, such as the probabilistic tensor factorization (PTF)
method [7,12]. As a multi-dimensional generalization of matrix factorization, PTF is
more attractive than matrix factorization not only becauseit considers more dimensions
of information, but also because it usually allows for a unique decomposition of a data
set into factors under mild conditions, which are usually satisfied by real data [6]. The
field of multi-task learning [13] is also related to our research, however there is no
existing work in the multi-task learning domain that studied the problem for tensor
factorizations. Coupled tensor and/or matrix factorization methods [5] are also closely
related to this research. However, no existing coupled factorization methods address the
problem of discovering both shared and unique factors simultaneously. It has also been
proposed to perform coupled tensor factorizations [1,14] by using generalised learning
models. However, these papers only consider the case when the decomposed factors
are all the same in the shared mode, and did not address how to discover discriminant
factors from the shared identical mode between coupled matrices or tensors.

Different from all the above literature, in this research wepropose the first method
that simultaneously decomposes tensors into both common and unique factors, incor-
porating their class labels (or data generation sources) inthe factorization processes,
which significantly improve the effectiveness of the extracted features.

3 Tensor Factorization

Tensors are multidimensional (aka multi-mode) arrays. We denote tensors with 3 or
more modes by calligraphic font (e.g.,X ), denote matrices (tensors with 2 modes) by
boldface uppercase letters (e.g.,U), and denote vectors (tensors with 1 mode) by bold-
face lower letters (e.g.,u). In the following, we first briefly introduce preliminariesof
PTF, and then elaborate the proposedPMTF model. We give the definition of a standard
tensor factorization as follows:

3.1 Probabilistic Tensor Factorization

Given a M-mode tensorX ∈ R
n1×...×nM and the desired low rankr, probabilistic ten-

sor factorization (PTF) method decomposeX intoM matrix factorsUd ∈ R
nd×r, (d =

1, 2, 3, ...,M), such thatX ≈
∑r

j=1 uj
1 ⊗ uj

2.... ⊗ uj
M , whereuj

d represents thejth
column of Ud, and⊗ represents outer products. Taking 3-mode tensor as an exam-
ple, the element-wise expression of the decomposition can be written asXi,j,k ≈
∑r

d=1(U1)r,i(U2)r,j(U3)r,k ≡< ui
1, u

j
2, u

k
3 >. For ease of interpretations, we useU1,

U2,...UM , orUd|
M
d=1 (or simplyU) to represent the operation

∑r

j=1 uj
1⊗uj

2....⊗uj
M in

the rest of the paper. Moreover, we will use the example of 3-mode tensor to represent
the more generic cases of M modes.

Standard PTF method [12] assumes Gaussian distributions onthe likelihood of ten-
sor observations given matrix factors:

p(X|U1,U2,U3, σ
2) =

n1
∏

i=1

n2
∏

j=1

n3
∏

k=1

[

N (Xijk| < ui
1, uj

2, uk
3 >, σ

2)
]Ii,j,k

, (1)



whereX is a three-mode tensor,U1,U2,U3 are respectively the tensors factor matrices
in each mode, the inner product of column vectors< ui

1, u
j
2, u

k
3 > is the mean of the

Gaussian distribution which has varianceσ2, and the binary indicatorIi,j,k equals 1 if
valueXi,j,k is observed and equals 0 otherwise.

3.2 Common and Unique Subspaces

Without loss of generality, we define and solve the problem oflearning common and
unique factors from multiple tensors by using the scenario of two tensors (e.g.,m = 2 in
the example of Figure 1). This scenario corresponds to the case of binary classes, where
each tensor contains instances from a class label. We omit the lengthy derivations for
m > 2 scenarios due to their close theoretical similarity to them = 2 scenario. Assume
it is the first mode of tensors that we want to derive both common and unique factors,
the probabilistic learning problem can be defined as follows:

Definition 1. (Probabilistic multiple tensor factorization (PMTF)): Given two M-mode
tensorsX1 andX2, PMTF probabilistically decomposes each of them as the product
of M + 1 factor matrices so that “X1 ≈ [W|V] ⊗ U2 ⊗ U3... ⊗ UM ” and “ X2 ≈
[W|S]⊗ T2 ⊗ T3...⊗ TM ” hold simultaneously.

In this definition, we use “[W|V]” and “[W|S]” to represent the first matrix factor
of each tensor, whereW is the common factor, andV andSare respectively the unique
factors of the two tensors. Using the previous illustrationin Figure 1,V and S are
equivalent toU1

1 andU2
1. Since the common factor is located in the first dimension of

the tensors,W is of sizen1 × s, while V andS are of sizen1 × (r − s), wheres is the
desired cardinality of the common factor matrix (0 ≤ s ≤ r). The concatenation[W|V]
is of sizen1×r, aligning withU2 andU3 which are of sizen2×r andn3×r respectively.
By using 3-mode tensors as an example, a graphical illustration representing the model
of PMTF is shown in Fig. 3.

Fig. 3: Graphical representations on
usingPMTF to factorize two tensors
X1 and X2. PMTF unveils both the
common factor matrixW , and unique
factorsV andS (shown by their col-
umn vectorswi, vi, and si respec-
tively).
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The conditional probability of tensor data observations ismodelled from:

p(X1|W,V,U2,U3, σ
2
1) =

∏
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(2)



and

p(X2|W,S,K2,K3, σ
2
2) =

∏

i,j,k

[
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2
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(3)

where(I1)i,j,k and(I2)i,j,k contain binary indicators that respectively represent whether
the entries at{i, j, k} position ofX1 andX2 are observed. Factor matrices of both ten-
sors are modelled by Gaussian priors:

p(W|σW) =

n1
∏

i=1

N (wi|0, σW Iw), p(V|σV) =

n1
∏

i=1

N (vi|0, σV Iv),

p(S|σS) =

n1
∏

i=1

N (si|0, σSIs), p(Ud|σUd
) =

nd
∏

i=1

N (ui
d|0, σUd

I), p(Td|σTd ) =

nd
∏

i=1

N (tid|0, σTd I),

whered = 2 and 3,Iw, Iv, Is, andI are respectively identity matrices of sizes by s,
r − s by r − s, r − s by r − s, andr by r. The log-posterior probability of the factor
matrices is then:

ln p(W,V,S,Ud, Td|X1,X2, Θ)

= ln p(X1|W,V,U2, U3, σ
2
1) + ln p(X2|W,S,K2,K3, σ

2
2) + ln p(W|σW) + ln p(V|σV)

+ ln p(S|σS) + ln p(Ud|σUd
) + ln p(Td|σTd ) + C

′

whereΘ = {σ1, σ2, σW , σV , σS , σUd
, σTd

}, d = 2 and 3,C′ is a constant that is not
dependent on any of the parameters. By making use of the probability density function
of Gaussian distribution, maximizing the above function isequivalent to minimizing
the following sum of squared error:

min
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whereλW = σW/σ1, λV = σV/σ1, λS = σS/σ2, λUd
= σUd

/σ1, λTd
= σTd

/σ2

(d=2,3). The objective function in Eq. 4 is convex with respectto each matrix fac-
tor and can be minimized by gradient descent or block coordinate decent algorithms,
which both iteratively update one parameter at a time. In ourexperiments, we alternate
between optimizing the hyperparameters and updating the columns of matrix factors
with the hyperparameters fixed.

3.3 Applying PMTF for Supervised Feature Extraction

Given a set of graphs, each of which is associated with a classlabel, the graph classifi-
cation task is to predict the class of a new graph. Similar to general factorization-based



Table 1: Statistics of chemical compound data sets

Name #graphsDescriptions Name #graphsDescriptions
AID83 27784Breast Cancer AID81 40700Colon Cancer
AID123 40152Leukemia AID1 40460Lung Cancer
AID33 40209Melanoma AID47 40447Nerve Cancer
AID109 40691Ovarian Cancer AID41 27585Prostate Cancer
AID145 40164Renal Cancer AID1481 217968ATPase Inhibition
AID1416 217968PERK InhibitionAID1446 217968Janus Kinase

dimension reduction methods such as PCA (where each Principle Component is used as
a new feature), we apply our factorization methodPMTF as a feature extraction method
for classification problems, by making use ofthe features (i.e., column vectors) defined
by the new low-dimension feature spacesW, V and S, in comparison to thefeatures
defined by column vectors of matrix factors from standard factorization methods. The
performance of the features selected by our method for graphclassification is evaluated
in the next section.

4 Experiments and Analysis

We implementPMTF and PTF in Matlab by using the Tensor Toolbox [2]. This toolbox
also contains an implementation of CP tensor decomposition, which we use in the eval-
uation. All experiment results presented in this section are from 5-fold cross validation
with 10 repeated runs.

4.1 Data Sets

We applyPMTF to graph feature extraction and classification problem on chemical com-
pound data sets, where each chemical compound is treated as agraph. We use bioassays
of anti-cancer activity and kinase inhibition (AID)1: the task is to predict whether a com-
pound is positive or negative in anti-cancer activities or in kinase inhibition activities.
Details of these chemical compound data sets are reported inTable 1.

4.2 Feature Extraction for Graph Classification

In each data set we construct two tensors, one for each class,where all unique types of
atoms found in a data set are converted to the labels of vertices, and the lengths of bonds
between atoms are weights of the edges. So an entry of a tensoris a count, which tells
that for a certain compound, how many edges (bonds) connect certain types of atoms
and have certain edge weights (lengths).

We compare the accuracy of classification on data points projected into the new
low-dimension feature space produced by PTF,PMTF and CP decomposition, where
we vary the settings of low ranks (r) from 5 to 20. In PTF, all training data instances

1 http://pubchem.ncbi.nlm.nih.gov



Table 2: Comparisons of different methods in their effectiveness of feature extraction
for graph classification using logistic regression.

Data sets
AUC from Logistic Regression AUC from SVMs with Quadratic Kernels

CP PTF GTF PMTF Bests CP PTF GTF PMTF Bests
AID83 0.615 0.568 0.511 0.727 17 0.535 0.582 0.586 0.610 18
AID81 0.608 0.757 0.739 0.762 16 0.642 0.642 0.699 0.738 11
AID123 0.686 0.761 0.695 0.778 12 0.604 0.601 0.637 0.646 7
AID1 0.782 0.806 0.886 0.884 9 0.798 0.738 0.725 0.810 7
AID33 0.675 0.595 0.711 0.806 11 0.711 0.765 0.762 0.822 15
AID47 0.622 0.604 0.801 0.829 10 0.792 0.774 0.752 0.791 9
AID109 0.797 0.628 0.741 0.799 14 0.711 0.761 0.757 0.808 13
AID41 0.680 0.554 0.728 0.741 7 0.692 0.696 0.722 0.800 16
AID145 0.733 0.674 0.762 0.891 6 0.807 0.893 0.799 0.891 11
AID1481 0.603 0.590 0.660 0.799 9 0.720 0.696 0.705 0.780 18
AID1416 0.674 0.646 0.721 0.807 13 0.780 0.652 0.697 0.797 9
AID1446 0.865 0.749 0.758 0.901 5 0.889 0.808 0.869 0.904 6
Frd. test X 0.006X 0.018X 0.051 Base – X 0.045X 0.036X 0.002 Base –

are factorized together, so it only discovers common factors of both classes. In CP, ten-
sors belonging to differents classes are factorized separately, hence it only find unique
factors of the classes. We also include the GTF (GeneralisedCoupled Tensor factoriza-
tion) method [14] in our evaluations, which is built on generalised linear models and
produces common factors on the common mode of tensors.

To test the distinctness of the new data points from different classes under the new
low-dimension feature space, we use two types of classifiersto learn from the new
data points, a linear classifier – logistic regression, and anon-linear classifier – support
vector machines (SVMs) with quadratic kernels (i.e., the kernel between twovectorized
data samplesxi andxj is: k(xi, xj) = (1 + xT

i xj)
2).

The Friedman test is reported as one of the most appropriate methods for validat-
ing multiple classifiers among multiple data sets [4]. To confirm the significance of
the superiority ofPMTF, we perform Friedman tests on the sequences of AUC values
across all data sets, wherep–values that are lower than 0.05 reject the hypothesis with
95% confidence that the classifiers in the comparison are not statistically different. In
Tables 2 we report the performance of the classifiers on different factorization methods
when the rank is 20. In each data set the AUC value of the best performing method is put
in boldface font. To show the diversity of the data sets, we also present the bests values
which are optimized from the training set of cross validation. From the lowp–values
shown in the bottom of Tables 2, it is easy to see that the low-rank spaces produced by
PMTF are significantly better than the other corresponding methods in distinguishing
the two class labels on each data set.

5 Conclusions and Future Work

In this research we focus on the problem of probabilistically factorizing a sequence of
labelled tensors in order to improve tensor feature extraction for supervised learning.



We formulate this problem into the task of discovering common and unique factors from
multiple tensors. The proposedPMTF model is a generic tensor factorization method
that can potentially be applied to many practical problems.We have appliedPMTF to
the problem of feature extraction (dimension reduction) for graph classification. Em-
pirical results demonstrate the superiority of the factorsdiscovered byPMTF over other
existing methods. We note that besides graphs, our method can also be applied to any
other data represented in multi-mode forms (such as images and videos).

In future, we plan to investigate the use ofPMTF in collaborative filtering prob-
lems, where different tensors represent different domainsand the common/unique fac-
tors learned byPMTF can be helpful for building cross-domain recommendation sys-
tems. Besides, we also plan to apply the method ofPMTF to other domains where tensor
representation are used, such as text mining and information retrieval.
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