
HAL Id: hal-01369543
https://hal.science/hal-01369543

Submitted on 22 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Security Architecture Based on Multi-level
Rule Expression Language

Samih Souissi, Layth Sliman, Benoit Charroux

To cite this version:
Samih Souissi, Layth Sliman, Benoit Charroux. A Novel Security Architecture Based on Multi-
level Rule Expression Language. Hybrid Intelligent Systems 2015, Nov 2015, Seoul, South Korea.
�10.1007/978-3-319-27221-4_22�. �hal-01369543�

https://hal.science/hal-01369543
https://hal.archives-ouvertes.fr

A Novel Security Architecture Based

on Multi-level Rule Expression

Language

Samih Souissi
1
, Layth Sliman

2
, Benoit Charroux

2

1
Telecom ParisTech, Paris, France

samih.souissi@telecom-paristech.fr
2
EFREI Engineering College, Villejuif, France

{sliman, charroux@efrei.fr}

Abstract— This paper introduces an attack detection and response system based

on multi-level rule expression language. It provides a framework to evaluate,

identify, classify and defend against sophisticated attacks. Our approach helps

simplifying complex rules’ expression and alert handling, thanks to a modular

architecture and an intuitive rules along with a powerful expression language.

The proposed system is flexible and takes into account several attack properties

in order to simplify attack handling and aggregate defense mechanisms.

Keywords: Attack Detection, Attack Classification, Fuzzy Matching, Security

Architecture, Intrusion Detection, Prevention Systems, Detection Rules

1 Introduction

Security aims at protecting firm resources from undesired access by users and ap-

plications. Improving security in enterprise information system relies on analyzing

threats, risks and vulnerabilities to specify appropriate countermeasures. This imposes

several challenges to tackle with security issues. One of these challenges is detection

and mitigation of attacks.

To deal with the growing complexity of new attacks, several solutions such as in-

trusion detection and prevention systems (IDS/IPS) and web application firewalls

(WAF) have been proposed. These solutions can be based either on signature or on

behavior detection. They play an important role in countering security threats. Signa-

ture-based system tend to use static rules and to detect only specific attacks or anoma-

lous behaviors that are already known. In anomaly-based case, they need learning

process and detection is more complex. In addition, attack detection techniques are far

from being satisfactory [1]. In fact, solutions like IDSs provide unmanageable amount

of “false positives” alarms which are hard to inspect. Furthermore, many detection

systems do not offer an appropriate compromise between acceptable performance and

detection language simplicity.

mailto:samih.souissi@telecom-paristech.fr

In attacks detection system the choice of the detection system architecture, im-

plemented rules and parameters, as well as attack modeling are crucial issues. How-

ever, the current paper focuses only on the architectural aspects such as modularity,

flexibility, extendibility, expressiveness, and simplicity of use in a heterogeneous

environments. We have already dealt with modeling issues in a previous work [2].

The objective of this work is to bring a level of abstraction that makes the detection of

complex attacks more feasible and the detection rules and security policy definition

simpler. To this end, hereafter we introduce a novel evaluative classification-based

attack detection and response architecture while providing a simple, user-oriented

detection rules and integration language. We focus in this paper on the use of our

system in a heterogeneous environment requiring complex events correlation and

aggregation.

 The remainder of this paper is organized as follows. Section 2 details the related

work concerning existing attack detection solution. In section 3, we present our prop-

osition describing the architecture, the language, and their interaction. Finally, section

5 presents the conclusion and perspectives for future work.

2 Related work

In this section we consider research works in both detection and response architec-

tures and Security languages.

2.1 Detection and response solutions

Over the last decade, on an architectural level, many solutions and mechanisms

have been proposed to detect computer and network attacks. Most of them are intru-

sion detection systems that enable to write basic vulnerability signatures. Snort [3],

one of the most widespread IDS, uses a signatures ruleset. Packets are captured, de-

coded and diagnosed within a preprocessor. Then detection occurs according to the

predefined rules to generate events and report by various means. Snort deployment is

easy and it has already existing rich rules database. However, it may not be adapted to

detect complex attack or to allow mitigation scenarios defining. Unlike Snort, Bro [4]

implements a scripting environment. This IDS is highly customizable, with a power-

ful scripting language. However, it does not provide a well-documented ruleset. Be-

sides, these solutions are better in detecting attack on a packet level.

For deeper applicative level detection WAF are often used. ModSecurity [5] is a

signature-based attack detection solution and has relatively good performances.

Though, this system is strongly related to some types of web servers and it only anal-

yses POST queries to avoid performance deterioration. In addition, the rules’ defining

is very complex, needing a high expertise in HTTP protocol and regular expressions.

Naxsi [6] uses a heuristic approach for the detection of XSS and SQL injection at-

tacks. Its performances are acceptable but require a learning process to define white-

lists. Defined rules are static and limited to the context of injection attacks using a

cumulative scoring system. These systems do not offer a compromise between ac-

ceptable performance and simplicity.

Simmons et al. [8] present a cyber-attack taxonomy called AVOIDIT used to iden-

tify and characterize attack. Using attack components, a set of metrics are defined and

used by an attack defense performance taxonomy (ADAPT system [9]). This system

is game model-based. ADAPT allows classifying and detecting blended attacks. It

helps make an intelligent decision when defending against attacks. However, the tax-

onomy lacks defense strategies, it is not applicative attacks oriented and it relies on a

game decision system that the user is not necessarily able to modify or to define. In

[10], Wu et al. propose an attack classification for automatic response systems. Based

on this 3 dimensions response-oriented classification (Source: attack origin, Tech-

nique: method used by the attacker, Result: outcome of the attack), a correspondence

matrix for every attack technique is defined taking into account different sources and

results as matrix parameters to define automatic defense techniques. This approach is

interesting as the classification helps describe the attack and allows defense mecha-

nisms aggregation. However, types of target are not taken into account. Besides,

blended and complex attacks are difficult to classify and thus to counter.

In [7], Dasgupta & Gonzalez describe a decision support for IDS system that uses

multi-level parameter monitoring. The system observes user, system and process in-

formation levels using them in a Genetic classifier-based IDS. It is an adaptive learn-

ing system that evolves ruleset to cope to the environment. Rules are generated from a

general knowledge base. Genetic algorithms are used following natural evolution

metaphor. It follows the principle of survival of the fittest to provide appropriate

rules. This system is interesting as it can perform real-time monitoring, analyzing and

providing appropriate response. However, modifying parameters to fit defined securi-

ty policies is not an obvious task. Golling et al. [11] propose multi-layered detection

system. This system uses a manager that communicates with different types of

IDS/IPS: flow-based, protocol-based, statistical based and DPI based ones. Each IDS

is used based on the data stream to monitor. The manager has an important role within

the system as it helps find indications, rate them, investigate them in more details,

evaluate result and eventually react to malicious traffic. The architecture is built in

such a hierarchical manner that allows reducing costs by being deployable on com-

modity hardware. It is also adapted to high speed networks as the most appropriate

detection systems is used, thus attack detection is faster. However, policy definition in

such hierarchical system is not obvious to set up.

2.2 Security languages

If we take into consideration the different security languages used in existing solu-

tions, three major language categories come up: Misuse detection, Anomaly detection

and Policy Specification Languages.

Most of existing languages are Misuse detection based. These languages look for

pattern or predefined sequences of events defining a known attack. The language

allows describing computer penetrations as sequences of actions that an attacker per-

forms to compromise a computer system. STATL [14] and IDIOT [15] are examples

of such a language. The first one considers an attack scenario as series of states and

transitions using State Transition Diagrams and the second one uses Colored Petri-

Nets to model attacks. Other languages in this category that describe attacks from

different perspectives are Lambda [16] and Adele [17]. Lambda intends to describe all

aspects of a cyber-attack. It is at the same time an exploit, detection and alert correla-

tion language. It takes into account attack precondition, post-conditions, scenario,

detection and verification. Unlike Lambda, which uses a declarative approach, Adele

provides similar functionalities with an imperative approach using XML language.

 Another language category is Anomaly detection that detects deviations from

normal behavior i.e. Specifies normal and abnormal behaviors of a process as logical

assertions about an application program’s sequence of system calls and their argument

values. One good candidate is ASL [18] and S language [19].

The last category contains Policy Specification Languages. Such language de-

scribes the intended behavior of programs using arbitrary events. Usually the policy is

specified in term of Patten- Action or Condition- Pattern- Action combinations. One

good example is BMSL [20]. Several works have been done to propose different lan-

guages to describe attack from different points of view (manifestation, impact, corre-

lation, scenario…). They were able to provide a good background to define an attack

in order to detect and describe it. But, they have different level and no language co-

vers the different level from solution integration to attack/misuse detection and re-

sponse to policy description.

Researchers have done promising works in the field of attack detection and auto-

mated intrusion response. Nevertheless, no model that covers attack detection and

response issue from integration to policy description is entirely practicable and widely

accepted. As mentioned above, many challenges need to be faced to have a complete,

expressive, easy-to-use and manage detection system able to detect complex attacks.

3 Contribution

The challenge is how to guarantee a good detection of attacks while providing ar-
chitecture modularity, rule writing simplicity in order to be able to detect complex
attacks and respond automatically according to a user defined security policy. To
overcome these problems, we present in this section AIDD (Attack Identification
detection and description) system. This solution should satisfy a set of criteria that will
be mentioned at first. Then, we describe our proposal that is composed of two com-
plementary parts: a functional part and a communication part. We present the function-
al part of our architecture, its different modules and how it works. Then, we introduce
the communication part with our new composed language to write detection rules and
describe attack scenarios. After that, we explain the interaction sequence between
them.

3.1 AIDD criteria

In our architecture, a module is an element of the system that performs a predefined
function and is able to communicate with other modules. These modules are reusable
and interconnected to create a system global function. Our modules and solution
should satisfy different criteria:

 Flexibility and Reusability: Our system is independent of the runtime environment,

topology and security devices and probes used. It can be reused in different net-

work architectures and contexts, though a period of adaptation is needed.

 Expressiveness: the used language guarantees a high power of expression for de-

scribing attacks, writing commands or detection rules to help non security experts.

 Availability: Working also as security monitor, in case of a denial of service at-

tacks, certain links may be no longer available. Nevertheless, our system is still

available for monitoring and attack visualization purposes. Our system is proactive

as it helps the other areas of the network be aware of what is happening globally.

 Extensibility: User can define its own module to upgrade the system services and

extend the architecture. He can also update detection rules, attack scenarios and se-

curity policy without modifying what already exists.

 Multi-criteria: Our proposal is adapted to different devices. Specification of input

from each device is needed. It can handle security tools from different constructors,

open source or not.

Taking into consideration these different characteristics, we define the AIDD archi-
tecture modules and language in addition to their interaction.

3.2 AIDD Architecture

The attack detection and response system, shown in Fig. 1, is responsible of flow
analysis, attack detection and response. It is composed of the following modules:

Fig. 1. AIDD Architecture

 Dissection Module: Input (logs/session/event/alert) is transformed, normalized

and dissected according to a user defined configuration. A hook system (a hook is

an event that will trigger a rule) is closely related to the dissection mechanism. In-

deed, hooks are placed and appropriate rules (rule schemes) are associated to eval-

uate security rules for each dissected field.

 Analysis Module: Input can be a dissected network traffic, system/applicative logs

or alert. The attack signature or the malicious behavior is described within the de-

tection rules. Seen from another angle, these rules can be considered as a signature

database. The detection engine that is used is IDS/IPS/WAF-like system. The anal-

ysis can be based on one or many events coming from one or many probes. The

analysis can be either offline (log file) or continuous (events, traffic, etc.). This

analysis raises an alert or reacts to eventual attack detection.

 Classification Module: The originality of our work consists on adding classifica-

tion to detection. Detection is no longer Attack-centric but based on attack catego-

ries having generic patterns or behavior for each class. This classification will help

detect attacks whose signatures are not available but whose behavior or related col-

lected data allow classifying it into a certain category of attack. Information needed

to classify the attack are: source, target, vector and result of the attack. This ap-

proach allows to aggregate defense mechanisms. If given events or alerts from the

same or different sources, it will match them with predefined attack scenarios so

that the system is able to respond to complex attacks.

 Defense Matching Module: this module matches each attack category with the

appropriate classification and hence to the appropriate defense mechanism(s). De-

fense mechanisms are classified into different categories (detection, prevention, re-

sponse (mitigation, remediation), tolerance, etc.). To tackle with altered attack sig-

nature, this module uses approximate matching (often referred to as Fuzzy Match-

ing [21]).

 Response Module: According to the defense matching module, different reaction

to attacks can be defined. The reaction can be responsive (mitigation/remediation)

or passive (tolerance) or informative (alert/log/ awareness). After response, data

(events/alerts) can be resent to analysis module for further review.

 Detection Database: it contains all the information needed by our system: attack

classification scheme and detection rules. In fact, we propose a generic approach to

define Attack categories based on our attack classification [2]. These categories

will be the base of our detection process. Detection rules (basic and orchestrated)

and known complex attack scenarios are also stored. They can be updated by the

user. Orchestration rules are predefined and assigned to specific queries. Our sys-

tem is able to get updated information by accessing online vulnerability databases

such as Open Source Vulnerability Database (OSVDB) [12], MITRE Corpora-

tion’s Common Vulnerabilities and Exposures (CVE) list [13], etc.

This architecture focuses on the concept of detecting attacks predefined classes and

proposing the appropriate defense mechanisms. Our solution provides security by

operating in the following way: (1) evaluation of the queries (events), (2) attack iden-

tification, (3) extraction of the scenario and the category that are relevant to the identi-

fied attack, (4) assessment of candidate defense mechanisms and (5) relevant ones

execution. Our solution accepts different types of input. Data come from logs gener-

ated by operating systems and applications, information from the network and even

alerts generated by IDS or WAF (traffic analysis systems in general). As shown in

Fig. 2, the system interacts with sensors and actuators. These sensors can be system,

network, application, firewall, IDS or WAF. The actuators can be a firewall or a re-

verse-proxy based WAF, able to alert, accept, drop or log. The sensors feed the in-

formation to the decision system which identifies the attack in question. The

knowledge system is composed by the basic rule database and the orchestration rules

that describe the policy defined by the user. It also includes attack schemes that need

to be detected. When detected, the attack information is sent to AIDD to assess the

attack and provide the attack class in order to select the optimal defense mecha-

nism(s).

3.3 AIDD Language

Given the complexity of the existing formalisms, our original idea is to define a

formalism based on three languages:

Fig. 2. AIDD Architecture interactions

 Atomic Rules Language: contains single action rules. Different rule types can be

found: Action, Alert, Comparison, Detection, Log, Transformation and Normaliza-

tion rules.

 Composite Rules Language: composes the basic rules defining the scheme of

rules to follow at the detection engine. Different operators can be used to compose

these rules: Algebraic, Logic, Correlation and Synchronization operators.

These rules are for attack description, scenario definition and detection rules. This

language makes rules defining easier as the policy creation has become a matter of

composing predefined simple rules.

 Orchestration Language: In our detection architecture, the communication be-

tween the different modules and within each one is handled by a composed lan-

guage. This language helps define a simpler formalism, give it a high power of ex-

pression and bring modularity to security controls.

To this end, in our system we use Compose Language. The use of DSL Compose, a

new DSL introduced by [22] allows a clear division and separation of concerns re-

garding the different aspects of the aforementioned system. Furthermore, it allows

a separation of roles between the different actors involved in the system, for in-

stance, a security specialist defines rules for actions to be taken in case of attacks,

while a system architect integrates the various modules (analysis, classification ...)

In fact, compose can be used for two purposes: Orchestration and coarse grain exe-

cutable security policy i.e.to express and trigger the actions to be conducted in case

of complex attacks (usually actual attacks are composed of a series of fine gained

attacks). Compose is based on Spring Expression Language of Spring Framework

[23]. Hence, many expressions can be used to handle the description and the coun-

termeasures of complex attacks such as Literal Expressions, Boolean and Relation-

al Operators, Regular Expressions, Class Expressions, Calling Constructors, Rela-

tional Operators and User Defined Functions. The architect of the system that inte-

grates the various modules (dissection, analysis, classification ...) uses the DSL

Compose for its ability to integrate heterogeneous applications. The architect and

compose them the different modules via the DSL Compose, while the exchange of

messages between the different modules and their integration in the system is sup-

ported by the integration framework underlying Compose. This framework pro-

vides the following features:

─ Transformer to convert in a message from one format to another

─ Filter to transmit messages to modules under certain conditions

─ Router that sends a message to multiple modules

─ Splitter that divides a message into multiple messages to multiple modules

─ Aggregator that combines several message between them

─ Adapter that connect the system to the outside (files, database, message broker,

protocols (ftp, http ...)

Furthermore Compose integrates natively with any Remote Code Deposit which

supports its APIs. This helps in the automatic deployment of new countermeasure

codes and provide a continuous integration server that performs regression testing for

each deployment of a new version of the application (in the case where the security is

provided as a service SEcaaS).

4 Conclusion

So far, few rule based attack detection systems have taken into account the exten-

sibility of the architecture, the simplicity of rules writing and a Fuzzy Matching attack

response. In this paper, we have proposed a novel rule-based attack detection system

that is easy to configure. It offers modular and flexible architecture which is able to

learn from previous detected attacks. The system can handle altered attack signature

using Fuzzy Matching mechanism. It can also handle complex attacks thanks the in-

cremental rules expression languages.

In this paper we focused on the architectural aspect of the solution. The next step

is to specify the attack classification mechanisms and to study the performance of the

system in heterogeneous environments such as multiservice providers and Cloud

Computing.

References

1. Dhanakoti Vennila, .R.Nedunchezhian “Correlated Alerts and Non-Intrusive Alerts”, De-

partment of Computer Science, Anna University of Technology/Sri Ramakrishna Engi-

neering College, INDIA, International Journal of Soft Computing, 7: 302-309, 2012.

2. Samih Souissi, Ahmed Serhrouchni « AIDD: A novel generic attack modeling approach »,

Télécom ParisTech, Proceedings of HSPC Conference, Bologne-Italy, 2014.

3. Snort IDS, available at http://www.snort.org

4. Vern Paxson, “Bro: A System for Detecting Network Intruders in Real-Time”, Lawrence

Berkeley National Laboratory, Berkeley, CA, in the Proceedings of the 7th USENIX Secu-

rity Symposium San Antonio, Texas, January 26-29, 1998.

5. Ivan Ristic : ModSecurity Handbook: The Complete Guide to the Popular Open Source

Web Application Firewall, 2010.

6. Naxsi (Nginx Anti Xss & Sql Injection) Available at:

https://www.owasp.org/index.php/OWASP_NAXSI_Project

7. D. Dasgupta, F. A. Gonzalez, “An Intelligent Decision Support System for Intrusion De-

tection and Response”, the International Workshop on Information Assurance in Computer

Networks: Methods, Models, and Architectures for Network Security, Springer, Vol. 2052,

Jan. 2001.

8. Chris Simmons, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Qishi Wu, “AVOIDIT: A

Cyber Attack Taxonomy”, University of Memphis, 9th Annual Symposium On Infor-

mation Assurance (Asia’14), Albany, Ny, 2014.

9. Chris B. Simmons, Sajjan G. Shiva, Harkeerat Bedi, Vivek Shandilya “ADAPT: A Game

Inspired Attack-Defense And Performance Metric Taxonomy”, University of Memphis,

Proceedings of 28th IFIP 11th International Conference SEC 2013, Auckland, New Zea-

land, 2013.

10. Zheng Wu, Yang Ou, Yujun Liu, “A Taxonomy of Network and Computer Attacks Based

on Responses”, Proceedings of International Conference on Information Technology,

Computer Engineering and Management Sciences (ICM), 2011.

11. Mario Golling, Robert Koch, Rick Hofstede “Towards Multi-layered Intrusion Detection

in High-Speed Networks”, Universität der Bundeswehr München Neubiberg, Germany,

University of Twente Enschede, Netherlands, Proceedings of 6th International conference

on cyber conflict, 2014.

12. Open Source Vulnerability Database OSVBD, available at: http://www.osvdb.org

13. Common Vulnerabilities and Exposures CVE, available at: http://www.cve.mitre.org

14. S. Eckmann, G.Vigna and R. Kemmerer, “STATL: An Attack Language for State-based

Intrusion Detection”, University of California Santa Barbara, 2000.

15. S. Kumar and E. H. Spafford, “A pattern-matching model for misuse intrusion detection”,

Proceedings of the national computer security conference, 1994.

16. F. Cuppens and R. Ortalo, “LAMBDA: A Language to Model a Database for Detection of

Attacks”, ONERA / NEURECOM, France, Recent Advances in Intrusion Detection, 2000.

17. C. Michel and L. Mé, “Adele: an attack description language for knowledge-based intru-

sion detection”, Proceedings of 16th International Conference on Information Security

(IFIP/SEC), 2001.

18. Ravi Shankar Vankamamidi “ASL: A specification language for intrusion detection and

network monitoring”, Master’s Thesis, Iowa State University, 1998.

19. Khaled Labib and V. Rao Vemuri, “Anomaly Detection Using S Language Framework:

Clustering and Visualization of Intrusive Attacks on Computer Systems”, University of

California, Proceedings of Fourth Conference on Security and Network Architectures,

2005.

20. R. Sekar V.N. Venkatakrishnan Samik Basu Sandeep Bhatkar Daniel C. DuVarney,

“Model-Carrying Code: A Practical Approach for Safe Execution of Untrusted Applica-

tions”, Stony Brook University, Proceedings of SOSP Conference, 2003.

21. N. Bashah , I. B. Shanmugam, Novel Attack Detection Using Fuzzy Logic and Data Min-

ing, Proceedings of the 2006 International Conference on Security & Management, SAM

2006, Las Vegas, Nevada, USA, June 26-29, 2006. CSREA Press 2006.

22. B. Charroux, L. Sliman and Y. Stroppa, Compose: a Domain Specific Language for Scien-

tific Code Computation. Proceedings of CFIP-NOTERE, IEEE, Paris, 2015.

23. K. Srinivasan, Introduction to Spring Expression Language, Spring Framework, 2011.

Available at: http://www.javabeat.net/introduction-to-spring-expression-language-spel/

http://www.javabeat.net/introduction-to-spring-expression-language-spel/

