Skip to main content

Determination of Torsional Stresses in Shafts: From Physical Analogies to Mathematical Models

  • Chapter
  • First Online:
Book cover Essays on the History of Mechanical Engineering

Part of the book series: History of Mechanism and Machine Science ((HMMS,volume 31))

Abstract

This paper presents the historical development of methods used for the study of torsional stresses in shafts. In particular, the paper covers both analog methods, especially those based on electrical analogies proposed circa 1925, and numerical methods, especially finite difference methods (FDM), finite element methods (FEM) and boundary element methods (BEM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajovalasit A, Nigrelli V, Pitarresi G, Virzì Mariotti G (2013) Torsional stress concentrations in shafts: from electrical analogies to numerical methods. IFToMM workshop on history of mechanism and machine science, University of Palermo, 21st–22nd Nov 2013. Proceedings published by Edizioni Scientifiche e Artistiche, Naples 01/31/2014. ISBN: 9788895430843

    Google Scholar 

  • Ajovalasit A, Nigrelli V, Pitarresi G, Virzì Mariotti G (2014) On the history of torsional stress concentrations in shafts: from electrical analogies to numerical methods. J Strain Anal Eng Des 49:452–466

    Article  Google Scholar 

  • Barone G, Pirrotta A, Santoro R (2011) Comparison among three boundary element methods for torsion problems: CPM, CVBEM, LEM. Eng Anal Boundary Elem 35(7):895–907

    Article  MATH  MathSciNet  Google Scholar 

  • Beadle CW, Conway HD (1963) Conducting-sheet analogy for stress concentrations in twisted structural sections. Exp Mech 3(8):198–200

    Article  Google Scholar 

  • Biezeno CB, Koch JJ (1933) Über einige Beispiele zur elektrischen Spannugs-bestimmung. Ingenieur—Archiv 4:384–393

    Article  MATH  Google Scholar 

  • Brebbia CA (1980) The boundary element method for engineers. Pentech Press, London

    Google Scholar 

  • Chen F, (1993) Solution of torsional problems by BEM. Transactions on modelling and simulation, vol. 1, WIT Press

    Google Scholar 

  • Cranz H (1933) Experimentelle Losung von Torsions Aufgaben. Ingenieur—Archiv 4:506–509

    Article  MATH  Google Scholar 

  • Darılmaz K, Orakdogen E, Girgin K (2007) Torsional rigidity of arbitrarily shaped composite sections by hybrid finite element approach. Steel Compos Struct 7:241–251

    Article  Google Scholar 

  • Den Hartog JP, McGivern JG (1935) On the hydrodynamic analogy of torsion J Appl Mech 2(2):A46–A48

    Google Scholar 

  • Ely JF, Zienkiewicz OC (1960) Torsion of compound bars-a relaxation solution. Int J Mech Sci 1(4):356–365

    Article  Google Scholar 

  • Fessler H, Rogers C, Stanley P (1969) Shouldered plates and shafts in tension and torsion. J Strain Anal 4(3):169

    Article  Google Scholar 

  • Fuerst A, Sprysl H (2000) Determination of polar moment of inertia and stress concentration of shafts under torsion load with arbitrary cross section. Int Ser Adv Boundary Elem 8:109–116

    Google Scholar 

  • Giordano G (1940a) Ricerca delle tensioni in alberi soggetti a torsione. apparecchiature per la determinazione sperimentale di esse negli alberi di rivoluzione. Tecnica Italiana, febbraio 1940

    Google Scholar 

  • Giordano G (1940b) Coefficiente di forma per alberi con un risalto soggetti a torsione. Tecnica Italiana, aprile 1940

    Google Scholar 

  • Giordano G (1940c) Fattori di forma per alberi con variazione di diametro soggetti a torsione. Tecnica Italiana, maggio 1940

    Google Scholar 

  • Griffith AA, Taylor GI (1917) The use of soap films in solving torsion problems. Proc Inst Mech Eng 1917:755–809

    Article  Google Scholar 

  • Griffith AA, Taylor GI (1918) The application of soap films to the determination of the torsion and flexure of hollow shafts. Technical report of the advisory committee for aeronautics1917; vol. 392

    Google Scholar 

  • Henshell RD (1975) A survey of the use of the finite element method in stress analysis. In: Stanley P (ed) Computing development in experimental and numerical stress analysis, Applied Science Publishers, London, pp 1–19

    Google Scholar 

  • Hetényi M (ed) (1950) Handbook of experimental stress analysis. John Wiley, New York

    Google Scholar 

  • Higgins TJ (1945a) Analogic experimental methods in stress analysis as exemplified by Saint-Venant torsion problem. Proc SESA II(2):17–27

    Google Scholar 

  • Higgins TJ (1945b) Stress analysis of shafting as exemplified by Saint-Venant torsion problem. Proc SESA III(1):94–101

    Google Scholar 

  • Huth JH (1950) Torsional stress concentrations in angle and square tube fillets. J Appl Mech 17(December):388–390

    Google Scholar 

  • Isakower RI, Barnas RE (1977) Torsional stresses in slotted shafts. Mach Des 49(21):100–103

    Google Scholar 

  • Jacobsen LS (1925) Torsional stress concentrations in shafts of circular cross section and variable diameter. Trans ASME 47:619–641

    Google Scholar 

  • Jawson MA, Ponter RA, (1963) An integral equation solution of the torsion problem. Proc R Soc London 275(A):237–46

    Google Scholar 

  • Kobayashi AS (ed) (1987) Handbook on experimental mechanics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Leven MM (1949) Stresses in key ways by photoelastic methods and comparison with numerical solution. Proc Soc Exp Stress Anal 7(2):141

    Google Scholar 

  • Manzella G (1939) Determinazione sperimentale delle tensioni torsionali in aste prismatiche. Tecnica Italiana, marzo 1939

    Google Scholar 

  • Manzella G. (1940a) Sullo scarico delle tensioni torsionali prodotte da incassi circolari negli alberi. Tecnica Italiana, marzo 1940

    Google Scholar 

  • Manzella G (1940b) Influenza del grado di cavità sul coefficiente di forma di alberi con tagli di chiavetta. Tecnica Italiana, aprile 1940

    Google Scholar 

  • Matthews GJ, Hooke CJ (1971) Solution of axisymmetric torsion problems by point matching. J Strain Anal 6(2):124–133

    Article  Google Scholar 

  • Nigrelli V (1994) Alberi con colletto soggetti a torsione: determinazione dei fattori di forma con il metodo degli elementi di contorno—XXIII Convegno Naz. AIAS, Cosenza, 1994

    Google Scholar 

  • Nigrelli V, Virzì Mariotti G (1995) Stress concentration factor in collar and shouldered shafts in torsion. Eng Anal Boundary Elem 16:71–77

    Article  Google Scholar 

  • Nigrelli V, Virzì Mariotti G, (1996) Fattori di concentrazione delle tensioni in alberi con colletto soggetti a trazione o a flessione—Organi di Trasmissione, Maggio 1996, pp 160–165

    Google Scholar 

  • Nigrelli V, Virzì Mariotti G (1997) Stress concentration factor in collar and shouldered shafts in traction or in bending. Eng Anal Boundary Elem 20:245–252

    Article  Google Scholar 

  • Pedersen NL (2010) Stress concentrations in keyways and optimization of keyway design. J Strain Anal Eng Des 45(8):593–604

    Article  Google Scholar 

  • Peterson RE (1953) Stress concentration design factors. John Wiley & Sons, New York

    Google Scholar 

  • Peterson RE (1974) Stress concentration factors. John Wiley & Sons, New York

    Google Scholar 

  • Prandtl L (1903) Zur Torsion von prismatischen Staben. Physikalishe Zeitscrift 4:758–759

    Google Scholar 

  • Sharpe WN (ed) (2008) Handbook of experimental solid mechanics. Springer, New York

    Google Scholar 

  • Shumas FJ, (1949) The effect of a slot on the stresses and rigidity of a shaft subject to pure torque. Thesis dissertation, University of British Columbia (http://hdl.handle.net/2429/41237)

  • Thum A, Bautz W (1934) Die Ermittlung von Spannungsspitzen in Verdrehbeanspruchten Wellen durch ein elektrisches Modell. Verein Deutscher Ingenieure (VDI) 78:17

    Google Scholar 

  • Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn, McGraw-Hill, New York

    Google Scholar 

  • Virzì Mariotti G (1992) BEM applications on an external problem, comparison with both theoretical and finite element results and observations on divergence strip. Eng Anal Boundary Elem 10(3):267–271

    Article  Google Scholar 

  • Waner NS, Sokora WW (1953) Stress concentrations for structural angles in torsion by the conducting sheet analogy. Proc SESA XI(1):19–34

    Google Scholar 

  • Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, 7th edn. McGraw Hill, New York (Chapter 10)

    Google Scholar 

  • Zienkiewicz OC (1979) Numerical methods in stress analysis—the basis and some recent paths of development. In: Holister GS (ed) Developments in stress analysis, vol. 1, Applied Science Publishers, London (Chapter 1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pitarresi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ajovalasit, A., Nigrelli, V., Pitarresi, G., Mariotti, G.V. (2016). Determination of Torsional Stresses in Shafts: From Physical Analogies to Mathematical Models. In: Sorge, F., Genchi, G. (eds) Essays on the History of Mechanical Engineering. History of Mechanism and Machine Science, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-22680-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22680-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22679-8

  • Online ISBN: 978-3-319-22680-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics