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Abstract. Hypernym extraction is a crucial task for semantically motivated NLP
tasks such as taxonomy and ontology learning, textual entailment or paraphrase
identification. In this paper, we describe an approach to hypernym extraction
from textual definitions, where machine-learning and post-classification refine-
ment rules are combined. Our best-performing configuration shows competitive
results compared to state-of-the-art systems in a well-known benchmarking dataset.
The quality of our features is measured by combining them in different feature
sets and by ranking them by their Information Gain score. Our experiments con-
firm that both syntactic and definitional information play a crucial role in the
hypernym extraction task.

1 Introduction

Hypernym Extraction is the task to identify (hyponym, hypernym) relations in naturally-
occurring text. For example, given the sentence “A mosque is a place of worship for
followers of Islam”, the objective is formalize an is-a relation between “mosque” and
“place of worship”. Such task is important for structuring knowledge hierarchically [1].
It is an appealing task in NLP applications such as Named Entity Recognition [2], Query
Refinement [3], Image Classification [4], Taxonomy Learning [5], Question Answering
[6], Automatic Glossary Construction [7], Ontology Learning [5] or Textual Entailment
[8]. Two clear examples of its importance are: (1) The WordNet hierarchy [9], where
senses are organized according to “is-a” relations, and (2) The Wikipedia BiTaxonomy
Project [10], which produced a taxonomized version of Wikipedia, and which is based
on a first step on Definition Parsing and Hypernym Extraction.

In this paper we present a set of experiments for hypernym extraction and report re-
sults that outperform state-of-the art systems in the WCL (Word-Class Lattices) dataset,
a well-known benchmarking dataset of textual definitions from Wikipedia where term
and hypernym are manually annotated [11]. We cast our approach as a sequential clas-
sification task where, for each word in a definition, the goal is to predict whether it is
at the beginning, outside or inside a hypernym (which can be a single or a multiword
phrase).

The main contribution of our paper is a set of experiments over a standard bench-
marking dataset for hypernym extraction achieving state-of-the-art performance, by
combining linguistic, definitional and graph-based information.



The remainder of this paper is structured as follows: Section 2 reviews prominent
work carried out in this area; Section 3 describes the linguistic motivation behind this
work; Section 3.2 details the features and feature sets used in our experiments; Section
4 shows (1) a comparative evaluation across feature sets, (2) a comparative evaluation
with results reported in previous work and (3) a feature relevance discussion; and Sec-
tion 5 summarizes this article and outlines directions for future work.

2 Background

Textual patterns constitute the backbone of the earliest works in inducing semantic rela-
tions between words [8]. Examples widely referred to in the literature include Hearst’s
lexical patterns (such as “NP and other NP”) [12]. Moreover, [13] propose to automat-
ically acquire a vast large number of lexico-syntactic patterns and apply them to the
newswire domain. Another well-known example is the use of Robust Minimal Recur-
sion Semantics for semantic pattern matching [14].

In general, the literature agrees on the fact that semantic relations like hypernymy
show enough variability to make pure pattern-based approaches inefficient since these
patterns are either noisy by nature, as the case of is a, or too domain-specific and there-
fore impossible to generalize across domains or genres.

For this reason, machine-learning and more recently purely distributional approaches
have contributed to the task of hypernym discovery. Among the former, the system de-
scribed by [11] learns generalized lexico-syntactic patterns which are used to maximize
the score of candidate definition sentences and, within definitions, hypernymic phrases.
Moreover, [15] explored the role of syntactic dependencies as features for an SVM-
based classifier. This last method is conceptually similar to ours since raw text is mod-
elled in terms of linguistic dependencies. We extend their approach by exploiting def-
initional and graph-based information, which contribute to improving the performance
of the system.

Distributional approaches are also becoming increasingly popular. For example,
[1] describe a hypernym-discovery system for Chinese based on the notion of word-
embeddings, i.e. the observation that semantically related words have common con-
texts at different window sizes. They propose to train a Skip-gram and a CBOW model
following [16], where they take into account the embedding offsets between hyponym-
hypernym pairs, and from there a projection training is designed in order to find the best
hypernym for a given hyponym.

On the other hand, [8] describe a set of experiments in which they explore the verac-
ity of the Distributional Inclusion Hypothesis, which states that specific terms appear
in distributional contexts that are a subset of more general but related distributional
contexts of more general words.

3 Modelling the Data

In the linguistic theory of Dependency Grammar, a syntactic structure is described by
the distribution of lexical elements linked by asymmetrical relations called dependen-
cies [17]. One of the main characteristics is that, unlike constituent structures, a de-



pendency tree has no phrasal nodes. Moreover, the dependency representations provide
a direct encoding of predicate-argument structures, and the relations between units in
a dependency tree are bilexical, i.e. they constitute binary (head, argument) relations
[18]. Finally, in a dependency parse tree, most informative nodes (like the subject or the
direct object of the sentence) are likely to be closer to the root node (main verb of the
sentence). This means that (1) long-distance relations can be safely captured in a parse
tree regardless of the number of modifiers that precede a target node (e.g. (subject, verb,
object) relations), and (2) in definitions, tree-traversal algorithms can be easily imple-
mented for skipping over-generalizing hypernyms (e.g. “class”, “kind” or “type”) as
they are likely to appear near the main verb of the sentence, e.g. “X is a type of Y”.

As mentioned before, and building up on previous work that exploits dependency
parsing for Hypernym Extraction [10, 15], we design a set of features that represent a
sentence in terms of dependency relations among its lexical units.

3.1 Syntactic Motivation

We perform our experiments on the WCL dataset. This dataset is a subset of Wikipedia,
where textual definitions and additional information are manually annotated. Such in-
formation, as described in [19], refers to: (1) The definiendum, i.e. concept that is being
defined; (2) The definitor, i.e. the verb phrase to introduce the definition; (3) definiens,
i.e. genus or phrase that contains the hypernym; and (4) rest, i.e. the rest of the sentence
containing a definition. For simplicity, henceforth we refer to definiens as the union be-
tween genus and rest. A sample definition is illustrated below (see parse tree in Figure
1):

Sample Definition: “An < term> abbreviation < /term> is a shortened form of a
< hyp> word < /hyp> or < hyp> phrase < /hyp> .”

Firstly, we apply a dependency parser [20] to the WCL dataset and extract, for each
sentence, all its subtrees with the following shapes:

(Parent)

��
(Child)

��
(Grandchild)

(Parent)

�� %%
(Child1) (Child2)

Each node can either include surface form information, part of speech, the depen-
dency relation of such node with its head, or a combination of any of the former1. We
hypothesize that the encyclopedic genre is consistent enough as to be able to draw syn-
tactic generalizations by firstly looking at its most recurrent patterns.

The representativeness of the two shapes described above in terms of encyclopedic
language is very high. For example, the is(Verb, Root)→in(Prep, Loc)→(Noun, PMOD)

1 For the remainder of the paper, we denote s as surface form, p as part of speech, and d as
dependency relation



amounts to almost 20% of the whole corpus2. In addition, over 98% of the definitions in
such dataset have one word with PRD syntactic function, and we found over 850 cases
where the PRD token was a direct dependent of the Root verb, and was the first word
of a manually tagged hypernym: this means that 46% of the (term,hypernym) relations
in this dataset would be extracted applying a simple mapping rule. While this would
introduce an undesirable amount of noise, it suggests that the common assumption that
textual definitions show a high syntactic variability [6, 11] depends on what we actually
consider to be language variability, and the genre and domain to which the document or
corpus belongs to. For this specific case (i.e. Wikipedia), there seems to be a fairly high
syntactic consistence.

Having justified our data modelling choice, the next section describes the features
we designed for informing our classifier.

3.2 Experimental Setup

What follows is a description of the features used to train our model. We can clus-
ter them in three main groups, namely: Linguistic features (1-3); definitional features
(4) and graph-based featuers (6-8). Our motivation for introducing graph-based features
over the parse tree is the following: We hypothesize that a hypernym might be described
in terms of the popularity of its word or phrase in the syntactic tree (computed in terms
of adjacent edges), its children at several levels of depth, or its salience with regard to
its frequency in informative subtrees like SBJ←ROOT→PRD. However, as our exper-
iments reveal, while these features might be effectively used for Definition Extraction
[21], only one out of four seems to contribute to the hypernym extraction task when a
model already includes linguistic and definitional information.

1. Surface form (surface) and lemma (lemma): Normalized (lower-case) surface
form and lemma. Note that unlike the experiments shown in [22, 23, 15], we do
not generalize the definiendum to a wildcard (TARGET or TERM). We argue that
in a real-world scenario one does not necessarily know which is the definiendum
term, and thus removing this information also contributes to a less biased classifier.
Rather, we use this information as a feature in order to assess its contribution to the
learning process.

2. Part of Speech (pos): The part of speech of the current word

3. Head Id (headID) and Dependency Relation (depen): These two features refer to
the syntactic function of the current word and the unique identifier of its governor
or head. For example, subject (SBJ), object (OBJ), predicative (PRD) or nominal
modifier (NMOD).

4. Definiendum (term) and definiens (def-ndef ): Whether the word is a definien-
dum term (i.e. it matches exactly the Wikipiedia page title to which the text snippet
belongs to), and whether such word is part of the definiens. We apply a simple

2 We denote syntactic dependencies as arrows (head→governor).



heuristic rule that tags all words after the first verb of the sentence as definiens.

5. PageRank (p-rank): We compute the popularity of a node in a sentence with the
PageRank algorithm. To attain this, we use an off-the-shelf Python library: Net-
workX [24].

6. Node Outdegree (outdegree): The out-degree of a node in a syntactic dependency
tree is equal to the number of dependents.

7. Morphosyntactic chains (chains): We extract all children of a node recursively
until we reach the tree leaves in breadth-first fashion. For each node, we extract
part-of-speech and dependency relation. This feature is a string that represents such
path. While this approach is inspired by previous work on Semantic Role Labelling
[25], ours differs in that we also include the dependency information.

8. Syntactic Salience (syntS): In addition to the above features, we are interested in
a more general metric to assess the extent to which a word and its associated lin-
guistic information describes a textual genre. Motivated by the fact that in textual
definitions not only are hypernyms likely to appear, but they show syntactic reg-
ularities, we count how many times a word is part of the most frequent subtrees
in the dataset taking into consideration different ranges of linguistic information
(from only the word’s surface form to subtrees including the word’s surface form,
part-of-speech and syntactic funtion).

An abbreviation is a shortened form of a word or phrase
DT NN VBZ DT VBN NN IN DT NN CC NN

sbjnmod

prd
root

nmod

nmod nmod

pmod

nmod coord conj

Fig. 1: Dependency parse tree of a textual definition.

Numeric features such as node degree, pagerank or syntactic salience are discretized,
i.e. within a range between the smallest and highest score, each value is assigned a
discrete type between 1 and 10. This coarse-grained set of attributes allows us to un-
derstand better each feature’s effect in the learning process and perform more sensible
error analysis.

Having prepared our sets of features, these are used for training and testing a Con-
ditional Random Fields (CRF) [26] classifier using CRF++3. Given the inherent ability
of CRF for learning prior and posterior contextual information in a sequential classifi-
cation task, we design three experiments where three context windows are considered:

3 https://code.google.com/p/crfpp/



[-1,1], [-2,2] and [-3,3]. For each window, we design feature sets incrementally adding
one feature at a time (see in Table 1 a matrix outlining all the feature sets used in our
experiments). The scores reported in this paper are derived from 10-fold cross valida-
tion.

surface lemma pos headID depen def-ndef term p-rank outdegree chains syntS
FeatSet1 x
FeatSet2 x x
FeatSet3 x x x
FeatSet4 x x x x
FeatSet5 x x x x x
FeatSet6 x x x x x x
FeatSet7 x x x x x x x
FeatSet8 x x x x x x x x
FeatSet9 x x x x x x x x x
FeatSet10 x x x x x x x x x x
FeatSet11 x x x x x x x x x x x

Table 1: Different feature sets adding one feature at a time.

3.3 Recall-Boosting heuristics

After manually inspecting the output of the classifier, we observe that there are cases
in which the discrepancy between the predicted label and the gold standard can be at
questioned. In fact, [15] mention issues derived from the complexity of what actually
constitutes a valid hypernym in a textual definition and its effect on the quality of the
annotation of the WCL dataset. Among others, they refer to incorrect relationships, e.g.
incorrectly annotating a meronym as a hypernym, or inconsistent modifier attachment,
e.g. cases where the same modifier attached to two semantically-related concepts is
sometimes included as part of a multiword hypernymic phrase, and others not.

This motivated a post-classification heuristic inspired by [27] consisting in a set of
rules for label-switching. Let tokeni be a word classified as not being part of a hyper-
nymic phrase (O), we perform the label-switching step replacing its current label with
either B, i.e. at the beginning of a hypernym phrase, or I, i.e. inside a hypernym phrase,
yielding tokenupdate

i . The following conditions are considered:

tokenupdate
i =


B if P(tokeni) = B > θ ∧P(tokeni) = B > P(tokeni) = I
I if P(tokeni) = I > θ ∧P(tokeni) = I > P(tokeni) = B
B if P(tokeni) = O < λ ∧ tokenSynt

i = PRD

Where tokenSynt
i refers to the syntactic function of the word tokeni, and where θ

and λ are constants empirically set to .35 and .8 respectively after experimenting with
several thresholds and inspecting manually the resulting classification.



These heuristics contribute to increase F-Score in feature sets 1 and 2 when con-
sidering [-1,1] contexts. Likewise, F-Score also improves after this step in feature sets
1, 2 and 3 when considering [-2,2] and [-3,3] contexts. In many configurations, recall
improves almost 10 points, and while in strict comparison against gold standard the
drop in precision affects negatively the overall F-Score in the majority of feature sets
considered, we found that in some cases our greedier approach detected a better hyper-
nym than the one manually annotated in the gold standard. Let us look at the following
sample definition:

“An abzyme (from antibody and enzyme), also called catmab (from cat-
alytic monoclonal antibody), is a monoclonal antibody with catalytic activiy"

In the manually annotated dataset, the hypernym is “antibody”, and in the majority
of our experiments our algorithm identifies “monoclonal antibody”, thus producing a
false positive in our word-level evaluation. However, it is not clear that “antibody” is a
better hypernym for “abzyme” than “monoclonal antibody”. In fact, there is a Wikipedia
entry for “monoclonal antibody”4, but not for “important antibody”, for instance, which
suggests that the prediction of our algorithm is correct since “monoclonal” is not a
property of “antibody” but rather defines a monosemic type of antibody.

4 Evaluation

4.1 Results and Discussion

We evaluated at token-level in terms of Precision, Recall and F-Measure by adding one
feature at a time to the CRF-trained model. These results are shown in Table 2. Four
main conclusions can be drawn: (1) Word-level morphosyntactic features are highly
informative in the encyclopedic genre (see the boost in performance after these fea-
tures are added to the model), which reinforces our intuition that syntactic structures
do follow certain patterns and show regularities that can be exploited; (2) The best-
performing model (highest F-Score) is FeatSet8, which includes all linguistic features,
definitional information, and page-rank; (3) Unsurprisingly, the best performing mod-
els for each feature set are those including the largest context window ([-3,3]); and (4)
Recall-Boosting post-classification rules increase F-Score only in the most basic feature
sets. We provide further discussion on feature relevance in Section 4.2.

Finally, we compared our best-performing model with existing state-of-the-art sys-
tems reported in the literature. Firstly, the Word-Class Lattices algorithm [22], and sec-
ondly a similar approach to ours that also modelled the problem in terms of syntactic
dependencies, but differed in terms of features and algorithms used [15] (Table 3).

4.2 Information Gain

Information Gain measures the decrease in entropy when the feature is present vs. ab-
sent [28]. We rank our features according to their score( f ,ctx, i), where fi is a token-
level feature, ctx refers to the context window to which it is applied, and i is the index of

4 http://en.wikipedia.org/wiki/Monoclonal_antibody



DefConf-1:1 DefConf-2:2 DefConf-3:3 Boosted-1:1 Boosted-2:2 Boosted-3:3

P 48.51 65.22 70.33 30.35 40.22 46.46

FeatSet1 R 31.96 41.45 48.34 65.44 72.06 75.23

F 38.49 50.64 57.25 41.43 51.6 57.41

P 49.36 61.87 66.55 32.12 41.77 47.84

FeatSet2 R 33.92 44.33 51.13 64.52 71.26 74.27

F 40.17 51.58 57.79 42.85 52.66 58.18

P 64.93 67.58 72.65 41.98 49.38 55.32

FeatSet3 R 33.17 47.23 56.62 64.68 71.34 75.36

F 43.85 55.54 63.31 50.86 58.34 63.79

P 70.32 72.41 74.32 48.05 53.2 58.47

FeatSet4 R 44.98 55.37 60.87 70.07 74.63 76.37

F 54.8 62.71 66.89 56.99 62.1 66.22

P 76.04 75.85 76.17 56.03 58.67 62.05

FeatSet5 R 54.33 61.52 64.73 74.68 76.86 78.49

F 63.34 67.88 69.94 64.01 66.51 69.31

P 80.19 82.99 84.22 62.44 68.14 73.08

FeatSet6 R 63.26 72.04 75.69 79.85 82.42 84.99
F 70.68 77.12 79.71 70.04 74.59 78.58

P 80.08 83.05 84.15 62 68.43 73.25

FeatSet7 R 63.15 72.04 75.51 79.57 82.47 84.96

F 70.57 77.13 79.58 69.66 74.77 78.67

P 80.11 82.56 84.01 62.67 68.34 72.59

FeatSet8 R 63.47 72.02 76.12 79.68 82.27 84.82

F 70.79 76.91 79.85 70.13 74.64 78.22

P 79.94 82.31 83.82 62.01 68.04 72.44

FeatSet9 R 63.68 72.06 75.94 79.58 82.26 84.64

F 70.86 76.82 79.66 69.67 74.46 78.06

P 79.6 81.86 83.6 62.4 68.64 72.71

FeatSet10 R 63.86 71.35 75.74 79.02 81.69 84.51

F 70.85 76.23 79.47 69.7 74.59 78.15

P 79.72 81.87 83.43 62.69 68.7 73.1

FeatSet11 R 64.48 71.62 75.36 79.22 82.13 84.16

F 71.28 76.03 79.17 69.94 74.81 78.22

Table 2: Performance of our CRF-trained model at three different context windows ([1:1], [2:2]
and [3:3]). We include results before applying the post-classification-heuristic (DefConf) and af-
ter (Boosted). We observe the best performance when only linguistic and definitional information
is considered.



Precision Recall F-Score

N&V WCL-1 77 42.09 54.42

N&V WCL-3 78.58 60.74 68.56

B&DiC 83.05 68.64 75.16

Our Approach 84.01 76.12 79.85

Table 3: Comparative Evaluation between our best performing model (FeatureSet8 with no post-
classification heuristics) and the results reported in [22] and [15].

the current token (i.e. its current iteration). We use the machine-learning toolkit Weka
[29]. Looking at the best features in our model (Table 4), we can conclude the follow-
ing5: (1) Hypernym extraction algorithms improve by a huge margin if provided with
syntactic information; (2) Previous work has demonstrated improvement in the task of
Definition Extraction by informing the classifier with terminological information [23].
This seems to hold the other way round as well; (3) We also observe an interesting set
of features clumped together with the same value and the same Information Gain score.
These are no_value feature scores, which means that the context specified (e.g. i =−1)
is null due to the current iteration being at the beginning or end of the sentence. This
might point to hypernyms being consistently mentioned at a certain position in a sen-
tence; (4) the discretization of our numeric values might have been too coarse-grained
for being discriminative enough in a classification task. Finally, (5) After looking at the
last row in Table 4, we observe the highest graph-based ranking feature (in position 24)
referring to the fact that a word has a child with NNP part-of-speech and dependency
relation SBJ.

5 Conclusions and Future Work

We have described a set of experiments on hypernym extraction from textual definitions
in the WCL dataset. We experimented with linguistic, definitional and graph-based fea-
tures which operated over the sentence parse tree. Our best model achieves competitive
results in comparison with existing approaches on the same dataset. The experiments
carried out also showed that linguistic and definitional information are by far the most
important features in our configuration, and only few exceptions among the graph-based
features can be considered informative.

Our main conclusions can be summarized as follows: (1) Hypernym extraction from
textual definitions benefits significantly from syntactic and definitional information; (2)
Recall-boosting heuristics contribute to increase the overall F-Score in configurations

5 The full set of features and their Information Gain rank can be accessed at:
https://www.dropbox.com/s/d8er9jvgjz2dqo8/infogain_syntsal.txt?dl=0. There are 2111 fea-
tures with non-zero Information Gain score.



Rank Feature InfoGain

1 deprelPosition0=PRD 0.0682345

2 posPosition0=nn 0.0538957

3 deprelPosition-1=NMOD 0.0517277

4 defnodefPositiond0=def 0.0349189

5 defnodefPosition0=nodef 0.0349189

6 defnodefPosition1=def 0.0349189

7 headIDPosition-1 0.0320474

8 deprelPosition-2=ROOT 0.0315236

9 defnodefPosition+1=nodef 0.0300525

10 defnodefPosition-3=nodef 0.0300255

24 chainsPosition0=dt_NMOD&nnp_SBJ 0.0182301

Table 4: Selected best features for Hypernym Extraction. Each feature reads as follows: $fea-
tureName$Position=value, where Position refers to the context in which appears at the current
iteration. For instance, Position=-1 refers to one word before the word at the current iteration.

that considered smaller context windows; and (3) Graph-based features have limited
discriminative power for this task.

The approach presented in this paper to hypernym extraction in textual definitions
opens several avenues for future work. For example, we would like to draw statistics
to measure accurately how many of the false positives in which our approach incurred
after applying the Recall-Boosting heuristics could be correct hypernyms by looking at
generic encyclopedias or domain-specific knowledge bases. Also, since the contribution
of graph-based features was very limited, we would like to explore with finer-grained
discretization heuristics as well as with the raw numeric values. Finally, it would be
interesting to test our approach on other large datasets, such as WiBi [10] or the Linked
Hypernyms Dataset [30].
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