Skip to main content

Error Estimates for Dissipative Evolution Problems

  • Conference paper
Free Boundary Problems

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 147))

Abstract

We present a quick overview of the general problem of finding optimal a priori and a posteriori error estimates for the approximation of dissipative evolution equations in Hilbert and metric spaces by means of a variational formulation of the implicit Euler scheme. We shall discuss what are the intrinsic metric arguments which are involved in the derivation of the estimates and we will present an elementary proof in a simplified finite dimensional case. An application to the porous medium equation in the new framework of the Wasserstein distance is briefly sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995), 191–246.

    MathSciNet  MATH  Google Scholar 

  2. L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows of probability measures, in preparation (2003).

    Google Scholar 

  3. C. Baiocchi, Discretization of evolution variational inequalities, Partial differential equations and the calculus of variations, Vol. I (F.Colombini, A. Marino, L. Modica, and S. Spagnolo, eds.), Birkhäuser Boston, Boston, MA, 1989, pp. 59–92

    Chapter  Google Scholar 

  4. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).

    Google Scholar 

  5. M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. De Giorgi, New problems on minimizing movements,Boundary Value Problems for PDE and Applications (C. Baiocchi and J. L. Lions, eds.), Masson, 1993, pp. 81–98.

    Google Scholar 

  7. E. De Giorgi, A. Marino, and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68 (1980), no. 3, 180–187.

    MathSciNet  MATH  Google Scholar 

  8. K. Eriksson, C. Johnson, and S. Larsson, Adaptive finite element methods for parabolic problems VI: Analytic semigroups, SIAM J. Numer. Anal. 35 (1998), 1315–1325.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker—Planck equation, SIAM J. Math. Anal. 29 (1998), no. 1, 1–17 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Jost, Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1997.

    Book  MATH  Google Scholar 

  11. U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), no. 2, 199–253.

    MathSciNet  MATH  Google Scholar 

  12. R. J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997), no. 1, 153–179.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. H. Nochetto and G. Savaré, Nonlinear evolution governed by accretive operators: error control and applications, to appear (2003).

    Google Scholar 

  14. R. H. Nochetto, G. Savaré, and C. VerdiA posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math. 53 (2000), no. 5, 525–589.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Ruila, Error analysis for implicit approximations to solutions to Cauchy problems, SIAM J. Numer. Anal. 33 (1996), 68–87.

    Article  MathSciNet  Google Scholar 

  16. F. Otto, The geometry of dissipative evolution equations: the porous medium equationComm. Partial Differential Equations 26 (2001), no. 1–2, 101–174.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Villani, Topics in optimal mass transportation, Graduate Studies in Mathematics, 58, AMS (2003).

    Google Scholar 

  18. A. Visintin, Models of phase transitions, Progress in Nonlinear Differential Equations and Their Applications, vol. 28, Birkhäuser, Boston, 1996.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Savaré, G. (2003). Error Estimates for Dissipative Evolution Problems. In: Colli, P., Verdi, C., Visintin, A. (eds) Free Boundary Problems. ISNM International Series of Numerical Mathematics, vol 147. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7893-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7893-7_22

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9613-9

  • Online ISBN: 978-3-0348-7893-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics