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Abstract. This paper tackles the challenge of forensic medical image
matching (FMIM) using deep neural networks (DNNs). FMIM is a par-
ticular case of content-based image retrieval (CBIR). The main challenge
in FMIM compared to the general case of CBIR, is that the subject to
whom a query image belongs may be affected by aging and progressive
degenerative disorders, making it difficult to match data on a subject
level. CBIR with DNNs is generally solved by minimizing a ranking loss,
such as Triplet loss (TL), computed on image representations extracted
by a DNN from the original data. TL, in particular, operates on triplets:
anchor, positive (similar to anchor) and negative (dissimilar to anchor).
Although TL has been shown to perform well in many CBIR tasks, it
still has limitations, which we identify and analyze in this work. In this
paper, we introduce (i) the AdaTriplet loss – an extension of TL whose
gradients adapt to different difficulty levels of negative samples, and (ii)
the AutoMargin method – a technique to adjust hyperparameters of
margin-based losses such as TL and our proposed loss dynamically. Our
results are evaluated on two large-scale benchmarks for FMIM based
on the Osteoarthritis Initiative and Chest X-ray-14 datasets. The codes
allowing replication of this study have been made publicly available at
https://github.com/Oulu-IMEDS/AdaTriplet.

Keywords: Deep Learning · Content-based Image Retrieval · Foren-
sic matching

1 Introduction

Content-based image retrieval (CBIR) describes the long-standing problem of
retrieving semantically similar images from a database. CBIR is challenging
due to the diversity of foreground and background color, context, and semantic
changes in images [19]. Besides general computer vision [18,22], in the domain of
medicine, content-based medical image retrieval (CBMIR)is growing [3,27], due
to the increasing demand for effectively querying medical images from hospital
picture archive and communication systems (PACS) [10].
⋆ Equal contributions
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Fig. 1: Comparisons between the Triplet loss and our AdaTriplet loss. (a) Top-1 re-
trieved results. Green: if a ground truth (GT) is the top-1 in the ranked retrieval list,
orange: otherwise. KL indicates the grade of knee osteoarthritis severity. Nd is the
number of thorax diseases. (b-c) 2D loss surfaces and negative gradient fields of the
two losses. Each point is a triplet. Loss values are represented by colors (increasing
from purple to red). The arrows are negative gradient vectors.

In CBMIR, given a medical image (query), one aims to search in a database
for images that are similar disease-wise or belonging to the same subject. The
former problem is related to diagnostic applications, and the latter problem is
of interest for forensic investigations. Hereinafter, we name this problem forensic
medical image matching (FMIM). Unlike general CBIR, matching longitudinal
medical imaging data of a person is challenging due to aging, progression of var-
ious diseases or surgical interventions (Figure 1a). Therefore, the FMIM domain
poses new challenges for CBIR.

Deep learning (DL)-based methods have made breakthroughs in various fields,
and in particular metric learning, which is the backbone of CBIR [3,12,22,27].
The aim of DL-based metric learning is to train a functional parametric mapping
fθ from the image space RC×H×W to a lower-dimensional feature space RD. In
this feature space, representations of semantically similar images are close, and
ones of irrelevant images are distant. In our notation, C, H and W represent the
number of channels, height, and width of an image, respectively.

The loss function is the central component of metric learning [13], and there
exist two major types: (i) those that enforce the relationships between samples in
each batch of data during stochastic optimization – embedding losses [9,12,19,25,27]
and (ii) classification losses [6,22,28]. Two fundamental embedding losses that
previous studies have built upon are Contrastive loss (CL) [4] and Triplet loss
(TL) [9]. The idea of the CL, is to minimize the feature space distance between
similar data points, and maximize it for the dissimilar ones. The TL, on the
other hand, considers every triplet of samples – anchor, positive and negative,
and aims to ensure that the distance between the anchor and positive samples
is smaller than the distance between the anchor and negative ones.

In many practical applications, although the TL is more commonly used than
the CL [1,24,26], it also has limitations. Firstly, the TL depends on a “margin”
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hyperparameter, which is usually fixed and needs to be chosen empirically. Sec-
ondly, as we show in this work, the TL ignores the magnitude of the pair-wise
distances, thus may overlook the case where anchors and negative samples are
too close. In this paper, we tackle these limitations, and summarize our contri-
butions as follows:

1. We theoretically analyze the TL, and propose an adaptive gradient triplet
loss, called AdaTriplet, which has appropriate gradients for triplets with
different hardness. That characteristic makes our loss distinct from the TL,
as illustrated in Figure 1.

2. To address the issue of selecting margin hyperparameters, we propose a
simple procedure – AutoMargin, which estimates margins adaptively during
the training process, and eliminates the need for a separate grid-search.

3. Through a rigorous experimental evaluation on knee and chest X-ray image
forensic matching problems, we show that AdaTriplet and AutoMargin allow
for more accurate FMIM than a set of competitive baselines.

2 Methods

2.1 Problem Statement

Let X × Y = {(xi, yi)}N
i=1 be a dataset of medical images xi’s ∈ RC×H×W

and corresponding subjects’ identifiers yi’s with |Y| ≤ N . We aim to learn a
parametric mapping fθ : RC×H×W −→ RD such that ∀(xi, yi), (x′

i, yi), (xj , yj) ∈
Xtrain × Ytrain, Xtrain ⊂ X, yi ̸= yj ,

d(fθ(xi), fθ(x′
i)) < d(fθ(xi), fθ(xj)). (1)

The learned mapping fθ is expected to be generalizable to Xtest = X\Xtrain

where Ytest ∩ Ytrain = ∅. Often, xi is called an anchor point, x′
i – a positive

point, and xj – a negative point. Hereinafter, they are denoted as xa, xp, and xn,
respectively. For simplicity, we also denote fa = fθ(xa), fp = fθ(xp), fn = fθ(xn),
ϕap = f⊺a fp, and ϕan = f⊺a fn.

2.2 Triplet Loss

Let T = {(xa, xp, xn) | ya = yp, ya ̸= yn} denote a set of all triplets of an anchor,
a positive, and a negative data point. For each (xa, xp, xn) ∈ T , the Triplet loss
is formulated as [2,9]:

LTriplet =
[
∥fa − fp∥2

2 − ∥fa − fn∥2
2 + ε

]
+ , (2)

where [·]+ = max(·, 0), and ε is a non-negative margin variable. Following com-
mon practice, we normalize all feature vectors, that is ∥fa∥2 = ∥fp∥2 = ∥fn∥2 = 1,
as well since we can then derive that ε ∈ [0, 4). Thereby, we can convert Eq. (2)
to a slightly different objective, which is identical to optimize, but allows us to
identify limitations of the TL.
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Fig. 2: (a) The sensitivity of the Triplet loss (3) with the change of ε. (b-c) The
convergences of distributions of ∆ = ϕap − ϕan and ϕan under our loss. Yellow and
blue areas, specified by Eqs. (7) and (8), indicate hard triplets and hard negative pairs,
respectively.

Proposition 1. Given ∥fa∥2 = ∥fp∥2 = ∥fn∥2 = 1, minimization of the Triplet
loss (2) corresponds to minimizing

L∗
Triplet = [ϕan − ϕap + ε]+ , ε ∈ [0, 2). (3)

Proof. See Suppl. Section 1.
Instead of depending on L2 distances between feature vectors as in (2), the TL

in Eq. (3) becomes a function of the cosine similarities ϕap and ϕan (i.e. cos(fa, fp)
and cos(fa, fn), respectively). In Figure 1b, we graphically demonstrate the 2D
loss surface of the TL (3) with ε = 0.25, treating ϕap and ϕan as its arguments.

2.3 Adaptive Gradient Triplet Loss

The TL in Eq. (3) only aims to ensure that the distance between the feature
vectors fa and fp is strictly less than the distance between the anchor and a neg-
ative fn. Such a formulation, however, allows for the existence of an unexpected
scenario where both the distances are arbitrarily small. We present a simple intu-
ition of the scenario in Suppl. Figure 1. Although increasing the margin ε should
enlarge the distance of negative pairs, our empirical evidence in Figure 2a shows
that using ε > 0.5 results in a significant drop in performance. Therefore, we pro-
pose to explicitly set a threshold on the virtual angle between fa and fn, that is
∠(fa, fn) ≥ α, where α ∈ [0, π/2], which is equivalent to cos(fa, fn) − cos(α) ≤ 0.
To enforce such a constraint, we minimize the following loss

Lan = [ϕan − β]+ , (4)

where β = cos(α) ∈ [0, 1]. Using this additional term, we introduce an adaptive
gradient triplet loss, named AdaTriplet, that is a combination of L∗

Triplet and
Lan:

LAdaTriplet = [ϕan − ϕap + ε]+ + λ [ϕan − β]+ , (5)
where λ ∈ R+ is a coefficient, ε ∈ [0, 2) is a strict margin, and β ∈ [0, 1] is a
relaxing margin.
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Proposition 2. Consider ∥fa∥2 = ∥fp∥2 = ∥fn∥2 = 1. Compared to the Triplet
loss, the gradients of AdaTriplet w.r.t. ϕap and ϕan adapt the magnitude and the
direction depending on the triplet hardness:

(
∂LAdaTriplet(τ)

∂ϕap
,

∂LAdaTriplet(τ)
∂ϕan

)
=


(−1, 1 + λ) if τ ∈ T+ ∩ P+

(0, λ) if τ ∈ (T \T+) ∩ P+
(−1, 1) if τ ∈ T+ ∩ (T \P+)
(0, 0) otherwise

, (6)

where T+ = {(xa, xp, xn) | ϕan−ϕap+ε > 0} and P+ = {(xa, xp, xn) | ϕan > β}.

Proof. See Suppl. Section 2.

In Figure 1c, we illustrate the negative gradient field of AdaTriplet with
ε = 0.25, β = 0.1, and λ = 1. As such, the 2D coordinate is partitioned into 4
sub-domains, corresponding to Eq. (6). The main distinction of the AdaTriplet
loss compared to the TL is that our loss has different gradients depending on
the difficulty of hard negative samples. In particular, it enables the optimization
of easy triplets with ϕan > β, which addresses the drawback of TL.

2.4 AutoMargin: Adaptive Hard Negative Mining

Hard negative samples are those, where feature space mapping fθ(·) fails to
capture semantic similarity between samples. Recent studies have shown the
benefit of mining hard or semi-hard negative samples for the optimization of
TL-based metric learning methods [19,25]. These approaches rely on using fixed
margin variables in training, which are selected experimentally. In this work, we
hypothesize that learning the margin on-line is not only more computationally
efficient, but also allows gaining better results [7,17,28].

In AdaTriplet, instead of defining hard negatives as the ones for which ϕan >
ϕap, we have enforced the numerical constraint on the value of ϕan itself. Empir-
ically, one can observe that this constraint becomes easier to satisfy as we train
the model for longer.

Let ∆ = ϕap − ϕan, we rewrite (5) as LAdaTriplet = [ε − ∆]+ + λ [ϕan − β]+.
During the convergence of a model under our loss, the distributions of ∆ and ϕan

are supposed to transform as illustrated in Figures 2b and 2c, respectively. Here,
we propose adjusting the margins ε and β according to the summary statistics
of the ∆ and ϕan distributions during the training:

ε(t) = µ∆(t)
K∆

, (7) β(t) = 1 + µan(t) − 1
Kan

, (8)

where µ∆(t) and µan(t) are the means of {∆ | (xa, xp, xn) ∈ T } and {ϕan |
(xa, xp, xn) ∈ T } respectively, and K∆, Kan ∈ Z+ are hyperparameters.

The difference in ε(t) and β(t) can be observed from their definition: we
aim to enforce the triplet constraint with the highest possible margin, and this
progressively raises it. Simultaneously, we want to increase the virtual thresh-
olding angle between anchors and negative samples, which leads to the decrease
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Fig. 3: Effects of AdaTriplet and AutoMargin. Colors in (b) represent epochs.

of β(t). We provide a graphical illustration of adaptive margins in Figures 2b
and 2c using yellow and blue colors, respectively.

3 Experiments

3.1 Datasets

Knee X-ray dataset. The Osteoarthritis Initiative (OAI) cohort, publicly
available at https://nda.nih.gov/oai/, comprises 4, 796 participants from 45 to
79 years old. The original interest of the cohort was to study knee osteoarthritis,
which is characterized by the appearance of osteophytes, joint space narrowing,
as well as textural changes of the femur and tibia. We used X-ray imaging data
collected at baseline, 12, 24, 36, 48, 72, and 96-month follow-up visits. The de-
tailed data description is presented in Suppl. Table 2. We utilized KNEEL [21] to
localize and crop a pair of knees joints from each bilateral radiograph. Our fur-
ther post-processing used augmentations that eventually produces input images
with a shape of 256 × 256 (see Suppl. Table 1a for details).
Chest X-ray dataset. ChestXrays-14 (CXR) [23] consists of 112, 120 frontal-
view chest X-ray images collected from 30, 805 participants from 0 to 95 years
old. The radiographic data were acquired at a baseline and across time up to
156 months. The training and test data are further described in Suppl. Table 2.
To be in line with the OAI dataset, we grouped testing data by year, and used
the same set of augmentations, yielding 256 × 256 images.

3.2 Experimental Setup

We conducted our experiments on V100 Nvidia GPUs. We implemented our
method and all baselines in PyTorch [15] and the Metric Learning library [14].
Following [13], the same data settings, optimizer hyperparameters, augmenta-
tions, and feature extraction module were used for all the methods. We utilized
the Adam optimizer [11] with a learning rate of 0.0001 and a weight decay of
0.0001. We used the ResNet-18 network [8] with pretrained weights to extract
embeddings with D of 128 from input images. We trained each method in 100

https://nda.nih.gov/oai/
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Table 1: Ablation studies (5-fold Cross-Validation; OAI dataset). CMC means CMC
top-1. ∗ indicates the results when the query and the database are 6 years apart. Ns

is the number of scanned hyperparameter values.
(a) Impact of λLan

λ mAP∗ CMC∗ mAP CMC

0 95.6 93.4 96.6 93.6
0.5 96.1 94.4 96.9 94.6
1 96.3 94.6 97.0 94.7
2 94.5 92.1 95.6 92.3

(b) Triplet loss

Method Ns mAP CMC

Q1 1 27.3 14.9
Q2 1 87.7 76.9
WAT [28] 4 96.5 93.5
Grid search 4 96.6 93.6
AutoMargin 2 96.6 93.7

(c) AdaTriplet loss

Method Ns mAP CMC

Q1 1 94.3 89.4
Q2 1 88.9 79.5
Grid search 16 97.0 94.8
AutoMargin 4 97.1 94.7
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Fig. 4: Performance comparisons on the test sets of OAI and CXR (mean and standard
error over 5 random seeds). Detailed quantitative results are in Suppl. Tables 4 and 5.

epochs with a batch size of 128. For data sampling in each batch, we randomly
selected 4 medical images from each subject. We thoroughly describe lists of
hyperparameters for all the methods in Suppl. Table 1b.

To evaluate forensic matching performance, we used mean average precision
(mAP) [20], mAP@R [13], and cumulative matching characteristics (CMC) ac-
curacy [5]. All experiments were run 5 times with different random seeds. All
test set metrics represent the average and standard error over runs.

3.3 Results

Impact of Lan. We performed an experiment in which we varied the coefficient
λ in the AdaTriplet loss (5). The results on the OAI test set in Table 1a show
that λ = 1 yielded the best performances according to both the mAP and
CMC metrics. Notably, we observed that the differences are more apparent when
querying images at least 6 years apart from images in the database. We thus set
λ = 1 for our method in all other experiments.
Impact of AutoMargin. AutoMargin is applicable for both TL and Ada-
Triplet, and we investigated its impact in Tables 1b and 1c. For baselines, we
used the Q1 and Q2 quartiles of distributions of ∆ and ϕan to define the margins
ε and β, respectively. In addition, we performed exhaustive grid searches for the
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two losses’ margins. Besides the naïve baselines, we compared our method to the
weakly adaptive triplet loss (WAT) [28], which also allows for dynamic margin
adjustment in the TL. Based on Suppl. Table 3, we set the constants (K∆, Kan)
of AutoMargin to (2, 2) and (2, 4) for OAI and CXR, respectively.

AutoMargin helped both the losses to outperform the quartile-based ap-
proaches. Compared to the grid search, our method was at least 2-fold more
efficient, and performed in par with the baseline. In the TL, AutoMargin was 2
time more efficient and achieved better results compared to WAT. Furthermore,
on the independent test sets, the combination of AdaTriplet and AutoMargin
gained substantially higher performances than WAT (Figure 4).
Effects of our methods in training. We demonstrate the behaviour of Ada-
Triplet and AutoMargin during training of one of the runs of the OAI exper-
iments in Figure 3. Specifically, under our adaptive hard negative mining, the
margin β drastically increased from 0 to 0.5 in a few epochs. While β was sta-
ble after the drastic increase in value, the margin ε gradually grew from 0 and
converged around 0.4. As a result, our loss improved rapidly at the beginning,
and continuously converged afterwards (see Figure 3a). During the process, the
mean of ∆ shifted away from 0 to 1 while its variance increased at first, and
then gradually decreased (Figure 3b).
Comparison to baselines. Finally, We compared our AdaTriplet loss with
AutoMargin to competitive metric learning baselines such as SoftTriplet [16],
ArcFace [6], TL (Triplet) [9,19], CL (Contrastive) [4], WAT [28], and Selectively
Contrastive Triplet (SCT) [25]. Whereas SoftTriplet and ArcFace are classifica-
tion losses, the other baselines are embedding losses. In Figure 4, our empirical
results show that the classification losses generalized poorly on the two test sets,
especially on chest X-ray data. On both test sets, our loss outperformed all base-
lines across years. Notably, on the OAI data, the differences between our method
and the baselines were more significant at later years. We present more detailed
results in Suppl. Tables 4 and 5. Moreover, we demonstrate the retrieval results
of our method alongside the baselines in Figure 1a and Suppl. Figure 2.

4 Discussion

In this work, we analyzed Triplet loss in optimizing hard negative samples. To
address the issue, we proposed the AdaTriplet loss, whose gradients are adap-
tive depending on the difficulty of negative samples. In addition, we proposed
the AutoMargin method to adjust margin hyperparameters during training. We
applied our methodology to the FMIM problem, where the issue of hard neg-
ative samples is evident; many medical images may look alike, and it is chal-
lenging to capture relevant fine-grained information. Our experiments on two
medical datasets showed that AdaTriplet and AutoMargin were robust to vi-
sual changes caused by aging and degenerative disorders. The main limitation
of this work is that we did not test other neural network architectures, and
used grayscale images. However, as recommended in [13], we aimed to make our
protocol standard to analyze all the components of the method. Future work
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should investigate a wider set of models and datasets. We hope our method will
be used for other CBMIR tasks, and have made our code publicly available at
https://github.com/Oulu-IMEDS/AdaTriplet.
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ɛ

(a) Triplet loss
(fa and fp are close)

ɛ

(b) AdaTriplet loss
(fa and fp are close)

ɛ

(c) AdaTriplet loss
(fa and fp are distant)

Fig. 1: Demonstration of triplets of 2D normalized feature vectors on unit circles.
Assume that fa is (1, 0), then f⊺a fp and f⊺a fn are the projections of fp and fn on the
horizontal axis, respectively. ε and β are margin variables. Red arcs indicate feasible
values of fn under a loss function’s constraint, and red segments indicate corresponding
values of f⊺a fn. (a) When the angle between fp and fa is small, fn is allowed to be close
to fa under the constraint of the Triplet loss (3). (b) In the same scenario, our loss
has a term to ensure fn to be far from fa at least arccos(β) radian. (c) When fp is
sufficiently far from fa, the margin ε overrides the effect of β.

1 Proof of Proposition 1

Proof. Consider that for vectors a and b, s.t. ∥a∥2 = ∥b∥2 = 1. Then ∥a−b∥2
2 =

(a − b)⊺(a − b) = 2 − 2a⊺b. Therefore,

LTriplet = [2ϕan − 2ϕap + ε]+ , ε ∈ [0, 4). (9)

By simplifying the coefficient and adjust the range of ε accordingly, we derive
Eq. (3).
⋆ Equal contributions
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2 Proof of Proposition 2

Proof. Let T+ = {(xa, xp, xn) | ϕan − ϕap + ε > 0} and P+ = {(xa, xp, xn) |
ϕan > β} denote the set of all not-easy triplets and the set of all triplets with a
hard negative pair, respectively. Then, the AdaTriplet loss intrinsically partitions
the domain of the loss function in into 4 sub-domains:

LAdaTriplet(τ) =


(1 + λ)ϕan − ϕap + ε − λβ if τ ∈ T+ ∩ P+

λϕan − λβ if τ ∈ (T \T+) ∩ P+
ϕan − ϕap + ε if τ ∈ T+ ∩ (T \P+)

0 otherwise,

, (10)

where λ ∈ R+, and τ ∈ T is a triplet. As a result, we can derive the partial
derivatives of LAdaTriplet with respect to ϕap and ϕan

(
∂LAdaTriplet(τ)

∂ϕap
,

∂LAdaTriplet(τ)
∂ϕan

)
=


(−1, 1 + λ) if τ ∈ T+ ∩ P+

(0, λ) if τ ∈ (T \T+) ∩ P+
(−1, 1) if τ ∈ T+ ∩ (T \P+)
(0, 0) otherwise.

(11)

In contrast,
(

∂L∗
Triplet(τ)
∂ϕap

,
∂L∗

Triplet(τ)
∂ϕan

)
= (−1, 1), ∀τ ∈ T+, which concludes the

proof.

Table 1: (a) An ordered list of common transformations. (✓) indicates ones only used
in the training phase. (b) Lists of hyperparameter values. Bold and underlined numbers
indicate selected values for OAI and CXR, respectively.

(a)

Transformation Prob. Parameter

Resize 1 280 × 280
Gaussian noise (✓) 0.5 0.3
Rotation (✓) 1 [-10, 10]
Random cropping (✓) 1 256 × 256
Center cropping 1 256 × 256
Gamma correction (✓) 0.5 [0.5, 1.5]

Normalization 1 [0.5, 0.3] on OAI
[0.5, 0.5] on CXR

(b)

Method Hyperparam. List of values

SCT λ {0, 0.5, 1, 2}

ArcFace m {5.7, 14.3, 28.6, 43}

WAT β {0.1, 0.25, 0.5, 0.75}

SoftTriplet m {0.01, 0.02, 0.05, 0.1}

Contrastive mneg {0.25, 0.5, 0.75, 1}
mpos {0, 0.25, 0.5, 0.75}

Triplet
+ Grid search ε {0.1, 0.25, 0.5, 0.75}

+ AutoMargin K∆ {2, 4}

AdaTriplet

+ Grid search ε {0.1, 0.25, 0.5, 0.75}
β {0.1, 0.25, 0.5, 0.75}

+ AutoMargin K∆ {2, 4}
Kan {2, 4}
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Table 2: Descriptions of the OAI and CXR datasets. Knee X-ray images with disease
indicate those with KL grade greater than 1. Chest X-ray images with disease consist
of those with at least one lung or heart disease. OAI test data are from the acquisition
site C. The CXR data splits are given by the CXR’s owner. Both the galleries contain
only data points at their baselines. Queries are from the other follow-up visits.

(a) Overview descriptions

Dataset Phase # Images # Subjects % Male # Images with disease

OAI Training/validation 37410 3490 59.1 14240
Test 15648 1306 53.8 5409

CXR Training/validation 86524 28008 56.0 36324
Test 25587 2797 58.1 15735

(b) Detailed descriptions of the test sets.

Query (at year)

Dataset Gallery 1 2 3 4 5 6 7 8 9 10 11 12

OAI 2610 2498 2430 2306 2252 0 1858 0 1694 0 0 0 0
CXR 13137 5662 1944 1216 1123 636 528 541 236 304 105 75 80

Table 3: Comparison between an exhaustive grid search for fixed margins and Au-
toMargin for adaptive margins in the AdaTriplet loss on OAI and CXR. SE means
standard error.

(a) Exhaustive grid search

ε β mAPOAI (%) mAPCXR (%)

0.1 95.90 79.33
0.25 96.15 80.08
0.5 96.27 79.500.1

0.75 96.20 80.81

0.1 96.20 83.48
0.25 96.66 84.15
0.5 96.91 84.400.25

0.75 96.75 85.27

0.1 95.70 84.07
0.25 96.36 86.04
0.5 97.02 85.840.5

0.75 96.44 86.65

0.1 92.10 79.29
0.25 95.59 85.42
0.5 96.59 81.750.75

0.75 95.33 82.89

Mean±SE 96.01±0.28 83.06±0.65

(b) AutoMargin

K∆ Kan mAPOAI (%) mAPCXR (%)

2 97.08 85.952 4 96.70 87.04

2 96.58 83.714 4 96.73 85.28

Mean±SE 96.77±0.09 85.50±0.70
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Table 4: Performance comparisons on the OAI test set (mean and standard error over
5 random seeds). Bold values indicate the best performances, and underline values
indicate ones that are substantially higher than the others. Rows corresponding to our
method are highlighted.

Metric Loss 1 year 2 years 3 years 4 years 6 years 8 years All

SoftTriplet 92.1±0.2 91.2±0.3 85.8±0.6 79.4±1.1 73.3±1.2 71.3±1.4 83.2±0.7
ArcFace 93.0±0.1 92.0±0.1 86.5±0.2 80.0±0.7 74.7±1.0 72.7±0.8 84.2±0.4
SCT 97.1±0.1 96.6±0.1 94.4±0.2 87.5±0.7 83.4±0.9 81.6±0.9 90.9±0.4
WAT 98.1±0.0 97.7±0.0 96.6±0.1 92.0±0.6 89.4±0.8 88.1±0.9 94.2±0.3
Contrastive 98.3±0.0 97.9±0.0 97.1±0.0 93.4±0.2 91.1±0.2 90.2±0.2 95.1±0.1
Triplet 98.1±0.1 97.8±0.0 96.7±0.1 92.4±0.5 89.6±0.8 88.6±0.8 94.4±0.3

mAP

AdaTriplet 98.5±0.0 98.3±0.0 97.9±0.0 96.2±0.1 95.0±0.2 94.2±0.3 96.9±0.1

SoftTriplet 78.2±0.3 75.3±0.5 58.7±1.3 47.7±1.7 37.8±1.8 35.2±1.9 57.6±1.2
ArcFace 83.1±0.2 80.6±0.3 66.5±0.6 56.0±1.1 47.9±1.2 45.3±1.1 65.1±0.6
SCT 93.4±0.3 91.8±0.2 85.0±0.8 69.3±1.0 58.3±1.5 56.4±1.9 77.6±0.8
WAT 95.7±0.1 95.2±0.1 91.4±0.2 79.0±1.1 70.4±1.7 69.0±1.9 84.9±0.7
Contrastive 96.4±0.1 95.7±0.1 93.0±0.1 80.9±0.7 72.5±0.7 71.3±0.8 86.3±0.3
Triplet 95.8±0.2 94.9±0.2 91.7±0.3 78.4±1.6 68.8±2.6 67.7±2.5 84.4±1.1

mAP@R

AdaTriplet 97.0±0.1 96.3±0.1 94.5±0.2 87.9±0.5 83.9±0.7 82.3±0.8 91.1±0.3

SoftTriplet 89.5±0.2 88.2±0.3 80.9±0.9 73.1±1.3 65.4±1.4 63.2±1.6 78.1±0.8
ArcFace 90.6±0.1 89.2±0.1 81.8±0.3 74.0±0.9 67.3±1.2 64.7±1.0 79.2±0.5
SCT 95.6±0.1 94.7±0.1 91.1±0.3 81.4±1.0 75.3±1.2 73.3±1.2 86.4±0.6
WAT 97.3±0.1 96.7±0.1 94.8±0.1 87.9±0.8 83.8±1.1 82.4±1.2 91.3±0.5
Contrastive 97.6±0.0 97±0.1.0 95.6±0.1 89.9±0.3 86.2±0.2 85.0±0.3 92.5±0.1
Triplet 97.3±0.1 96.8±0.1 95.0±0.2 88.6±0.7 84.3±1.1 83.1±1.1 91.6±0.5

CMC top 1

AdaTriplet 98.0±0.1 97.7±0.1 96.9±0.1 94.5±0.2 92.8±0.3 91.6±0.4 95.6±0.2

Table 5: Performance comparisons on the CXR test set (mean and standard error over
5 random seeds). Results of our AdaTriplet loss are highlighted. The best performances
are in bold, and underline values indicate ones that are substantially higher than the
others.

Metric Loss 1 year 2 years 3 years 4 years 5 years 6 years 7 years 8 years 9 years 10 years 11 years 12 years All

SoftTriplet 27.3±0.1 21.6±0.3 19.3±0.3 17.4±0.4 17.5±0.3 18.3±0.3 10.6±0.3 15.3±0.8 18.4±2.1 12.6±0.6 13.6±0.6 6.5±0.6 22.3±0.1
ArcFace 29.9±0.2 24.2±0.1 22.1±0.3 18.7±0.3 19.4±0.3 21.2±0.7 12.6±0.6 17.0±0.7 23.0±1.0 14.0±0.6 14.6±1.3 7.4±0.7 24.8±0.2
SCT 70.2±0.6 61.5±0.6 59.0±0.3 57.3±0.5 54.0±0.7 55.2±0.6 34.9±0.5 57.7±1.2 56.1±1.7 50.4±1.1 62.5±1.0 44.2±3.0 62.6±0.5
WAT 81.5±0.4 72.7±0.3 66.1±0.4 67.1±0.4 64.2±0.6 67.1±1.2 43.1±0.5 65.8±0.4 65.6±0.8 69.9±0.6 74.7±0.8 57.9±2.4 73.2±0.3
Contrastive 79.7±0.4 71.4±0.6 65.5±0.2 66.3±0.3 64.6±0.3 66.1±1.1 43.7±0.5 65.7±1.2 65.2±1.5 69.7±1.4 72.7±0.7 52.3±3.0 72.0±0.4
Triplet 80.9±0.6 71.3±0.4 65.3±0.6 65.9±0.3 64.4±0.3 67.7±0.5 42.2±0.3 66.2±1.6 66.2±0.4 66.8±1.9 73.2±0.3 55.4±4.3 72.5±0.4

mAP

AdaTriplet 82.5±0.5 74.5±0.2 67.0±0.7 68.0±0.5 65.6±0.6 68.7±1.1 44.0±0.7 68.8±1.0 71.1±1.6 72.3±1.7 74.8±1.1 59.6±1.3 74.5±0.4

SoftTriplet 14.9±0.1 11.0±0.2 8.8±0.3 7.9±0.4 8.2±0.2 8.2±0.4 4.6±0.3 5.8±0.8 9.1±1.3 3.6±0.4 4.2±0.9 1.3±0.5 11.4±0.1
ArcFace 16.7±0.1 12.2±0.3 10.4±0.3 9.0±0.5 9.0±0.6 9.5±0.4 5.5±0.5 7.0±0.3 9.5±1.6 5.1±0.8 5.2±0.5 1.4±0.3 12.9±0.2
SCT 57.3±0.6 50.3±0.9 47.5±0.3 46.0±0.9 42.6±0.6 43.9±0.8 26.9±0.5 43.1±1.4 36.7±2.8 34.0±2.1 46.9±0.9 28.9±2.2 50.4±0.6
WAT 71.1±0.7 62.5±1.0 56.5±0.4 58.2±0.5 54.3±0.5 56.9±1.0 35.0±0.6 55.0±0.8 50.1±1.9 56.3±2.1 67.0±0.5 47.0±1.9 63.0±0.6
Contrastive 69.4±0.6 61.5±0.9 56.3±0.4 56.8±0.7 55.9±0.5 57.5±0.7 36.5±0.5 56.8±1.7 48.1±1.3 57.5±2.1 64.1±1.7 43.9±4.0 62.1±0.5
Triplet 70.2±0.8 61.5±0.8 56.2±0.7 55.7±0.6 54.1±0.8 58.2±0.8 33.4±0.5 54.6±1.1 48.9±0.3 54.4±2.0 64.9±1.4 43.4±2.8 62.1±0.6

mAP@R

AdaTriplet 72.3±0.7 64.9±0.6 58.2±1.1 58.9±1.0 56.4±0.7 59.6±1.6 37.7±0.9 59.1±1.6 58.6±1.9 62.8±2.6 68.8±2.6 46.7±1.8 64.9±0.5

SoftTriplet 20.3±0.2 16.5±0.3 14.6±0.3 14.0±0.3 13.7±0.3 13.7±0.4 8.20±0.2 11.5±0.7 14.8±2.2 9.30±0.4 9.80±0.9 4.40±0.8 16.9±0.2
ArcFace 22.9±0.2 18.9±0.2 17.2±0.3 15.3±0.3 15.3±0.3 16.3±0.5 10.0±0.6 13.5±0.5 18.5±1.0 11.1±0.8 11.0±1.3 5.4±0.8 19.2±0.1
SCT 57.2±0.5 50.3±0.6 50.2±0.3 48.5±0.6 44.5±0.8 46.3±0.6 29.2±0.4 48.1±1.3 45.9±2.2 39.6±1.0 51.1±1.4 34.0±2.9 51.6±0.4
WAT 71.4±0.5 64.1±0.5 58.9±0.4 59.9±0.4 56.1±0.6 58.0±0.9 37.2±0.5 58.5±0.4 56.2±1.2 60.4±0.6 68.2±0.8 47.4±2.7 64.3±0.4
Contrastive 69.8±0.5 62.5±0.8 58.2±0.3 59.3±0.3 57.5±0.5 57.9±1.2 38.0±0.4 58.3±1.5 56.3±1.8 61.3±1.1 66.4±1.0 43.4±2.7 63.3±0.5
Triplet 70.5±0.8 62.5±0.6 57.7±0.7 58.5±0.3 56.0±0.4 58.4±0.6 36.0±0.2 58.1±1.5 56.1±1.9 57.9±0.4 65.4±0.8 46.4±3.6 63.3±0.6

CMC top 1

AdaTriplet 72.9±0.6 66.1±0.3 60.0±0.8 61.0±0.6 58.1±0.6 60.3±0.9 38.3±0.8 61.3±0.8 62.6±2.0 63.7±1.8 68.5±1.7 47.7±0.9 66.0±0.4
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Age: 58, KL: 0
Visit: 4 years

Query

Age: 54, KL: 0
(GT: top-1)

AdaTriplet (ours)

Age: 59, KL: 0
(GT: top-8)

Triplet

Age: 72, KL: 0
(GT: top-12)

Contrastive

Age: 48, KL: 0
(GT: top-15)

SCT

Age: 79, KL: 3
(GT: top-22)

ArcFace

Age: 54, KL: 0
(GT: top-1)

SoftTriplet

Age: 65, KL: 3
Visit: 8 years

Age: 57, KL: 0
(GT: top-1)

Age: 74, KL: 0
(GT: top-5)

Age: 72, KL: 1
(GT: top-34)

Age: 79, KL: 0
(GT: top-6)

Age: 58, KL: 2
(GT: top-67)

Age: 73, KL: 2
(GT: top-345)

Age: 64, KL: 3
Visit: 8 years

Age: 56, KL: 1
(GT: top-1)

Age: 50, KL: 0
(GT: top-6)

Age: 65, KL: 3
(GT: top-16)

Age: 65, KL: 3
(GT: top-63)

Age: 67, KL: 0
(GT: top-8)

Age: 55, KL: 4
(GT: top-758)

Age: 76, TKR
Visit: 8 years

Age: 68, KL: 3
(GT: top-1)

Age: 48, KL: 0
(GT: top-38)

Age: 58, KL: 0
(GT: top-4)

Age: 70, KL: 2
(GT: top-3)

Age: 54, KL: 3
(GT: top-89)

Age: 69, KL: 2
(GT: top-824)

Age: 19, Nd: 3
Visit: 9 years

Age: 10, Nd: 0
(GT: top-1)

Age: 40, Nd: 1
(GT: top-48)

Age: 14, Nd: 0
(GT: top-12)

Age: 22, Nd: 1
(GT: top-211)

Age: 65, Nd: 5
(GT: top-2551)

Age: 68, Nd: 1
(GT: top-862)

Age: 49, Nd: 3
Visit: 7 years

Age: 42, Nd: 1
(GT: top-1)

Age: 40, Nd: 2
(GT: top-4)

Age: 45, Nd: 1
(GT: top-55)

Age: 59, Nd: 1
(GT: top-89)

Age: 46, Nd: 1
(GT: top-2789)

Age: 72, Nd: 0
(GT: top-485)

Age: 34, Nd: 3
Visit: 4 years

Age: 30, Nd: 0
(GT: top-1)

Age: 39, Nd: 1
(GT: top-26)

Age: 39, Nd: 1
(GT: top-4)

Age: 72, Nd: 0
(GT: top-3)

Age: 57, Nd: 3
(GT: top-3810)

Age: 54, Nd: 1
(GT: top-2656)

Age: 81, Nd: 3
Visit: 6 years

Age: 75, Nd: 0
(GT: top-1)

Age: 57, Nd: 0
(GT: top-4)

Age: 54, Nd: 2
(GT: top-5)

Age: 71, Nd: 3
(GT: top-157)

Age: 57, Nd: 0
(GT: top-5721)

Age: 57, Nd: 2
(GT: top-6547)

Fig. 2: Matching samples of our method and the other baselines. Columns 2-7 are
the top-1 matched images of the corresponding methods. Top-k indicates the position
of ground truth (GT). Green: top-1 prediction is the correct person (GT is top-1),
orange: otherwise. KL means the Kellgence-Lawrence grade, assessing the stage of
knee osteoarthritic severity. TKR indicates knees undergone total knee replacement
surgery. Nd is the number of thorax diseases.
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