
ModelS-based Analysis of both User and
Attacker Tasks: Application to EEVEHAC

Sara Nikula1[0000−0002−2299−8030], Célia Martinie2[0000−0001−7907−3170], Philippe
Palanque2[0000−0002−5381−971X], Julius Hekkala1[0000−0002−7558−9687],

Outi-Marja Latvala1[0000−0001−8083−8986], and Kimmo
Halunen3[0000−0003−1169−5920]

1 VTT Technical Research Centre of Finland, Kaitoväylä 1, 90571 Oulu, Finland
firstname.lastname@vtt.fi

2 ICS-IRIT, Université Toulouse III - Paul Sabatier, Toulouse, France
lastname@irit.fr

3 University of Oulu, Finland
Kimmo.Halunen@oulu.fi

Abstract. The design and development of security mechanisms, such
as authentication, requires analysis techniques that take into account
usability along with security. Although techniques that are grounded in
the security domain target the identification and mitigation of possible
threats, user centered design approaches have been proposed in order
to also take into account the user’s perspective and needs. Approaches
dealing with both usability and security focus on the extent to which
the user can perform the authentication tasks, as well as on the possible
types of attacks that may occur and the potential threats on user tasks.
However, to some extent, attacker can be considered as user of the system
(even if undesirable), and the analysis of attacker tasks provides useful
information for the design and development of an authentication mech-
anism. We propose a models-based approach to analyse both user and
attacker tasks. The modeling of attacker tasks enables to go deeper when
analysing the threats on an authentication mechanism and the trade-offs
between usability and security. We present the results of the application
of this models-based approach to the EEVEHAC security mechanism,
which enables the setup of a secure communication channel for users of
shared public computers.

Keywords: Task modeling · Usable security · Human understandable
cryptography · Visual channel

1 Introduction

Security mechanisms have an impact on human performance because they add
additional activities to users that do not correspond to their main goals [28]. For
example, when the main purpose of a user is to check a bank account statement
on a website, the user will not directly consult the statement after having en-
tered the service web page. Before that, the user will have to authenticate and

thus to perform additional actions that aim to grant access to the bank account
statement. These additional activities require to engage additional resources (e.g.
temporal, cognitive, motor...) and decrease the user global performance. How-
ever, these mechanisms may be necessary when they correspond to threats to
be avoided. In our example, the authentication mechanisms aims to avoid that
user’s data be stolen, compromised, destroyed or used for malicious purposes. All
of the authentication mechanisms do not have the same impact on user tasks,
and thus are not equal in terms of level of usability. In the same way, all of
the authentication mechanisms are not equal in terms of level of security. When
designing authentication mechanisms, both usability and security aspects have
to be taken into account [7], in order to explore the possible trade-offs, as well as
to perform informed design choices. Existing research work on the engineering
of usable and secure authentication mechanisms focuses on the extent to which
the user can perform the authentication tasks (using empirical or analytical ap-
proaches), as well as on the possible types of attacks that may occur and the
potential threats on user tasks [7]. It is acknowledged that a specific feature of
an authentication mechanism may have an important impact on user’s tasks,
and as a consequence, trigger its integration or removal. But a specific feature of
an authentication mechanism may also have an important impact on attacker’s
tasks, either making them almost impossible or trivial to perform. To some ex-
tent, attacker can be considered as (undesirable) user of the system, and the
authentication mechanism should be designed to make impossible the attacker’s
task.

This paper presents a modelS-based approach to analyse both user and at-
tacker’s tasks when designing and developing an authentication mechanism. The
capital S in the end of the word model stands for the different types of models
required to apply the proposed approach. It combines task models, to describe
explicitly user and attacker’s tasks, and attack tree models to describe explicitly
alternative paths of attacks. The article is organized as follows. Section 2 intro-
duces the main theoretical aspects of the proposed approach. Section 3 presents
the two types of models required for the application of the proposed approach
and how they complement each other. Section 4 presents the results of the appli-
cation of the proposed approach to the EEVEHAC authentication mechanism.
Section 5 presents the related work on methods and techniques to usable and
secure authentication mechanisms. Section 6 concludes the paper.

2 Towards Humans Centric Security Engineering

The engineering of usability and security require to take into account the user
tasks to ensure usability and to identify potential security threats on these tasks.
But users may not be the only humans involved while the authentication system
executes. An attacker may also interact with the authentication system and thus
authentication mechanisms design and development approaches have to deal with
attacker tasks.

2

2.1 Generic requirements for engineering authentication
mechanisms for usability and security

The ISO standards defines usability as "the extent to which a system, product or
service can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use" [19]. The analysis of
effectiveness requires to identify precisely and exhaustively user tasks, in order
to check that all of them are supported by the authentication mechanism [23].
Moreover, ensuring effectiveness requires to check that the appropriate function
is available at the time when the user needs it. The analysis of efficiency also
requires a precise identification and description of user tasks. In the case of
predictive assessment of efficiency (e.g. Keystroke Level Model prediction tech-
niques [10] [13] [18]), the task types and their temporal ordering are required to
be identified in order to associate a standard predicted value and to calculate
the estimated time. In the case of empirical assessment of efficiency, tasks also
have to be identified to prepare the user testing protocol. The analysis of sat-
isfaction requires user feedback because it is a subjective criteria that relies on
the individual characteristics of the user, though it is dependent on effectiveness
and efficiency. The analysis of satisfaction also requires the identification of user
tasks as the user feedback may be referring to a particular task [4].

Security analysis highly relies on the identification and description of poten-
tial threats [9]. The analysis of possible threats on user tasks requires precise
and exhaustive description of user tasks [7]. In particular, it requires to identify
the user task types (a threat can arise from a type of user action, e.g. drawing a
gesture password on a tactile screen is subject to smudge attacks whereas typing
a password on a keyboard is subject to key-logging attack), their temporal or-
dering (a threat can arise from the specific ordering of user tasks, e.g. leave the
credit card in the automated teller machine once having withdrawn the notes),
and the information, knowledge, objects and devices being manipulated while
performing the tasks (a threat can arise from an information, knowledge or ob-
ject that the user has lost, forgotten or misused, e.g. a credit card lost in a public
space).

2.2 Generic requirements for engineering the attacker tasks to be
as complex as possible

The analysis of complexity of attacker tasks requires the precise and exhaustive
identification of the tasks to attack the authentication mechanism. Precise and
exhaustive description of tasks enable to analyse effectiveness and efficiency, and
as such to ensure a very low level of effectiveness and efficiency for an attacker.
In the same way that the analysis of effectiveness and efficiency requires the
identification of the user tasks types, of their temporal ordering, as well as of
the information, knowledge, objects and devices manipulated while performing
the tasks, the analysis of the attacker tasks also does.

3

3 Models-based analysis of both user’s and attacker’s
tasks

The production of task models of both user and attacker tasks enable to sys-
tematically and exhaustively analyse the effectiveness and efficiency of the user
and of the attacker with an authentication mechanism, provided that the task
modeling notation is expressive enough to fulfill the requirements presented in
the previous section.

3.1 Task model based analysis of user tasks using HAMSTERS-XL

Task models consist of a graphical, hierarchical and temporally ordered repre-
sentation of the tasks the users have to perform with an interactive application
or system in order to reach their goals. Task models are one of the very few
means for describing user tasks explicitly and exhaustively [22]. Task models sup-
port several different stages of interactive systems design and development (e.g.
user roles identification, system functions identification, user interface design,
testing, training program design. . .). We selected the HAMSTERS-XL notation
[22] because it enables to describe the required types of tasks such as user task
(cognitive, perceptive, and motor), abstract tasks, interactive tasks (input, out-
put), and system tasks, as well as their temporal ordering and the information,
knowledge, objects and devices manipulated while performing the tasks.

3.2 Attack tree based analysis of possible attacks

An attack tree [29] describes the possible attacks or combination of attacks on a
system. It is composed of a main goal for an attack, which is represented by the
top root node, and of a combination of leaves that represent different ways to
achieve that goal. In the original notation [29], OR nodes (presented in Figure 1)
refer to alternatives of attacks to achieve the attack whilst AND nodes refer to
combination of attacks. The notation has been extended to enable the descrip-
tion of the potential effects of attacks, as well as to enable the description of the
combination of attacks, using the SAND logical operator. Other elements of the
notation include a rectangle to represent an event (such a threat or attack), an
ellipse to represent an effect and a triangle to represent the fact that a node is
not refined. All elements of the attack tree notation are shown in Figure 1. At-
tack trees enable to systematically identify possible attacks on an authentication
mechanism.

3.3 Task model based analysis of attackers’ tasks

An attack tree describes attack goals, but does not describe the possible tasks
and their temporal ordering to reach these attack goals. It thus presents a partial
view on attacker’s tasks. Although attack trees represent the main attack goal
and its associated possible combination of ways to reach the main goal of the

4

Fig. 1. Elements of notation for the attack trees from [27]

attack, the attacker tasks to reach an attack goal may be very different from the
tasks to reach another attack goal. For example, the tasks to perform a video
attack are very different from the tasks to perform a shoulder surfing attack. In
the first case, the attacker has to identify a location where the camera could be
installed, as well as means to either trigger the recording at the appropriate time
or to extract the video sample when the user was authenticating if the record
covers a long time period. Several specific preparation tasks are required and
specific devices are required too. In the other case, the attacker has to stand
behind the user at the right time, but does not need special devices.

Task models of attackers tasks that provide exhaustive description of the
tasks as well as of information, data, objects and devices thus help to iden-
tify whether the authentication mechanism is worth to implement, by explicitly
highlighting the complexity of the attack.

4 Validation of the approach: Models-based analysis of
usability and security of EEVEHAC

In this section, we present the results of the application of the proposed ap-
proach for the analysis of the EEVEHAC (End-to-End Visualizable Encrypted
and Human Authenticated Channel) secure communication channel mechanism
[17].

4.1 EEVEHAC: End-to-End Visualizable Encrypted and Human
Authenticated Channel

EEVEHAC uses human understandable cryptography and has been designed
to enable users to safely recover and use sensitive private data (e.g. bank ac-
count statement) when using public untrusted devices (e.g. public desktop in
libraries or cybercafés). EEVEHAC establishes a secure communication channel
and warns the user about the possibility of corruption of the public device if nec-
essary. EEVEHAC is actually implemented for smartphones but targets smaller
wearable devices such as smart glasses.

Overview of EEVEHAC. Modern cryptographic mechanisms are based on
complicated mathematics that regular human users cannot understand. However,
for a regular user, the common experience of using it is completely opaque: after

5

they type in their password, there is no further interaction and no indication
of whether the cryptographic protocols behind the scene have executed in a
correct manner and without interference from attackers. Because cryptography
is mathematically complicated, it is fully done by machines and there is no
immediate way for a user to know if the results are correct or corrupted. In order
to mitigate this issue, there has been some previous research in developing human
understandable cryptography. An early example of this is visual cryptography
[26], where the user can decrypt a secret message simply by looking at it. A recent
review [16] presents more examples of the use of human abilities in cryptographic
systems. There are certain key building blocks that utilize human capabilities in
cryptography, but no complete end-to-end communications systems existed, until
EEVEHAC was proposed [17]. EEVEHAC composes of two security protocols:
HAKE (Human Authenticated Key Exchange) [5] and EyeDecrypt [15]. The
user first sets up a long term key, also referred to as "the long time secret",
with a trusted server. Based on this long term secret, the user then setups of
a secured communication channel using a smartphone which implements the
HAKE protocol. The second security protocol, EyeDecrypt, provides a visual
channel to communicate securely using a public terminal. By visual channel, we
mean that it provides to the user visual indication about the possible corruption
of the communication channel.

Main steps for configuring the long term key. The steps for the con-
figuration of the long term key are presented in Table 1. The authentication
information contains a story and a mapping between six colors and numbers,
which the user needs to memorize. These compose the long term key and are
acquired during registration to the service. The story is mostly computer gen-
erated, but the user has an option to change one word for each sentence. The
intention is to balance the strengths and weaknesses of both machine and human
generated stories [30]. Once the long term key (story and color code) is config-
ured, the server and the user’s trusted device (smartphone) have matching keys
(AES [11] and HMAC [20]) and the second protocol of EEVEHAC can be used.

Main steps to log in to a service including the set up of a secure
communication channel. The steps for initiating a secure communication
channel in order to log in to a service, i.e. performing a HAKE protocol leading
to UAN (Unique Authentication Number) code, are presented in Table 2. The
smartphone authentication application presents sentences from the original story
where one word is replaced, so that the sentence remains grammatically correct
but the meaning is changed. The user needs to spot the changed words and take
note of their colors. They then recall the corresponding numbers, count their sum
and use the modulo 10 of the sum as the first digit of the UAN. This process
is iterated 3 times more (one iteration for each digit of the UAN code which is
4 digit long). Once the UAN code is entered and validated by the smartphone
application, the secure channel is ready and the user can log in to the target
service (e.g. bank account). Table 3 presents the steps to log in the target service

6

Table 1. Main steps for configuring the long term key.

Step Screenshot of the application Description
1 This screen welcomes the

user to the registration
process. The user clicks
the light red button to
start the process.

2 Instructions appear on the
screen. The user is
supposed to fill in a
missing word in each
sentence.

3 First sentence appears on
the screen. The uppermost
sentence is to be filled.
Alternative words are
shown on the light red
buttons. The user picks
one of these by clicking it.
The filled sentence is
shown on the bottom line.
This is repeated eight
times.

4 After the user has
completed all sentences,
user specific user number
is shown on the
uppermost row. The user
specific story, consisting of
the eight sentences
completed in the previous
step, is shown below. The
user specific
color-number-mapping is
shown on the colored lines:
the number corresponding
to red is 6, the number
corresponding to blue is 2,
and so on. The last row
states that the registration
phase is ready and the
user can close the window.

7

Table 2. Main steps to setup the secure communication channel.

Step Screenshot of the application Description
1 The user opens the

application and clicks the
key exchange button to
start the HAKE protocol.

2 The user fills in their user
number.

3 The application connects
to the server and starts
the HAKE protocol. The
user must first detect
which two sentences
belong to the story and
which words have been
changed. The user then
recalls the numbers
corresponding to colors of
these words. They then
sum these colors and
count modulo 10 of this
sum.

4 The user inputs the result
in the UAN field shown
under the sentences. After
every set of sentences, the
user inputs one number,
the length of the UAN
code increases by one after
every screen. This is done
four times. After the last
screen, the user is either
informed that the protocol
was successful or that
they must try again.

8

using the secured channel. The server sends encrypted messages to the untrusted
device (public desktop), which shows them in their respective grid positions as
QR codes. The user points the camera of their smartphone to the screen of the
laptop to scan the grid. The EEVEHAC application processes the QR codes,
checking their position and trying to decrypt the contents. Correct positioning
of the codes is indicated with green outlines on top of the camera feed. Red
outlines are used for incorrect positions. Uncorrupted QR can be successfully
decrypted and the results shown to the user in the camera feed. Conversely, if
the application cannot process the QR codes and show the results, the user can
deduct that something has gone wrong in the process and that an attack may
be going on. By referencing the camera feed, the user can now input a short PIN
code through the untrusted device to access the underlying service provided by
the server.

Table 3. Main steps to input service PIN code while using the visual channel by
scanning QR codes.

Step Screenshot of the application Description
1 The user clicks the “Scan

QR codes” button.

2 The user sees QR codes
on the terminal and points
at them with the camera
of their mobile device. If
green rectangles appear
around the QR codes, the
user knows that
everything is OK. Based
on the decrypted content
shown in the application
the user can select the
right QR code.

4.2 Task models of user tasks with EEVEHAC

In this section, we present the main task models that were produced to analyse
usability of EEVEHAC. For the explanation of the application of the approach,
we present the high-level parts of the task models. We also focus on specific

9

branches of the task models, for which we present the details of the tasks, in
order to highlight how we use them for the analysis presented in section 4.5.

Figure 2 presents the task model that describes the main user tasks to con-
figure the long term key. These consist of building (with application support)
a story, memorizing the story and memorizing the color codes. The task model
reads from left to right and from top to bottom. The main goal is represented
by the abstract task at the top of the model "Configure long term key (story
and color code)". To reach this main goal the user has to perform a sequence of
four sub-goals, also represented by abstract tasks. All of the abstract tasks are
refined in concrete user tasks. For example, the user first starts the configura-
tion (abstract task "Start configuration" on the left of the model). This abstract
task decomposes in a sequence (’>>’ operator) of the cognitive task "Decide to
start", the interactive input task "Click on start" and the interactive output task
"Display welcome message". The abstract task "Select a word for the story" is
iterative. The user manipulates several information (green boxes) to configure
the long term key (e.g. story, value for orange color...). In the end, the user has to
memorize this information, which is described by the production of declarative
knowledge (represented with violet boxes names "Story" and "color codes").

Figure 3 presents the task model that describes the main user tasks to log
in to the service with EEVEHAC. Under the main goal labelled "Log in to the
service" at the top of the task model, a sequence of tasks has to be accomplished
(temporal ordering operator "sequence" represented with ">>"). The main high-
level sub goals are, that first, the user starts the service provider application
on his smartphone, then, the user performs the UAN authentication and the
last subgoal is to insert the PIN code. The abstract task "Select QR code" is
represented as folded (with the symbol ’+’ at the bottom right of the task name).
This means that this tasks decomposes in several tasks (not presented here).

4.3 Attack tree

In this section we focus on an extract of the attack tree of EEVEHAC, for which
we present the details of the attack, in order to highlight how we used it for the
analysis presented in section 4.5. A full description and a threat analysis of the
EEVEHAC system is presented in [17].

Figure 4 presents the extract of the attack tree of EEVEHAC for the attacker
goal "Impersonate the server or the user". The attacker goal may be to imper-
sonate the server or the user (rectangle labelled "Impersonating the server or the
user" on the top of the attack tree). This attack may have 3 effects (3 ellipses on
the top of the attack tree): the communication channel is compromised, sensitive
user data is stolen and the user device is infected with malware. If the attacker
gets access to the encryption key, which is used to encrypt and decrypt the com-
munication channel, the channel is no more secure. To reach the attack goal, the
attacker must conduct a man-in-the-middle attack and uncover the long term
key (story and color code). This is represented with the two rectangles under the
"AND" operator. The man-in-the-middle attack is very unlikely because the at-
tacker must simultaneously impersonate trusted devices (the server and the user

10

Fig. 2. Task model describing the task to "Configure the long term key (story and
color code)" 11

Fig. 3. Task model describing the task to "Log in to the service"
12

Fig. 4. Attack tree for the attacker goal "Impersonating the server or the user"

smartphone). This attack is thus not detailed (represented with a triangle). To
uncover the long term secret, the attacker can either steal the information during
the registration phase (rectangle labelled "Eavesdropping registration phase") or
("OR" operator) eavesdrop HAKE protocol communication channel setup ses-
sions to identify the story and the color code (rectangles labelled "Identifying
the story" and "Analyzing possible color-number-mappings" under the "AND"
operator). Because the registration (configuration of the long term key) is sup-
posed to be done in a peaceful place, such as home, it is highly unlikely that
the information is eavesdropped in this phase. This attack is thus not detailed
(represented with a triangle).

4.4 Task models of attacker tasks

In this section, we present the main task models that were produced to analyse
complexity of attacker tasks for the attack "Impersonating the server or the
user". For the explanation of the application of the approach, we present the
high-level part of the task model. We also focus on a specific branch of the task
model, for which we present the details of the tasks, in order to highlight how
we use them for the analysis presented in section 4.5.

13

Figure 5 presents the task model of the attacker to reach the goal "Uncover
the long time secret by eavesdropping". This goal in the task model corresponds
to the main attack goal presented in the attack tree in the previous section.

Fig. 5. Upper part (sub-goals) of the task model describing the attacker task "Uncover
the long time secret by eavesdropping"

The task model presented in Figure 5 is the upper part of the whole task
model for the attacker tasks. The attacker has to eavesdrop an authentication
session (abstract task labelled "Eavesdrop and authentication session"), using a
shoulder surfing attack or a video recording attack (folded abstract tasks labelled
"Perform a shoulder surfing attack" and "Perform a video recording attack").
This first attack enables to get the first version of the list of possible sentences,
as well as the corresponding UAN code and a first version of the list of possi-
ble words with their associated colors. Every iteration of this attack gives the
attacker more information and thus, if the first attack is complete, the attacker
has to repeat the attack until the long term key is broken (abstract task "Re-
peat attack until UAN code is broken"). This task decomposes in the abstract
iterative task "Eavesdrop and analyze", that may be interrupted (temporal or-
dering operator ’| >’) by the task "Try UAN authentication". The abstract task
"Authenticate in place of the user" may disable the abstract task "Try UAN

14

authentication" if the UAN code is valid. In this case, the attacker reached the
main goal of the attack. The abstract iterative task "Eavesdrop and analyze"
decomposes in the folded (not presented in detail in the paper) abstract "Eaves-
drop and authentication session" and in the cognitive task "Update the story
and color code". They can be performed in an order independent way (temporal
ordering operator ’| = |’).

Figure 6 presents an extract of the description of the attacker task "Update
the story and color code". The attacker has to perform several cognitive tasks to
find out the story and the color code. The attacker has to "Identify the possible
combinations of sum of colors to match each UAN digit", to "Identify wrong
sentences", to "Identify correct sentences", and to "Identify color mapping".
The folded tasks are not presented in detail in the paper. In order to identify the
possible combinations of sum of colors to match each UAN digit, the attacker
has to identify the combinations for several authentication sessions. And for each
authentication session, the attacker has to identify the possible combinations for
each UAN digit. And for each UAN digit, the attacker has to identify the possible
combinations for the two possible number pairs that can result in the UAN digit
using modulo 10. Figure 6 details the attacker tasks for 1 branch for each task.
We present here a subset of the tasks because the full model does not fit in a
page, and embeds more than sixty tasks, providing an evidence that the attacker
will have a lot of work to perform to uncover the story and the color codes.

4.5 Task models based analysis of tradeoffs between usability and
security for EEVEHAC

About the usability of EEVEHAC, we analysed the two task models: "Configure
the long term key" (Figure 2) and "Log in to the service" (Figure 3). For the
first one, user tasks consist of building the story and memorizing it, as well as
memorizing the color codes. There are several cognitive tasks, including memory
tasks. The cognitive load for choosing words for the story may not be very high,
but for the memory task, from the task model, we see that several information
has to be memorized (chosen words, value for orange color, value for blue color,
value for black color, value for red color, value for violet color and value for
green color). All of this information has to be recorded in long-term memory,
and turned into declarative knowledge (color codes and story in the task model).
This implies that the user has to be willing to spend time on the configuration of
the long term key. However, remembering a story can be easier than remembering
an arbitrary password. The work of [30] takes advantage of the human ability to
better remember stories than characters and numbers and the authors suggest
a system where the secret key is a story in form of a text adventure. At last,
configuration of the long term key is done only once.

For the second task model, "Log in to the service" (Figure 3), the user has
also to perform several cognitive tasks in order to recall and recognize the story
words, identify the wrong words, recognize the colors and recall the color codes
and to calculate the UAN temporary code. These tasks include cognitive cal-
culation tasks that may take time depending on the user. This is supposed to

15

Fig. 6. Extract of the task model of the attacker task "Uncover the long time secret
by eavesdropping" for the sub-goal "Update the story and color code"

16

be less efficient than a textual password, which only requires to remember the
code before inputting it (if the user remembers it correctly). There thus may be
an efficiency issue for the mechanism. This analysis is consistent with previous
studies on the topic. Visual recognition of information has also been used in
graphical passwords such as Passface [8]. Usability studies have demonstrated
that they outperform passwords and PIN but the that graphical and interaction
design might jeopardise their usability [12].

About the security, we analysed that the task is very complex for the attacker.
From the task models (Figure 5 and 6), we see that eavesdropping several full
sessions are required to uncover the story and color code. Furthermore, the
attacker can compromise the attack when trying the story and color code if the
temporary guessed story and color code are wrong. From the task model, we also
analyzed that there are more than fifty cognitive tasks for trying to find out the
story and color code. Moreover, it is very unlikely that an attacker can eavesdrop
several complete sessions and complete all of the tasks required to uncover the
story and password. To make a comparison with textual password, EEVEHAC is
more secure. For a textual password, a single eavesdrop is enough to uncover the
password (the task model would be one branch only for the textual password).

To summarize, although the user tasks are numerous, with a potentially high
cognitive load that may decrease efficiency, the tasks to attack it are complex.
EEVEHAC thus enables to setup a secure communication channel between the
user and the target services, in the case where the user needs to use an untrusted
computer.

5 Related Work

We did not find any existing approach that explicitly targets usability and secu-
rity, and that explicitly support the description of attacker tasks. In this section,
we present the results of the comparison of the proposed approach with existing
model-based approaches to analyse both usability and security, and with existing
approaches to take into account attacker tasks.

5.1 Model-based approaches to analyse both usability and security

Braz et al. [6] proposed a so called "Metrics Based-Model", which is a concep-
tual framework gathering a set of criteria for assessing usability and security.
They propose to use it to analyse systematically the usability and security of
interactive systems. This approach is based on scenarios of the usage of the sys-
tem, and it thus cannot cover all the possible user tasks and all of their possible
temporal orderings, as scenarios are partial selections of sequences of user tasks.
Mona et al. [25] proposed a meta-model of the relationships between usability
and security, as well as a knowledge elicitation technique to ensure that required
knowledge for the user is taken into account when designing the security mech-
anism. Our approach also takes into account the user knowledge: procedural
knowledge with the hierarchy and temporal ordering of tasks and declarative

17

knowledge with information to be memorized (e.g. a story). Al Zahrani et al. [1]
target healthcare software and proposed a framework, composed of a set of met-
rics for usability and security and of a fuzzy logic based modeling techniques to
produce probabilistic estimations of usability and security of a software. It aims
to support decision making for security managers. It takes as input data from se-
curity and usability experts. Prior to its application, this approach thus requires
a usability and security analysis. Broders et al. [7] proposed a task model based
approach focusing on user tasks and on potential threats on these user tasks.
In this approach, attack trees are also produced as a mean to ensure that every
potential threat on user tasks has been identified. Martinie et al. [21] target the
cybersecurity of maritime supply chain and proposed to integrate task modelling
to the MITIGATE risk assessment method in order to identify threats on user
tasks, whether they root in malicious attacks or in human errors. None of these
model-based approaches deal with the attacker tasks.

5.2 Approaches to take into account attacker tasks

Encina et al. [14] proposed a catalog of misuse patterns, that can inform de-
signers and developers when proposing new security mechanisms. This catalog
gathers a set of threats and enables to build use cases of attacks. It neither
mentions attacker tasks explicitly, nor the attacker in the attack workflow. Ben
Othmane [3] et al. proposed to use information about attacker capabilities for
risk assessment and mitigation. Such sets of information can be useful but have
to be maintained up to date and provide incomplete information about the at-
tacker tasks. Atzeni et al. [2] proposed a method to produce attacker personas,
and Moeckel et al. [24] completed the method by adding an attacker taxonomy.
Attacker personas aim to raise awareness about threats for the designers and de-
velopers, but also more generally in an organisation, to make the security issues
more concrete to the users, for example. Personas rarely contain information
about tasks, thus they are not sufficient to analyze the complexity of an attack.

6 Conclusion

We presented a modelS-based approach to analyse both user and attacker tasks
when designing and developing a security mechanism. The EEVEHAC case study
enabled us to show that attack trees are not enough to analyse the security of an
authentication mechanism because the attacker tasks for uncovering a key are
very complex and this cannot be foreseen from the attack tree. This can only
be analysed if attacker tasks are systematically and precisely described. The
modeling of attacker tasks enables to identify whether a specific security feature
is worth to be implemented. For example, this approach enables to justify that
usability could be decreased if there is no other option to reach the required
security level. Another example is that if a security mechanism decreases us-
ability but does not make the attacker tasks more complex, it should not be an
acceptable design choice. The proposed approach enables to build evidences to
argue for design choices.

18

References

1. Al-Zahrani, F.A.: Evaluating the usable-security of healthcare software through
unified technique of fuzzy logic, anp and topsis. IEEE Access 8, 109905–109916
(2020). https://doi.org/10.1109/ACCESS.2020.3001996

2. Atzeni, A., Cameroni, C., Faily, S., Lyle, J., Flechais, I.: Here’s johnny:
A methodology for developing attacker personas. In: 2011 Sixth Interna-
tional Conference on Availability, Reliability and Security. pp. 722–727 (2011).
https://doi.org/10.1109/ARES.2011.115

3. ben Othmane, L., Ranchal, R., Fernando, R., Bhargava, B., Bodden, E.: Incorpo-
rating attacker capabilities in risk estimation and mitigation. Computers Secu-
rity 51, 41–61 (2015). https://doi.org/https://doi.org/10.1016/j.cose.2015.03.001,
https://www.sciencedirect.com/science/article/pii/S0167404815000334

4. Bernhaupt, R., Martinie, C., Palanque, P., Wallner, G.: A generic visualization
approach supporting task-based evaluation of usability and user experience. In:
Bernhaupt, R., Ardito, C., Sauer, S. (eds.) Human-Centered Software Engineering.
pp. 24–44. Springer International Publishing, Cham (2020)

5. Boldyreva, A., Chen, S., Dupont, P.A., Pointcheval, D.: Human computing for
handling strong corruptions in authenticated key exchange. In: Computer Security
Foundations Symposium (CSF), 2017 IEEE 30th. pp. 159–175. IEEE (2017)

6. Braz, C., Seffah, A., M’Raihi, D.: Designing a trade-off between usability and
security: A metrics based-model. In: Human-Computer Interaction – INTERACT
2007. pp. 114–126. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

7. Broders, N., Martinie, C., Palanque, P., Winckler, M., Halunen, K.: A generic
multimodels-based approach for the analysis of usability and security of authenti-
cation mechanisms 12481, 61–83 (2020)

8. Brostoff, S., Sasse, M.: Are passfaces more usable than passwords? a field trial
investigation. In: BCS HCI (2000)

9. Carbone, R., Compagna, L., Panichella, A., Ponta, S.E.: Security threat
identification and testing. In: 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST). pp. 1–8 (2015).
https://doi.org/10.1109/ICST.2015.7102630

10. Card, S.K., Moran, T.P., Newell, A.: The model human processor: An engineering
model of human performance. In: Handbook of Perception and Human Perfor-
mance. pp. 1–35 (1986)

11. Daemen, J., Rijmen, V.: The design of Rijndael, vol. 2. Springer (2002)
12. De Angeli, A., Coventry, L., Johnson, G., Coutts, M.: Usability and user authen-

tication: pictorial passwords vs. pin, pp. 240–245. Taylor and Francis Ltd., United
Kingdom (Apr 2003). https://doi.org/10.1201/b12800

13. El Batran, K., Dunlop, M.D.: Enhancing KLM (keystroke-level model)
to fit touch screen mobile devices. In: Proceedings of the 16th Interna-
tional Conference on Human-Computer Interaction with Mobile Devices and
Services. p. 283–286. MobileHCI ’14, Association for Computing Machin-
ery, New York, NY, USA (2014). https://doi.org/10.1145/2628363.2628385,
https://doi.org/10.1145/2628363.2628385

14. Encina, C.O., Fernandez, E.B., Monge, A.R.: Threat analysis and misuse patterns
of federated inter-cloud systems. In: Proceedings of the 19th European Conference
on Pattern Languages of Programs. EuroPLoP ’14, Association for Computing
Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2721956.2721986,
https://doi.org/10.1145/2721956.2721986

19

15. Forte, A.G., Garay, J.A., Jim, T., Vahlis, Y.: EyeDecrypt—private interactions in
plain sight. In: International Conference on Security and Cryptography for Net-
works. pp. 255–276. Springer (2014)

16. Halunen, K., Latvala, O.M.: Review of the use of human senses and capabilities in
cryptography. Computer Science Review 39, 100340 (2021)

17. Hekkala., J., Nikula., S., Latvala., O., Halunen., K.: Involving Humans
in the Cryptographic Loop: Introduction and Threat Analysis of EEVE-
HAC. In: Proceedings of the 18th International Conference on Security
and Cryptography - SECRYPT,. pp. 659–664. INSTICC, SciTePress (2021).
https://doi.org/10.5220/0010517806590664

18. Holleis, P., Scherr, M., Broll, G.: A revised mobile KLM for interaction with mul-
tiple nfc-tags. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P.,
Winckler, M. (eds.) Human-Computer Interaction – INTERACT 2011. pp. 204–
221. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

19. ISO: Iso 9241-11:2018 ergonomics of human-system interaction part 11: Usability:
Definitions and concepts. International Organization for Standardization

20. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message au-
thentication (1997)

21. Martinie, C., Grigoriadis, C., Kalogeraki, E.M., Kotzanikolaou, P.: Mod-
elling human tasks to enhance threat identification in critical maritime
systems. p. 375–380. PCI 2021, Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3503823.3503892,
https://doi.org/10.1145/3503823.3503892

22. Martinie, C., Palanque, P., Bouzekri, E., Cockburn, A., Canny, A., Barboni, E.:
Analysing and demonstrating tool-supported customizable task notations. Proc.
ACM Hum.-Comput. Interact. 3(EICS) (Jun 2019)

23. Martinie, C., Navarre, D., Palanque, P., Fayollas, C.: A generic tool-supported
framework for coupling task models and interactive applications. In: Proceed-
ings of the 7th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems. p. 244–253. EICS ’15, Association for Computing Machin-
ery, New York, NY, USA (2015). https://doi.org/10.1145/2774225.2774845,
https://doi.org/10.1145/2774225.2774845

24. Moeckel, C.: From user-centred design to security: Building attacker personas
for digital banking. In: Proceedings of the 10th Nordic Conference on Human-
Computer Interaction. p. 892–897. NordiCHI ’18, Association for Computing Ma-
chinery, New York, NY, USA (2018). https://doi.org/10.1145/3240167.3240241,
https://doi.org/10.1145/3240167.3240241

25. Mohamed, M.A., Chakraborty, J., Dehlinger, J.: Trading off usability and security
in user interface design through mental models. Behaviour & Information Technol-
ogy 36(5), 493–516 (2017). https://doi.org/10.1080/0144929X.2016.1262897

26. Naor, M., Shamir, A.: Visual cryptography. In: Advances in Cryptology – EURO-
CRYPT’94. pp. 1–12. Springer (1995)

27. Nishihara, H., Kawanishi, Y., Souma, D., Yoshida, H.: On validating attack trees
with attack effects. In: 39th International Conference on Computer Safety, Relia-
bility and Security, SAFECOMP 2020. Springer

28. Sasse, M.: Computer security: Anatomy of a usability disaster, and a plan for
recovery (2003)

29. Schneier, B.: Attack trees (December 1999)
30. Somayaji, A., Mould, D., Brown, C.: Towards narrative authentication: Or, against

boring authentication. In: Proceedings of the 2013 New Security Paradigms Work-
shop. pp. 57–64 (2013)

20

