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Abstract. Until recently, convolutional neural networks have dominated
various machine vision fields—including stereo disparity estimation—with
little to no competition. Vision transformers have shaken up this dom-
ination with the introduction of multiple models achieving state of art
results in fields such as semantic segmentation and object detection. In
this paper, we explore the viability of stereo transformers, which are
attention-based models inspired from NLP applications, by designing a
transformer-based stereo disparity estimation as well as an end-to-end
transformer architectures for both feature extraction and feature match-
ing. Our solution is not limited by a pre-set maximum disparity and
manages to achieve state of the art on SceneFlow dataset.
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1 Introduction

What is the next step for stereo disparity estimation? Until recently, convolu-
tional neural networks (CNN) dominated computer vision applications. However,
a novel method called transformers has proved to be effective in various fields
including but not limited to classification [1], semantic segmentation [2], image
inpainting [3], and super-resolution [4].

Unlike Convolutional Neural Networks, transformers are attention based mod-
els. The term attention was used to refer to how we pay attention to specific
areas of an image or words in a sentence. In machine learning context, atten-
tion [5] was born to address an issue in sequence to sequence problems where
only the output of the decoder was considered. Attention, on the other hand,
takes the output at each step and assigns a weight to it, allowing the decoder to
focus on the most important parts of the sequence.

Unlike early attention based models, transformers rely exclusively on atten-
tion to draw global dependencies between the input and output [6]. Transformers
revolutionized the field of Natural Language Processing (NLP) with models such
as GPT [7], and BERT [8] vastly outperforming their recurrent neural network
counterparts.

Shortly after transformers became mainstream in NLP applications, trans-
former based models for machine vision began to appear. Some of the early
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Fig. 1. Samples from SceneFlow Dataset. From left to right: left images, STTR output,
output of our model, Ground Truth (GT) disparity.

examples tried to incorporate transformer concepts into convolution [9], how-
ever, these solutions did not provide the substantial jump in accuracy seen in
NLP. Recently, more pure transformer based machine vision models were devel-
oped. Vision Transformer (ViT) [1] is an example model that that tries to be as
close as possible to the original transformer. The equivalent for words is patches
in the image. However, these solutions still need to be creative to successfully in-
clude transformers. For example, most semantic segmentation models use CNN
decoders.

In the field of stereo matching and disparity estimation, CNNs reign supreme
with most models following the same pipeline of feature extraction, cost volume
generation, feature matching, and disparity refinement. All of these steps heavily
rely on CNNs, notably the feature matching step which uses 3D CNNs. There-
fore, to incorporate transformers, a new feature matching approach must be used.
Stereo Transformer (STTR) [10] is one of very few transformer based disparity
estimation models. In STTR, the feature matching is done using a dynamic pro-
gramming method introduced in by Ohta et. al. [11] which relies only on the
epipolar lines thus making the model blind to any context outside those lines.
The solution they came up with is adding a CNN post processing method to
regain some global context.

In this paper, we introduce a method to have global context while still keeping
the computational complexity low. We also introduce an end to end transformer
based model for stereo disparity estimation. The flowcharts are shown in Fig. 2.
We achieve state of the art results on the SceneFlow dataset. Samples are shown
in Fig. 1.

2 Related Work

2.1 Vision Transformers

Since their inception, transformers became very successful in NLP applications.
Models such as BERT [8] and GPT-3 [7] substantially improved the performance
of various NLP tasks. In the original paper [6], transformers are described to use
self-attention to compute representations of its input and output without the
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Fig. 2. Architectures of our models. Top CNN based model. Bottom ViT based model.

use of RNNs or CNNs. Self-attention allows the transformer to learn long-range
dependencies in a more effective way compared to RNNs. Therefore, efforts have
been made to port this success to computer vision tasks.

In their early form, transformers were used alongside convolution or as a
way to tackle the downsides of convolution. Examples of these early methods
include deformable convolutions [9] which use self-attention to allow convolution
kernels to change shape, and Squeeze-and-Exitation networks [12] which address
channel-wise feature responses by selecting information features to emphasise on.

To fully replace convolutional layers, transformers needed to be adapted to
image data. Equating pixels to words would result in large memory consumption
and a computation complexity of O(h2w2) where h and w are the height and with
of the image respectively. There are various ways this issue has been handled.
Methods applied by Han et. al. [13], Zheng et. al., [2] and Strudel et. al. [14]
among others, tackled this issue by dividing the image into patches essentially
mimicking the behaviour of convolutional kernels, however, unlike convolution,
these patches do not rely on fixed pattern matching but instead attentively
determine aggregation weights, i.e, something akin to a dynamic kernel. Another
method called Axial DeepLab introduced by the DeepLab team [15] chose the
patches to be 1 pixel wide vectors along the x and y axis consecutively to build
full context. However, this method is a hybrid between convolution and self-
attention.

2.2 Stereo Disparity estimation

In a stereo image setup, finding the stereo disparity relies on finding a match
across these two images for every pixel. Classical methods such as semi-global
matching [16] relied on finding differences between patches along the epipolar
lines from both images. However, these methods are not reliable when it comes
to un-textured objects and noisy images. Deep Learning (DL) methods brought
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a substantial improvement over previous methods where a CNN learn to extract
features from both images followed by concatenation and finally passing through
fully connected layers which learn to find the disparity [17]. Subsequently, CNN
based methods advanced further using a cost volume and cost aggregation where
a 4D vector is build out of the feature maps where the 4th dimension is the
candidate disparities and using a 3D CNN to find the best match. These methods
follow a similar pipeline of feature extraction, calculating matching cost, cost
aggregation, and disparity refinement [18–20].

To translate stereo disparity estimation to transformers a new approach
needed to be followed. Although transformers have not been used much in the
subject of disparity estimation, some works have explored and proved its feasi-
bility. Wang et. al. [21] proposed a generic parallax-attention mechanism (PAM),
which does not rely on self-attention, but only on cross-attention across epipolar
lines as a way to match features.

Li et. al. [10] (STTR) introduced a full ViT approach to stereo matching
where both self and cross-attention are used. STTR relies on finding self and
cross-attention across the horizontal lines. The matching is obtained using the
dynamic programming method introduced in 1985 [11], where similarities be-
tween pixel intensities were used to find the equivalent match. The pixel in-
tensities are replaced in STTR with attention which gives better contextual
information for each pixel and long range associations. Since the transformer
can only attend to epipolar lines, it misses the context across the y−axis of the
feature map. To tackle that issue a post processing convolutional network has
been introduced which aims at capturing context from the the original image.

3 Methods

Stereo disparity estimation methods that rely on DNN follow a pipeline consist-
ing of feature extraction, cost volume generation, stereo matching, and disparity
calculation. However, using transformers the pipeline is slightly different, where
the cost volume steps are omitted in favor of direct matching.

3.1 Feature extraction

To test various options for feature extraction we designed multiple feature extrac-
tion models based on both CNNs and ViT. This variation serves to perform an
extensive ablation study on what works best for a transformer feature matching.

For our CNN based model, the feature extraction network consists of 42 layers
in an encoder-decoder architecture as shown in Fig. 3. Our model is slightly
inspired by PSMNet [18]. It is meant to be lightweight keeping the runtime and
memory consumption low as well as the resolution of the feature map consistently
at 1

4H, 1
4W,C where H and W are the height and weight of the input images

consecutively, and C is the depth of the feature map.
Transformers are notorious for requiring huge datasets for pretraining. There-

fore, to select an option for our transformer based feature extraction, we chose
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Fig. 4. Architecture of attention layers. The sine sign represents the positional encod-
ing.

Visual Transformer (ViT) since it is pretrained on various large datasets on the
task of classification. We use a model pretrained on ImageNet21K [22], which
contains over 16 million samples. According to Alexey et. al. [1], Larger datasets
yield better results, in fact, their in house JFT 300M which contains over 300
million samples, outperformed ImageNet 21K by consistently improving the clas-
sification accuracy by up to 5%. We chose ImageNet21K due to its open avail-
ability. We modified the ViT model to fit to the task of feature extraction by
introducing an encoder-decoder architecture. The model architecture is shown
in Fig. 2. The output of the ViT feature extraction is set to match the same
output stride and feature depth as the CNN feature extraction. Additionally, we
tested the feature extraction network introduced in STTR [10].

3.2 Full context stereo transformers

In CNN based stereo matching, a cost volume is constructed containing all the
candidate disparities. However, the model cannot attain to disparities outside
the preset maximum disparity. Most CNN models set this maximum value to be
192 or 384. However, even the mainstream datasets, the maximum disparity can
surpass 384 pixels. The main reasons why the cost volume is limited are memory
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consumption and complexity. Therefore, most models try to find a balance that
would achieve the best test results, which would not necessarily translate well
to situations where the disparity is higher than the preset limit.

With transformers, the cost volume generation step is avoided in favor of
attention layers. Transformers contain 4 main sub-components: the self-attention
layers, the cross-attention layers, the positional encoding, and the feed forward
layers [6]. STTR [10], replaced the cost volume with dynamic programming [11],
which originally relies on comparing the intensity of pixels. Using self-attention,
weights are associated with each pixel, giving it richer information than simply
its intensity. This extra information may be its relative distance to a landmark
or how color changes in nearby pixels. Subsequently, cross-attention layers are
used to compare these weighted pixels in the stereo views.

In previous transformer based methods, either local context [21] or epipolar
only context is used [10]. Therefore, a lot of information that can be useful in
stereo matching is omitted. The perfect scenario would be to include the whole
feature map, that is, however, not feasible due to memory and computation
constraint. Hence, we developed a method that can leverage the information
from not only the epipolar lines (x − axis), but also from the vertical lines
(y − axis). Our method illustrated in Fig. 4 is based on and improves upon
the Stereo Transformer (STTR) [10]. As shown in Fig. 4, the feature maps go
through self-attention along the vertical y − axis before the horizontal x− axis
as shown in Fig. 2. This setup allows the self-attention layers to have information
regarding the whole vertical y − axis at each point in the epipolar lines. The
intuition is that each pixel in the feature map would first be enhanced with
weights from the vertical y−axis before being matched along the epipolar lines.

The attention layers take 3 inputs called the Key, Query, and V alue. These
are obtained by passing the feature map through a linear feed forward layer.
These terms are borrowed from retrieval systems. The query is what we are
searching for, the key is a unique identifier and the value is the main data. The
attention layer aims at finding weights to be associated with the values. These
weights, as we will see, are obtained by selecting from a set of keys using a query.

The linear equation used in the attention is presented as follows:

F (x,W, b) = Wx+ b (1)

where x is the input, W contains the weights, and b is the bias.

In the case of self-attention layers, the Key, Query, and V alue are obtained
using the output of the previous cross-attention layer or the feature maps in the
first layer. For the cross-attention layers, while V alue is similarly obtained from
the previous self-attention layers, the Key, and Query of the left transformer
are obtained from the previous self-attention output of the right transformer and
vice-versa.
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Each attention layer is divided into 8 heads which take a portion of the feature
map. The Key, Query, and V alue are obtained using the following equations:

Ki = F (f,WK , bK)i
Qi = F (f,WQ, bQ)i
Vi = F (f,WV , bV )i

(2)

where f = o + PE with o representing the output of the feature extraction
network in the case of the first layer or the output of the previous attention
layers. PE is the positional encoding. Ki, Qi, and Vi are the Key, Query, and
V alue of the ith head, respectively. Therefore, the selection of theKeys, Querys,
and V alues is done by the model in the learning phase. The Positional Encoding
(PE) is an important part of transformers. The goal of PE is to add information
regarding the position of each pixel. For the feature matching network, we used
sinusoidal positional encoding similar to the one used in the original Transformer
paper [6]:

PE(pos,2i) = sin(pos/100002i/d)

PE(pos,2i+1) = cos(pos/100002i/d)
(3)

where pos is the position, i is the dimension, and d is the dimension of the model.
Multiple forms of positional encoding can be used. The two requirements for the
positional encoding are the ability to represent PEpos+k as a linear function of
PEpos, and unambiguity, that is, no two positions have the same encoding. In the
feature extraction ViT network, the positional encoding is done using standard
learnable 1D position embedding similar to what was introduced in the original
ViT paper [1].

The attention layers first extract the attention weights using the following
equation:

αi =
QT

i Ki√
Ci

(4)

where αi is the attention weight of the ith head, and Ci is the depth of the ith

value. The output value V is obtained with the following equation:

V = Concat(α1Vi, ..., αHVH) (5)

Finally, the output of each layer is obtained as follows:

O = F (V,Wo, bo) (6)

4 Experiments and Results

4.1 Datasets and Metrics

SceneFlow: The SceneFlow dataset [23] comprises of more than 39000 stereo
frames in 960× 540 pixel resolution. The dataset is divided into 3 subsets. Like
most previous works, we use the FlyingThings3D subset with the default train-
ing, validation, and test subsets.
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KITTI: KITTI dataset [24] consists of 200 training scenes and 200 test scenes
obtained from a moving vehicle.

Metrics The metrics used are the percentage of errors larger than 3 pixels,
known as 3px error, and Expected Prediction Error (EPE).

4.2 Training

The optimizer used is AdamW, with 1e−4 as weight decay and a learning rate
of 1e−4. The pretraining is done with a fixed learning rate on SceneFlow for 15
epochs while finetunning is done with a learning rate decay of 0.99 for up to 400
epochs. The training was performed on multiple Nvidia GPUs. The feature ex-
traction transformer has 12 self-attention layers with the output depth being 128
with an output stride of 4. The feature matching has 6 self and cross-attention
layers. The output stride for the CNN feature extraction is 4. The image size is
the default for SceneFlow and KITTI.

4.3 Experiments

In our ablation studies, we test 3 feature extraction models and 3 feature match-
ing models. This would result in 9 experiments, but, we only test the new at-
tention models with the best performing feature extraction models.

4.4 Results and comparison

Comparison with other methods We compare our method with prior stereo
disparity estimation methods, notably, works holding the state of the arts in
the datasets we are studying. The architecture of our method is based on CNN
feature extraction with 42 layer and feature matching with transformers using
self-attention across the vertical y − axis, then self-attention across horizontal
x − axis followed by cross-attention across the epipolar lines from both views.
The results are shown in Table 1.

In the SceneFlow dataset, our method holds the SOA 3px results. The current
epe SOA holder is HITNet [25] which—unlike most CNN based methods—does
not rely on 3D convolutions. Instead, it employs a fast multi-resolution step
followed by geometric propagation. The SOA method for KITTI 2015 is LEASt-
ereo [19], which uses a classical cost volume and 3D convolution for match-
ing. However, it uses Neural Architectural Search (NAS) to find the optimal
model within the search space they employed. Our method fails to achieve sim-
ilar outstanding results with KITTI. The reason, we theorize is the size of the
dataset. Although, we pretrained the models on SceneFlow, KITTI still is dif-
ferent enough and does not have as many samples. Therefore, the transformers
could not learn enough to overcome CNNs.
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Table 1. Results with SceneFlow pretraining

KITTI 2015 SceneFlow
bg fg all epe 3px

STTR [10] 1.70 3.61 2.01 0.45 1.26

PSMNet [18] 1.71 4.31 2.14 1.03 3.60

AANet [26] 1.80 4.93 2.32 0.87 2.38

LEAStereo [19] 1.29 2.65 1.51 0.78 2.60

HITNet [25] 1.74 3.20 1.98 0.36 2.21

Ours 2.00 4.20 2.38 0.38 1.10

Feature extraction results We tested the feature extraction methods ex-
plained previously. We refer to the feature extraction used in STTR as Dense
FE, the ViT based feature extraction as ViT FE, and our convolution based
feature extraction model as Conv FE. The feature matching architecture used
in this section uses self-attention on horizontal x− axis only. Table 2 shows the
results obtained using different feature extraction methods.

Table 2. SceneFlow results using different feature extraction networks

Experiment 3px error EPE Runtime (s) Training time (1epoch)

Dense FE 1.26 0.45 0.79 11h28m12s

Conv FE 1.20 0.40 0.52 6h54m40s

ViT FE 1.86 0.52 0.41 2h14m40s

From these results, we can deduce that a very deep CNN feature extraction
method with an output stride of 0 is not necessary. Previous works using NAS
showed that shallower DNNs can perform better than their deeper counterparts
[27].

Transformer matching results We tested multiple transformer architectures.
xSAxCA refers to attention across x−axis only in both self and cross-attention.
xySAxCA refers to attention across x− axis and y − axis in self-attention and
rows only in cross-attention. xySAxyCA refers to attention across x− axis and
y − axis in both self and cross-attention.

Intuitively, objects in the y − axis might not seem to be very useful since
they change position depending on their disparity. However, we are not trying to
match across both views using the y-axis, instead, we are trying to add more data
to pixels especially in difficult regions such as texturless ones. To know whether
it helps to include the vertical y − axis self-attention prior to the horizontal
x− axis self-attention, we visualize the self and cross final attention weights at
a certain point in the left image in all the layers in Fig. 5, and Fig. 6. These
figures show the weights with the highest values. They give us an idea as to what
the transformer is seeing as important landmarks to identify to corresponding



10 Bengana et al.

Fig. 5. Self attention of a single pixel (marked with red x).
A): Self attention of pixel from STTR. B): Self attention from out model.
self-attention of pixel in the first and last self-attention layer respectively.

Fig. 6. Cross attention of a single pixel (marked with red x).
A): Cross attention of pixel from STTR. B): Cross attention from out model.
Top: cross-attention of pixel in the first and last cross-attention layer respectively.
Bottom: right image with marked GT corresponding pixel and a line going through the
left image showing where the GT is.

pixel in the right view. We can see that with out method, the output in each
layer is sharper. That is, the model finds it easier to select landmarks in self
attention and finding corresponding pixels in the cross attention. In the cross-
attention figure (Fig. 6), we can observe that the STTR algorithm fails to select
the correct corresponding pixel while our method is more accurate. The feature
extraction used in this section is the Conv FE.

The dataset used for this ablation study is SceneFlow. The results are dis-
played in Table 3.

Table 3. SceneFlow results using different transformer architecture

Experiment 3px error EPE

xSAxCA 1.20 0.40

xySAxCA 1.10 0.38

xySAxyCA 1.15 0.41

We observe that the results improve with the inclusion of a self-attention on
the y − axis. However, no such improvement is obtained with the inclusion of
cross-attention along the y − axis.
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5 Conclusion

We demonstrated a method that rivals CNNs in stereo matching achieving state
of the art in SceneFlow dataset. We introduced a feature matching architecture
that leverage the full context of the images. We showed that a shallower feature
extraction method is sufficient to achieve good results. Our solution still relies on
CNN for feature extraction. However, ViT based feature extraction performed
well especially considering it is the fastest configuration which would be beneficial
for time critical applications.
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23. N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox,
“A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation,” in IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

24. M. Menze, C. Heipke, and A. Geiger, “Joint 3d estimation of vehicles and scene
flow,” in ISPRS Workshop on Image Sequence Analysis (ISA), 2015.



Seeking attention 13

25. V. Tankovich, C. Hane, Y. Zhang, A. Kowdle, S. Fanello, and S. Bouaziz, “Hit-
net: Hierarchical iterative tile refinement network for real-time stereo matching,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021, pp. 14 362–14 372.

26. H. Xu and J. Zhang, “Aanet: Adaptive aggregation network for efficient stereo
matching,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 1959–1968.

27. X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond, and
Z. Ge, “Hierarchical neural architecture search for deep stereo matching,” in Ad-
vances in Neural Information Processing Systems, vol. 33. Curran Associates,
Inc., 2020, pp. 22 158–22 169.


