
A TSX-Based KASLR Break: Bypassing UMIP
and Descriptor-Table Exiting

Mohammad Sina Karvandi1, Saleh Khalaj Monfared1, Mohammad Sina
Kiarostami2, Dara Rahmati3, and Saeid Gorgin1

1 School of Computer Science, Institute For Research in Fundamental Sciences
(IPM), Tehran, Iran, {karvandi,monfared,gorgin}@ipm.ir

2 Center for Ubiquitous Computing, Faculty of ITEE, University of Oulu, Oulu,
Finland, mohammad.kiarostami@oulu.fi

3 Computer Science and engineering Department, Shahid Beheshti University,
Tehran, Iran d rahmati@sbu.ac.ir

Abstract. In this paper, we introduce a reliable method based on Trans-
actional Synchronization Extensions (TSX) side-channel leakage to break
the KASLR and reveal the address of the Global Descriptor Table (GDT)
and Interrupt Descriptor Table (IDT). We indicate that by detecting
these addresses, one could execute instructions to sidestep Intel’s User-
Mode Instruction Prevention (UMIP) and the Hypervisor-based miti-
gation and, consequently, neutralized them. The introduced method is
successfully performed after the most recent patches for Meltdown and
Spectre. Moreover, we demonstrate that a combination of this method
with a call-gate mechanism (available in modern processors) in a chain
of events will eventually lead to a system compromise despite the limita-
tions of a super-secure sandboxed environment in the presence of Win-
dows’s proprietary Virtualization Based Security (VBS). Finally, we sug-
gest software-based mitigation to avoid these issues with an acceptable
overhead cost.
Keywords: Cache Side-channel · TSX · Meltdown · KASLR.

1 Introduction
As signs of progress in computer science, from Artificial Intelligence [15] to High-
Performance Computing [9,26] continues, the role of computer security research
in both hardware and software is drawing more attention to the research commu-
nity. Recently discovered microarchitectural vulnerabilities in modern CPUs, are
known to be devastating. They are very easily implemented, practical, and most
likely independent from the operating system, which makes them an imminent
threat to computer privacy. Among them, speculative-execution based and side-
channel attacks are more ubiquitous as new disclosures continue to showcase the
increasing failure of secured design in the computer hardware [2]. These attacks
are capable of circumventing all existing protective measures, such as CPU mi-
crocode patches, kernel address space isolation (Kernel Virtual Address (KVA),
shadowing, and Kernel Page-Table Isolation (KPTI)). While side-channel attacks
have been well-known for a relatively long time, speculative-execution based at-
tacks are contemporary, and pieces of evidence indicate that they will persist for
some time in the future.

2 MS. Karvandi et al.

Pioneered by Meltdown [22] and Spectre [18] attacks, numerous variations,
and extension of microarchitecture vulnerabilities have been found, and their
corresponding exploitation has proposed latterly. ForeShadow [35], MDS [24],
and ZombieLoad [29] should be alluded as the most famous ones. Moreover, new
works have shown the extensiveness of these attacks. As an example, NetCAT
[20] presents a practical network-based side-channel attack.

After Meltdown, more strict KASLRs such as KAISER [5] have been em-
ployed in today’s operating systems to prevent similar attacks since short-term
hardware mitigation is not effortlessly attainable. KAISER completely isolates
the user-mode and kernel-mode memory layout by creating a Shadow represen-
tation of the mapped memory. However, there are still some unprotected ad-
dresses and parts by KALSR that required by the architecture. Hence, knowing
these structure’s addresses could lead to severe problems. In addition, discovered
hardware-based vulnerabilities on Memory (DRAM) such as RowHammer [17]
allow attackers to execute more destructive and offensive malicious code, to tres-
pass or gain access to restricted and private information [32].

Furthermore, it is possible and suitable to take advantage of some hardware-
specific structures that are implemented across operating systems. In the same
way, once can gather masked and hidden internal information of the operating
system which could be used for malicious purposes. To be more precise, the
structures of Global Descriptor Table (GDT) and Interrupt Descriptor Table
(IDT) are one of the essential parts of protected mode, which are not heavily
isolated in the user-mode and kernel-mode address layout. By overwriting these
structures in certain conditions, one can perform a privilege escalation attack.
Also, by the use of the same variations of timing side-channel attacks as in
Meltdown,(e.g., TSX-based attacks), the virtual addresses of these structures
in the kernel memory could be revealed.

In this work, we demonstrate that GDT and IDT addresses could be dis-
covered by TSX side-channel to perform privilege escalation attacks, even af-
ter Meltdown mitigation, bypassing the mitigations in modern Intel processors,
particularly User-Mode Instruction Prevention (UMIP). Furthermore, it is illus-
trated that the proposed attacks can be executed in virtualized environments,
such as the latest Microsoft Hypervisor release (Hyper-v) and Virtualization
Based Security (VBS). In summary, the contributions of this paper are as fol-
low:

– A concrete TSX side-channel attack is performed to discover GDT and IDT
addresses in the kernel mode in a system with KAISER isolated memory
layout bypassing UMIP.

– We show that a full system compromise could be achieved by revealing GDT
and IDT virtual addresses in the memory, incorporated with call-gate mech-
anism along with a conventional Write What Where.

– The possible mitigation investigated for this vulnerability and low-cost software-
based mitigation for the operating systems to avert these attacks is sug-
gested.

A TSX-Based KASLR Break: Bypassing UMIP and Descriptor-Table Exiting 3

2 Preliminaries and Background

In this section, required preliminaries and background knowledge for the software-
based side-channel attacks, along with some concepts KAISER, TSX side chan-
nels, UIMP and Descriptor-Table Exiting are reviewed.

2.1 KASLR, Meltdown and KAISER

The security of computers highly relies on memory isolation, meaning that the
kernel address ranges are not meant to be accessible from user prospective. The
most conventional method to address such requirement is the Kernel Address
Space Layout Randomization (KASLR) which include the random assignment of
kernel objects rather than constant addressing. Discovered Meltdown [22] attack
was able to exploit side effects of out-of-order execution on modern processors to
read arbitrary kernel memory locations, including crucial personal information
and passwords. By exploiting the out-of-order execution as an indispensable
performance feature, the attack is independent of the operating system, and it
does not rely on any software vulnerabilities. Meltdown was able to break all
the security considerations provided by address space isolation as well as the
virtualized isolation developed by the same infrastructure. The affected systems
by Meltdown include a wide range of personal computers, smart phones, and
even the enterprise cloud servers. Moreover, available TSX technology in Intel
CPUs enables Meltdown to read the protected kernel memory addresses with
the high-performance speed of 500Kbps. [22].

Generally, Meltdown mitigation relies on isolating kernel and user memory
pages with different methods. The widely used approach to address this issue
is the employment of KAISER [5], which is implemented as Kernel Virtual Ad-
dress Shadow (KVAS) (a term coined by Microsoft) [23] in Microsoft Windows
and KPTI in Linux [4]. In KAISER, placing a small portion of information in
the user-mode is inevitable since operating systems are required to implement
functions necessary to handle system calls and interrupts, which are directed to
kernel space.

As will be discussed, leaving the tables which hold the addresses of interrupt
handler (e.g., Interrupt Descriptor Table) or other tables managing the segmen-
tation (e.g., GDT) visible to user mode, and ignoring to protect their addresses,
allow the attacker to endanger the system. However, to adversely take advantage
of the information left unprotected in the user-mode, essential internal mecha-
nisms should be known which will be explored later.

2.2 TSX Cache Attack

Intel TSX refers to a product name for two x86 instruction set extensions, called
Hardware Lock Elision (HLE) and Restricted Transactional Memory (RTM) [33].
HLE is a set of prefixes that could be added to specific instructions. These
prefixes are backward-compatible. Hence, the code including them, also works
on older hardware platforms. On the other hand, RTM is an extension adding

4 MS. Karvandi et al.

several instructions to the instruction set that are used to declare regions of
code that should execute as part of a hardware transaction. A RTM transaction
comprises the region of the code that is encapsulated between a pair of xbegin
and xend instructions. Instruction xbegin also provides a mechanism to define a
fall-back handler that is called if the transaction is aborted. xabort can be used
by the executing code to abort the transaction explicitly. By employment of the
TSX, generating an exception or an interrupt which is handled in the kernel
could be avoided, resulting in side-channel attacks to be more resistant to noise
with a more reliable outcomes [22]. As will be explored later on, We employ TSX
to trigger the initialization of our proposed attack.

2.3 Descriptor-Table Exiting

Descriptor-Table Exiting is a hardware mechanism to restrict guest machines in
VMX Non-Root from executing instructions such as LGDT, LIDT, LLDT, LTR,
SGDT, SIDT, SLDT, and STR [6]. This mechanism has been used in Microsoft
Virtualization Based Security as an exploit mitigation, which avoids memory
address leakage and provides an absurd situation for the attacker to find the
base address of GDT or IDT, among other details such as Control Registers.
Microsoft uses hypervisor as a hardware security mechanism, and in VM Con-
trol Structure. In order to configuring this hardware feature, an special field
is presented which is referred as the Descriptor-Table Exiting. Descriptor-Table
Exiting is declared in Intel Manual [6]. This control field determines whether
executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and STR cause
VM exits. This declaration would be critical to the attack model we intend to
describe.

2.4 User-Mode Instruction Prevention (UMIP)

UMIP is a security feature present in new Intel Processors. If enabled, it prevents
the execution of particular instructions if the Current Privilege Level (CPL) is
greater than 0. If these instructions were executed when CPL > 0, user space
applications could have access to system-wide settings such as the global and
local descriptor tables, the task register and the interrupt descriptor table. These
are the instructions covered by UMIP in accordance to the Intel [6]:

– SGDT: Store Global Descriptor Table, SIDT: Store Interrupt Descriptor
Table

– SLDT: Store Local Descriptor Table , SMSW: Store Machine Status Word
– STR: Store Task Register

If any of these instructions are executed with CPL > 0, a general protection
exception (GP) is issued when UMIP is enabled. In order to enable this feature,
operating systems can set the 11th bit of the CR4. [6]

3 Attack Primitives: GDT and Call-Gate Mechanism

Our proposed attack is fundamentally based on the existing hardware features
in the processors. As an indispensable part of the suggested attack, GDT and

A TSX-Based KASLR Break: Bypassing UMIP and Descriptor-Table Exiting 5

its properties are described in detail in the this section. Moreover, here we dis-
cuss how the improper configuration might create vulnerabilities caused by the
existing and possibly disabled hardware features.

3.1 Global Descriptor Table

GDT is an important data structure available in Intel x86-family CPUs provid-
ing the characteristics of the memory areas used during program execution. It
includes the base address, the size, and access privileges which is fundamental
in terms of the security prospective. GDT is a main table in x86 and protected-
mode that still exists in AMD64 [1] and Intel IA-32e. The GDT structure in the
x86 system is shown in Figure 1.

Fig. 1. GDT structure in a 32-bit machine

While the proposed attack here works on both x86 and x64 architectures, we
have used the x64 version of GDT since it is more widespread rather than the
other version.

3.2 GDT in 64-bit

Although the segmentation is omitted in the modern systems in protected-mode
with paging enabled, the GDT still presents in 64-bit mode. A GDT must be
defined but is generally never changed or used for segmentation. The size of the
register has been extended from 48 to 80 bits, and 64-bit selectors are always
Flat (thus, from 0000000000000000 to FFFFFFFFFFFFFFFF) which should also
be taken into account when the attack chain is designed.

On the other hand, 64-bit versions of Microsoft Windows forbid hooking of
the GDT. Attempting to do so would cause the machine to bug check. In our
circumstances, it is not a problem for our case as long as some mechanisms for
preventing these hooks called Kernel Patch Protection exists. This mechanism is
known as PatchGuard, whihc checks the system in random intervals of between 3
to 10 minutes. So it is possible to patch GDT in a glance then revert everything
to the privious normal state again to avoid such errors. In this context, we use
GDT as a descriptor for call-gate to complete the attack chain instead of a
descriptor for segmentation.

6 MS. Karvandi et al.

3.3 Call-gate Mechanism

Call-gates are used to transfer the execution to other rings e.g., ring 0, 1, 2,
3. Instructions like SYSENTER and SYSCALL are used in modern operating
systems for transitioning between every rings to ring 0. But for the transition
between other rings (e.g., ring 3 to 2 or 2 to 1), the call-gates would be used.
The type field located in the GDT structure as indicated in Figure 1 represents
a 4-bit field that could get various values and completely change the GDT entry
behavior and definition. [13]

After finding the target entry, the type value should be changed to one Gate
accordingly. For example, we use 0xc (1100 - 32-bit call-gate) in the final payload.
There are specific terms in call-gate used to build the final payload. In order to
exploit the features that call-gate provides, the suitable privilege level should
be set in the data segmentation used in the GDT. Here are the privilege levels
defined in this context:

– Current Privilege Level (CPL) CPL is stored in the selector of currently
executing the CS register. It represents the privilege level (PL) of the cur-
rently executing task and also PL in the descriptor of the code segment and
designated as Task Privilege Level (TPL) [13].

– Descriptor Privilege Level (DPL) It is PL of the object which is being
attempted to be accessed by the current task or put differently, the least
privilege level for the caller to use this gate [13].

– Requester Privilege Level (RPL) It is the lowest two bits of any selector.
It can be used to weaken the CPL if craved [13].

– Effective Privilege Level (EPL) It is maximum of CPL and RPL thus
the task becomes less privileged [13].

Fundamentally, any task in an arbitrary code needs to fetch the data from the
data segment. Therefore, the privilege levels are checked at the time a selector
for the target segment is loaded into the data segment register. Three privilege
levels are invoked into the privilege checking mechanism. Ultimately, the payload
must meet the following conditions in the fields:

– RPL of the selector of the target segment.
– DPL of the descriptor of the target segment

Note that the access is allowed only if DPL is greater than or equal to the
maximum of CPL and RPL, and a procedure can only access the data that is at
the same or less privilege level.

3.4 From call-gate to code Execution in Ring-0

Call-gate in x86 In order to use x86, fields of a unique set of call-gate should
be filled as described in Table 1.

Selector field should be 0x8 to point to KGDT R0 CODE entry of GDT,
which describes the kernel-mode in Windows. The type of it should be set to
0xc, and the minimum ring that can invoke this call-gate is 0x3 (DPL = 0x3
(user-mode)), and also, it should be present in memory (pFlag = 0x1) [13].

A TSX-Based KASLR Break: Bypassing UMIP and Descriptor-Table Exiting 7

Table 1. Organization of the fields in the GDT

selector 0x8

type 0xc

dpl 0x3

pFlag 0x1

offset 0 15 0x0000ffff & address

offset 16 31 0x0000ffff & (address >>16)

Call-gate in Long Mode Call-gate are unavoidable parts of Intel structure,
and even in 64-bit long mode. In addition to GDT, LDT is also present but
special cases like segmentation using the FS/GS segment are replaced by the new
MSR-based mechanism using IA32 GS BASE and IA32 KERNEL GS BASE
MSRs [7]. The fact that LDT and GDT are still presented in long mode is
used in Windows when the kernel utilizes the UMS (User-Mode Scheduling). So
Windows creates a Local Descriptor Table if a thread tends to use UMS [11].

3.5 Disabled UIMP

As described previously UIMP protection could be employed as an external priv-
ilege check. However, in our observations Linux and Windows do not use UIMP
features for some compatibility issues. Thus, this opens a kernel memory address
leak to user-mode applications, and valid addresses can be used for exploiting
the Operating System Kernel or as a valid address for other side-channel mea-
surements. In the following section, we demonstrate how these addresses could
lead to a full system compromise. Nevertheless, Microsoft decided to remove the
support for GDT, SIDT, SLDT, SMSW, and STR instructions in hypervisor as
explained. Our observation shows that even if operating systems use UMIP or
DESCRIPTOR-TABLE EXITING separately or both of them simultaneously,
it is still vulnerable to side-channel attacks based on TSX.

3.6 Far Calls and Far JMPs

The far forms of JMP and CALL refer to other segments and require privilege
checking. The far JMP and CALL can be performed in two methods:

– Without call-gate Descriptor: The processor permits a JMP or CALL di-
rectly to another segment only if:
1. DPL of the target segment = CPL of the calling segment
2. Confirming bit of the target code is set and DPL of the target segment

≤ CPL
Note that Confirming Segment may be called from various privilege levels,
but is executed at the privilege level of the calling procedure.

– With call-gate Descriptor: The far pointer of the control transfer instruction
uses the selector part of the pointer and selects a gate. The selector and
offset fields of a gate form a pointer to the entry of a procedure.

8 MS. Karvandi et al.

4 The Proposed Attack

In this section, we describe how the explored mechanism are used to create the
attack. Then, we show the results obtained from the Intel processor and show
how the valid base address of IDT and GDT could be obtained without using
SIDT and SGDT. Next, we show how to build a valid call-gate entry and use
it in combination with a write-what-where to execute an adversary code. Then
attacker crafts the shellcode in ring 0 in order to elevate privilege or hide the
malware in the kernel. Figure 2 illustrates the high level overview of the proposed
attack.

Protected Kernel Mode

Kernel
Mode

User
Mode

User Mode

User
Mode

Unprivileged
Local

Attacker
TSX
SCA GDT

CWE 123 Vulnerability

bypass

U
IM

P
C

al
l G

at
e

Malicious Payload
Payload

Unmapped

exc.

❶

❷

❸

❹
❺

❻

KASLR Break and Code Injection via Call Gate Malicious Code Execution in Kernel

Write
Where
What

KAISER

GDT

Fig. 2. A high-level overview of the proposed attack.

According to Figure 2, in 1 the local unprivileged adversary carries out a
conventional TSX timing side channel in order to disclose GDT address, by-
passing UIMP 2 . The details is explained in Section 4.3. In 3 , the attacker
arms the procedure with an existing Write Where What vulnerability explained
in Section 4.7. Then in 4 , the adversary configures The GDT descriptions to
point out his own malicious payload via the Call Gate features in accordance
to the descriptions in Section 4.5. Finally the malicious data is loaded in the
desired address in 5 and wrongly executed by the processor with the proper
permissions in 6 .

4.1 Threat Model

As a basic assumption for the attack model, the attacker can execute code in the
victim’s computer in a limited level of privilege, including a highly limited user-
mode or in a sandboxed application with all the common defenses (e.g., SMEP,
SMAP, DEP) enabled and configured suitably. In order to fully compromise the
system an attacker has a prior write-what-where (CWE-123) [25] vulnerability
in operating system kernel. Furthermore, as an extension to the proposed attack
mechanism, the adversary might also execute code in a vitalized environment as
well in the shared-computing platform (e.g. cloud computing) scenario.

A TSX-Based KASLR Break: Bypassing UMIP and Descriptor-Table Exiting 9

4.2 Experimental Setup

The experiment to showcase the effectiveness of the attack chain has been exe-
cuted on a system equipped with 9th generation of Intel processor (i9-9880H),
running on a Windows 19H1 (also known as 1903) with 16 GB of DDR4 RAM.
Moreover, the same attack procedure is carried out on a system with a 6th gen-
eration CPU (6820HQ), to ensure the generalization of the method. The test
has also been successfully experimented on 19H2 and the latest 20H1 Microsoft
Windows, Ubuntu Debian 7, and Mac OSX Mojave as well.

4.3 Finding GDT Address

In order to locate the GDT address, a timing measurement is required to discover
the elapsed time in accessing a mapped and an unmapped address in the kernel
space memory. Experimentally, a valid address gives the response time about
190 ∼ 197 clock-cycles (different based on architecture) and an invalid address
access returns after about 220 ∼ 234 clock-cycles based on our results in 6th Gen
Intel (6820HQ).

To implement such a measurement, a combination of the kernel memory ad-
dress and access time (RDTSCP) + TSX (XBEGIN, XEND) is employed. Then
the response time difference in accessing a mapped and unmapped addresses
could lead to the identification of mapped addresses.

Furthermore, if a particular processor does not support the RDTSCP in-
struction, then one could get similar results by the serialization process. More
precisely, it is required to serialize instructions to execute all of the instructions
fetched before the targeted instruction. So a combination of CPUID + RDTSC
is adequately employed.

Fig. 3. The results of timing TSX-based measurements on a uni-core system

10 MS. Karvandi et al.

Note that the first implementation indeed gives more precise results compared
to executing RDTSC. Our experiments show that it is not suitable to use CPUID
for the second RDTSC as it takes several clocks-cycles. Also, it would be possible
to use the timing thread, if a operating system prohibits the usage of RDTSC
or RDTCSP [8], or intercepts the execution of CPUID using Intel VMX [14]
or Intel FlexMigration [10]. Timing threads could even have a higher resolution
rather than RDTSC/RDTCSP on many processors [31] [30]. By deploying these
instructions, an automatic process is triggered to find valid targeted addresses.

1 rdtscp ; get the current time clock of processor

2 ... ; save the rdtscp results somewhere (e.g

registers)

3

4 mov rax ,[Kernel Address] ; Move a kernel address into tax

5 xbegin $+xxx ; Use Intel TSX in order to suppress any

error in user -mode

6 ; The error always happens because we are trying to read

kernel address

7 mov byte ptr [rax], 0 ; Try to write into kernel address

8 ... ; Error occurs here (program never reaches here)

9

10 xend ; End of TSX

11 rdtscp ; Compute the core clock timing again in order to

see how many

12 ; clocks CPU spends when trying too write into our

address

Listing 1.1. The timing measurement code deployed by the use of TSX technology
(RDTSCP)

The result consists of four valid elements. The first one is the addresses that
are valid for IDT. Second is the address of GDT, and third is the address of
SYSCALL MSR LSTAR (0xC0000082) - (The kernel’s RIP SYSCALL entry for
64-bit software) [36]. Finally, the fourth is where the page tables are mapped.
The timing results of the deployed measuring method is depicted in Figure 3.

Our observation in the latest 20H1 (and other versions of Windows) shows
that GDT and IDT are mapped in a particular order, even though there is no lim-
itation to assign different addresses. By way of example, Windows maps IDT in
a unique address. IDTR is fffff80021eeb000, and GDTR fffff80021eedfb0

(GDTR = GDT Base + GDT size) and this sequence is the same each time
Windows is restarted when the KASLR addresses changed. The difference is
0x2000 bytes or two pages. Thus, the address of IDT could first be determined,
leading to revealing the address of GDT where another page of 0x2000 bytes is
mapped following the first valid page address.

While there are other pages mapped into memory addresses (e.g., shadow
functions for system-calls and interrupts), the addresses are far from the target
addresses (e.g., fffff8001d34e500). Therefore, the address among IDT, GDT,
Interrupt Shadows, and System Call Shadows could be identified. A payload for

A TSX-Based KASLR Break: Bypassing UMIP and Descriptor-Table Exiting 11

call-gate could build later finding the GDT base address. The following com-
mands in Listing 1.2 shows the process of identification of valid addresses on all
the cores by realizing the distance between GDT and IDT addresses.

2 ; Accessing First Core’s IDT and GDT

3 0: kd> r idtr

4 idtr=fffff8077925b000

5 0: kd> r gdtr

6 gdtr=fffff8077925dfb0

7 ; Accessing Second Core’s IDT and GDT

8 0: kd> ∼1
9 1: kd> r idtr

10 idtr=ffff8401bc053000

11 1: kd> r gdtr

12 gdtr=ffff8401bc055fb0

13 ; Accessing Third Core’s IDT and GDT

14 1: kd> ∼2
15 2: kd> r idtr

16 idtr=ffff8401bc0f5000

17 2: kd> r gdtr

18 gdtr=ffff8401bc0f7fb0

19 ; Accessing Forth Core’s IDT and GDT

20 2: kd> ∼3
21 3: kd> r idtr

22 idtr=ffff8401bc1a4000

23 3: kd> r gdtr

24 gdtr=ffff8401bc1a6fb0

Listing 1.2. The procedure of employing IDTR and GDTR

We observed that allocated addresses for IDT and GDT have a special pattern
for each core. For instance, here are several addresses that Windows allocated
for IDT of its first core:

– fffff8036385b000 , fffff8027ca5b000
– fffff80053a5b000 , fffff8076525b000

Our experiments indicate that these addresses tend to follow a specific pattern.
As the pseudo-code illustrated in Listing 1.2, the GDT has the same pattern
As IDT as well. Our experiments show that, regardless of the system in hand,
for the first core, the pattern of fffff80XXXX5b000 is spotted, where XXXX can
be changed due to the prevention mechanism of KASLR. The first bytes in the
pattern address is to create a canonical address, and the least significant byte
has a constant value of 5b000 pattern. This brings 0xffff = 65535 possibilities to
find the address of IDT and GDT in the first core of Windows. The same pattern
can be applied to other cores as well. In a uni-core system, one can test up to 10
addresses per second with excellent precision, using the explained timing side-
channel. Moreover, one could also hasten this measurement up to 20 addresses
per second, in compromise to the loss of accuracy. Approximately, it takes 109
minutes to find the address of the GDT for the first core. Of course, the patterns

12 MS. Karvandi et al.

for other cores could be discovered as well. As an example, in the 8-core system,
there are eight possibilities for IDT and GDT addresses, which could speed up
the search 8x faster. Also, it is possible to use other cores simultaneously for
accelerating the search process.

4.4 Build call-gate Entry

We have built our payload based on the description discussed in section 3.4.

4.5 Using FAR JMPs, FAR CALLs

As explored in section 3.6, the near forms of JMP and CALL transfer within the
current code segment requires only limited checking. However, the far forms of
JMP and CALL are referred to as other segments and require privilege checking.
Hence, when the CPU fetches a far-call instruction, it will use that instruction’s
‘selector’ value to look up a descriptor in the GDT (or in the current LDT).

If the call-gate descriptor is fetched, and if access is allowed (i.e., if CPL
≤ DPL), then the CPU will perform a complex sequence of actions which will
accomplish the requested ring-transition. CPL is based on the least significant
2-bits in register CS (also in SS). The new value for SS:SP comes from a special
system-segment, known as the TSS (Task State Segment). The CPU locates its
TSS by referring to the value in register TR (Task Register).

4.6 Returning back to the user-mode

After the call-gate is executed in kernel-mode, and we run shellcode in kernel-
mode, it is time to return to the user-mode in order to avoid a crash in kernel-
mode like BSOD in Windows or Kernel Panic in Linux.

In order to return to user-mode or any other outer ring that is used as the
source of FAR CALL or FAR JMP, one should execute lret instruction in the
inner ring. It is analogous to the procedure when an interrupt is returned to the
previous state.

1. Use the far-return instruction: ‘lret’
– Restores CS:IP from the current stack , Restores SS:SP from the current

stack
2. Use the far-return instruction: ‘lret $n’

– Restores CS:IP from the current stack
– Discards n parameter-bytes from that stack , Restores SS:SP from that

current stack

4.7 Combining attack with CWE-123

CWE-123 stands for write-what-where bugs. We have employed CVE-2016-7255
to modify our specific GDT entries. Consequently, the kernel-mode code exe-
cution of the shell-code using a FAR CALL is achieved. Also, another effect of
this attack is to change the supervisor bit of page table so that page tables are
readable and writable in user-mode or self-ref of death attack).

A TSX-Based KASLR Break: Bypassing UMIP and Descriptor-Table Exiting 13

5 Discussion: The Possible Mitigation

The simple approach of complete isolation of the kernel is not able to fully unmap
GDT from the user-mode since, in all modes of execution, the GDT descriptors
should be available. Every segment register has a visible part and a hidden part.
The hidden part sometimes referred to a descriptor cache or a shadow register.
When a segment selector is loaded into the visible part of a segment register,
the processor also loads the hidden part of the segment register with the base
address, segment limit, and access control information from the segment descrip-
tor pointed to by the segment selector. The information cached in the segment
register (visible and hidden) allows the processor to translate addresses without
taking extra bus cycles to read the base address and limit from the segment
descriptor. In systems in which multiple processors have access to the same de-
scriptor tables, it is the responsibility of software to reload the segment registers
when the descriptor tables are modified. Otherwise, an old segment descriptor
cached in a segment register might be used after its memory-resident version has
been modified [6].
In our mitigation setup we used a custom hypervisor to monitor and detect any
SYSCALL, SYSRET, and interrupt execution. We deploy the proposed miti-
gation to switch GDT/IDT entries between user mode and kernel mode. Our
hypervisor simulation shows a 2.7% delay overhead due to the additional exe-
cution introduced by the mitigation. However, the same methodology could be
deployed within the operating system reducing the overhead significantly.

It is worthy of mentioning that, complete mitigation to this attack would
be the employment of separate GDT base in kernel and user layout. The kernel
GDT should not be mapped into the user-mode, and Operating System Kernel
has to change the address of GDTR each time a ring modification occurs. For
example, it shall use SGDT to change the GDTR after every user-mode to kernel-
mode switch caused by SYSENTER and SYSCALL or every interrupts handler
routines. The mapped GDT in the user-mode should also be modifiable only by
the kernel (not user-mode). Hence, the user-mode application cannot access a
valid address for GDT, and the discovered GDT address by the attacker is only
valid when it is on user-mode. So, if a bug such as Write-What-Where occurs
in the kernel or any system-level driver or kernel module, it cannot modify the
user-mode GDT; thus, if the user-mode application tries to use call-gate in ring
3, the corresponding GDT entry is invalid, and the attack fails.

6 Related Efforts

Micro-architectural software attacks have been widely investigated in the con-
text of revealing or damaging private and sensitive data. Recent works such
as [3, 34, 37] aim to discover data on the victim system secretly. Recent works
have demonstrated that the state of the art mitigation for such attack are still
insufficient. Authors in [16], present a novel memory-sharing-based attack that
breaks the KASLR on KPTI-enabled Linux virtual machines. Similarly, Tag-
Bleed [19], abuses tagged TLBs and residual translation information to break

14 MS. Karvandi et al.

KASLR. Furthermore, adversary techniques for exploitation on shared Virtual
Environments like [27] have shown to be promising in practice.
With regards to much older timing side-channel attacks, Osvik et al. [28] intro-
duced the PRIME+PROBE on the L1 cache, to attack the AES implementa-
tions, discovering secret keys. Consequently, more promising and sophisticated
methods like [37] were proposed.

Moreover, other software-based attacks take advantage of on DRAM pio-
neered by [17] have also shown to be very practical, jeopardizing the private data
stored in memory in various circumstances. In terms of exploiting the abandoned,
but existing technologies in modern CPU designs, which is the primary concern
of this paper, the possible vulnerabilities regarding the structure of GDT and
IDT, were previously studied by [12]. Researchers in [12] proposed a technique
to gain a more stable kernel-level exploitation. These techniques were shown to
be applicable in Windows-NT systems. Moreover, interestingly, several utilized
mechanisms in this article, such as call-gate has also been used for securing the
systems. For instance, [21] present an approach to prevent sandbox leakage based
on call-gate.

7 Conclusion

The impact of the hardware vulnerability exploited by software techniques has
been proved to be dreadful. In this paper, we presented a TSX based side-channel
attack, revealing the addresses of GDT and IDT in the kernel space, which
could be exploited by an arbitrary user-mode application. We demonstrated
that a single Write-What-Where vulnerability in the operating system could
lead to a full system compromise through call-gate feature available in today’s
CPUs, irrespective of the version of the operating system. We have successfully
evaluated our method by implementing an attack on the 9th Generation Intel
processors.

The attack presented here is based on the descriptor structures available on
the modern processors (e.g., Intel as well as AMD [1]) although have hidden
address by ASLR but are mapped into the user-mode address layout. The ex-
ploitation perfectly works with common Write What Where bugs. For instance,
any bug in a JavaScript application on an isolated web-browser in the kernel
address or graphic functions of the operating system (e.g., Win32k bugs in Win-
dows) will be enough to be exploited. Moreover, we suggested software mitigation
for this vulnerability since the presented attack bypasses the recent mitigation
to Meltdown Attack (e.g., KAISER).

References

1. Devices, A.M.: Amd64 architecture programmer’s manual volume 2: System pro-
gramming (2006)

2. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. Journal of Cryptographic
Engineering 8(1), 1–27 (2018)

A TSX-Based KASLR Break: Bypassing UMIP and Descriptor-Table Exiting 15

3. Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation leak-aside buffer: Defeating
cache side-channel protections with {TLB} attacks. In: 27th {USENIX} Security
Symposium ({USENIX} Security 18). pp. 955–972 (2018)

4. Gruss, D., Hansen, D., Gregg, B.: Kernel isolation: From an academic idea to an
efficient patch for every computer. login: USENIX Magazine 43(4), 10–14 (2018)

5. Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.: Kaslr is
dead: long live kaslr. In: International Symposium on Engineering Secure Software
and Systems. pp. 161–176. Springer (2017)

6. Guide, P.: Intel® 64 and ia-32 architectures software developer’s manual. Volume
3C: Chapter 24, VIRTUAL MACHINE CONTROL STRUCTURES (Table 24-6.
Definitions of Primary Processor-Based VM-Execution Controls) 3C (2019)

7. Guide, P.: Intel® 64 and ia-32 architectures software developer’s manual. Vol-
ume 4: Chapter 2, MODEL-SPECIFIC REGISTERS (MSRS) (Table 2-2. IA-32
Architectural MSRs) 4 (2019)

8. Guide, P.: Intel® 64 and ia-32 architectures software developer’s manual. Volume
3A: Chapter 1, SYSTEM ARCHITECTURE OVERVIEW, Time Stamp Disable)
3A (2019)

9. Hajihassani, O., Monfared, S.K., Khasteh, S.H., Gorgin, S.: Fast aes implemen-
tation: A high-throughput bitsliced approach. IEEE Transactions on Parallel and
Distributed Systems 30(10), 2211–2222 (2019)

10. Intel: Intel virtualization technology flexmigration ap-
plication note (2012), https://www.intel.com/content/

dam/www/public/us/en/documents/application-notes/

virtualization-technology-flexmigration-application-note.pdf
11. Ionescu, A.: blog post (2018), http://www.alex-ionescu.com/?p=340
12. Jurczyk, M., Coldwind, G.: Gdt and ldt in windows kernel vulnerability exploita-

tion (2010)
13. Karvandi, S.: Call gates’ ring transitioning in ia-32 mode (2019), https://

rayanfam.com/topics/call-gates-ring-transitioning-in-ia-32-mode/
14. Karvandi, S.: Hypervisor from scratch – part 6: Virtualizing an already running sys-

tem (2019), https://rayanfam.com/topics/hypervisor-from-scratch-part-6/
15. Kiarostami, M.S., Reza Daneshvaramoli, M., Monfared, S.K., Rahmati, D., Gorgin,

S.: Multi-agent non-overlapping pathfinding with monte-carlo tree search. In: 2019
IEEE Conference on Games (CoG). pp. 1–4 (2019)

16. Kim, T., Kim, T., Shin, Y.: Breaking kaslr using memory deduplication in virtu-
alized environments. Electronics 10(17), 2174 (2021)

17. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai,
K., Mutlu, O.: Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors. In: ACM SIGARCH Computer Architecture
News. vol. 42, pp. 361–372. IEEE Press (2014)

18. Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard,
S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Exploiting speculative
execution. arXiv preprint arXiv:1801.01203 (2018)

19. Koschel, J., Giuffrida, C., Bos, H., Razavi, K.: Tagbleed: Breaking kaslr on the iso-
lated kernel address space using tagged tlbs. In: 2020 IEEE European Symposium
on Security and Privacy (EuroS&P). pp. 309–321. IEEE (2020)

20. Kurth, M., Gras, B., Andriesse, D., Giuffrida, C., Bos, H., Razavi, K.: NetCAT:
Practical Cache Attacks from the Network. In: S&P (May 2020), https://www.
vusec.net/download/?t=papers/netcat_sp20.pdf, intel Bounty Reward

21. Lewis, P.: Using a call gate to prevent secure sandbox leakage (Sep 3 2013), uS
Patent 8,528,083

https://www.intel.com/content/dam/www/public/us/en/documents/application-notes/virtualization-technology-flexmigration-application-note.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/application-notes/virtualization-technology-flexmigration-application-note.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/application-notes/virtualization-technology-flexmigration-application-note.pdf
http://www.alex-ionescu.com/?p=340
https://rayanfam.com/topics/call-gates-ring-transitioning-in-ia-32-mode/
https://rayanfam.com/topics/call-gates-ring-transitioning-in-ia-32-mode/
https://rayanfam.com/topics/hypervisor-from-scratch-part-6/
https://www.vusec.net/download/?t=papers/netcat_sp20.pdf
https://www.vusec.net/download/?t=papers/netcat_sp20.pdf

16 MS. Karvandi et al.

22. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,
Mangard, S., Kocher, P., Genkin, D., et al.: Meltdown: Reading kernel memory
from user space. In: 27th {USENIX} Security Symposium ({USENIX} Security
18). pp. 973–990 (2018)

23. (Microsoft), S.: Kva shadow: Mitigating meltdown on win-
dows (2018), https://msrc-blog.microsoft.com/2018/03/23/

kva-shadow-mitigating-meltdown-on-windows/

24. Minkin, M., Moghimi, D., Lipp, M., Schwarz, M., Van Bulck, J., Genkin, D., Gruss,
D., Piessens, F., Sunar, B., Yarom, Y.: Fallout: Reading kernel writes from user
space. arXiv preprint arXiv:1905.12701 (2019)

25. MITRE: Cwe-123: Write-what-where condition (2019), https://cwe.mitre.org/
data/definitions/123.html

26. Monfared, S.K., Hajihassani, O., Kiarostami, M.S., Zanjani, S.M., Rahmati, D.,
Gorgin, S.: Bsrng: A high throughput parallel bitsliced approach for random num-
ber generators. In: 49th International Conference on Parallel Processing-ICPP:
Workshops. pp. 1–10 (2020)

27. Oliverio, M., Razavi, K., Bos, H., Giuffrida, C.: Secure page fusion with vusion:
https://www. vusec. net/projects/vusion. In: Proceedings of the 26th Symposium
on Operating Systems Principles. pp. 531–545 (2017)

28. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case
of aes. In: Cryptographers’ track at the RSA conference. pp. 1–20. Springer (2006)

29. Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J., Prescher, T.,
Gruss, D.: Zombieload: Cross-privilege-boundary data sampling. arXiv preprint
arXiv:1905.05726 (2019)

30. Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic timers and where to
find them: high-resolution microarchitectural attacks in javascript. In: Int. Conf.
on Financial Cryptography and Data Security. pp. 247–267. Springer (2017)

31. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard ex-
tension: Using sgx to conceal cache attacks. In: Int. Conf. on Detection of Intrusions
and Malware, and Vulnerability Assessment. pp. 3–24. Springer (2017)

32. Seaborn, M., Dullien, T.: Exploiting the dram rowhammer bug to gain kernel
privileges. Black Hat 15 (2015)

33. Stecklina, J., Prescher, T.: Lazyfp: Leaking fpu register state using microarchitec-
tural side-channels. arXiv preprint arXiv:1806.07480 (2018)

34. Van Schaik, S., Giuffrida, C., Bos, H., Razavi, K.: Malicious management unit: Why
stopping cache attacks in software is harder than you think. In: 27th {USENIX}
Security Symposium ({USENIX} Security 18). pp. 937–954 (2018)

35. Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B., Piessens, F., Sil-
berstein, M., Strackx, R., Wenisch, T.F., Yarom, Y.: Foreshadow-ng: Breaking the
virtual memory abstraction with transient out-of-order execution (2018)

36. Wiki, O.D.: Sysenter (2017), https://wiki.osdev.org/SYSENTER
37. Yarom, Y., Falkner, K.: Flush+ reload: a high resolution, low noise, l3 cache side-

channel attack. In: 23rd {USENIX} Security Symposium ({USENIX} Security 14).
pp. 719–732 (2014)

https://msrc-blog.microsoft.com/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://msrc-blog.microsoft.com/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/123.html
https://wiki.osdev.org/SYSENTER

	A TSX-Based KASLR Break: Bypassing UMIP and Descriptor-Table Exiting

