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Abstract. Convolutional neural networks have made great achievements
in field of optical image classification during recent years. However,
for Synthetic Aperture Radar automatic target recognition(SAR-ATR)
tasks,the performance of deep learning networks is always degraded by
the insufficient size of SAR images, which cause both severe over-fitting
and low-capacity feature extraction model. On the other hand, models
with high feature representation ability usually lose anti-overfitting ca-
pability to a certain extent, while enhancing the network’s robustness
leads to degradation in feature extraction capability. To balance above
both problems, a network with model transfer using the GAN-WP and
non-greedy loss is introduced in this paper. Firstly, inspired by the Sup-
port Vector Machine’s mechanism, multi-hinge loss is used during train-
ing stage. Then, instead of directly training a deep neural network with
the insufficient labeled SAR dataset, we pretrain the feature extraction
network by an improved GAN, called Wasserstein GAN with gradient
penalty and transfer the pre-trained layers to an all-convolutional net-
work based on the fine-tune technique. Furthermore, experimental results
on the MSTAR dataset illustrate the effectiveness of the proposed new
method, which additional shows the classification accuracy can be im-
proved more largely than other method in the case of sparse training
dataset.

Keywords: SAR-ATR · Transfer learning · Generative adversial net-
work.

1 Introduction

Synthetic aperture radar(SAR) is an active imaging radar system, which has the
characteristics of a variety of polarization modes and the imaging conditions are
not affected by weather conditions. With the development of deep learning in
thefield of optical image classification, a large number of classification networks
have been applied to SAR image processing. Deep learning in Synthetic aperture
radar-Automatic Target Recognition(SAR-ATR) has made great achievements
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in SAR image preprocessing due to its automaticity and high accuracy from
feature extraction. However, data-driven method is overly dependent on the scale
of labeled data, and it will cause serious overfitting due to the scarce SAR dataset
and the high cost and difficulty of manual annotation SAR data compared with
the optical images.

The mainstream methods to improve the robustness of deep learning models
in SAR-ATR can be mainly based on two ideas: 1) Strengthening the feature ex-
traction ability of target network by augmenting dataset, 2) Reforming network
structure to improve generalization ability. Chen proposed the all-convolutional
networks [1] that substituted all full connection layers by convolutional layers,
which greatly reduced the number of trainable parameters and increased the
accuracy of MSTAR dataset under SOC conditions to 99% for the first time.
Hai combined knowledge distillation with network quantization strategies. This
method [2] greatly compressed the parameters of ResNet-18 to a three-layer net-
work and outperformed other method’s model with the same parameter’s quan-
tity. Zhong used the idea of filter based model pruning and transfer learning,
which improved the generalization ability in small network and accelerated the
forward propagation process [3]. Although the above methods reduce the model
size to prevent from getting caught up in overfitting, training suchs model still
demands a certain amount of training examples, moreover methods based on
compressing model inevitably degrade network’s representational capacity.

Huang [4] proposed a CNN using model transfer learning for the first time.
By pretraining feature extraction model in unlabeled SAR scene images and then
migrating to SAR target images, the accuracy of MSTAR under SOC and scarce
training examples conditions reached to 97%. Zhang [5] showed that generative
adversarial network could extract more universal features than autoencoder, by
pre-training target network from unlabeled data through info-GAN. Liu [6] used
electromagnetic simulation software and 3-D CAD models to generate a large
number of SAR vehicle data. Although the above methods based on transfer
learning improves the test accuracy using generated simulation data or unlabeled
scene images, how to generate robust models relying on existing limited dataset
is still a research difficulty. Qin [7] proposed the CAE-HL, which introduced
the autoencoder to offset the feature extraction ability deficit with hinge loss.
Wanger [8] combined SVM and CNN to obtain a network model with stronger
robustness.

To improve both the anti-overfitting and feature extraction ability in the case
of scarce training data, a network, called WGAN-HL-Convnet, consisting of an
improved GAN, Wasserstein GAN with gradient penalty and multi-classification
hinge loss, is proposed in this paper. Firstly, multi-classification hinge loss is
introduced into the training stage of network model to adjust the decision of
boundary determination. whose optimization of the loss function is similar to
the optimization problem under the constraint condition of SVM. When train-
ing samples are far away from the boundary margin, the network no longer pays
attention to their contribution to the loss, which is the essential difference be-
tween the hinge loss and cross-entropy loss. Then, in order to make up for the
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degradation of feature extraction ability caused by the loss function, the pre-
training model based on WGAN-GP is migrated, and the full connection layer
in the discriminator of GAN is replaced with the convolution layer, which greatly
reduces the number of model parameters and further improves the generalization
ability of the network.

The remainder of this paper is organized as follows. Section2 introduces the
implementation of our method. Section3 discusses the performance of the exper-
imental results. Section4 gives the conclusion.

2 Method

2.1 Multi-class Hinge Loss for SAR-ATR

In order to illustrate the applicability of hinge loss to the case of insufficient
data, binary classification problem is discussed because of its convenience of
feature visualization. Most loss function respond to all training data so as to
extract information from existing data as much as possible and improve model’s
representational ability. While training sample reduces and the probability dis-
tribution of training samples and test samples has a certain deviation, as depicted
in Fig. 1(a), however, such loss functions fail to obtain an appropriate judge-
ment applicable to test sets, and the cause lies in that all of data characteristics
generate a certain loss. In Fig. 1(b), it is showed not all data points are nec-
essary to participate in the formation of decision line, and if only the feature
points closed to the hyperplane are focused, the decision line obtained by limited
training examples is more likely to be practical in the test samples.

Fig. 1. Different decision lines under sufficient or unsufficient training examples with
different loss functions.(a)under sufficient trainset;(b)under insufficient trainset with
hinge loss;(c)under insufficient trainset with other loss
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Given an input image xi and its corresponding label yi ∈ {+1,−1} whose
hinge loss can be expressed as L(xi, yi) = max(0, 1−yif(xi)). When yif(xi) > 1,
the point is judged correctly and far from the judgement plane, so the loss is 0,
that means it contributes nothing to the updating of model parameter. Other
loss functions, such exponentially loss or cross-entropy loss, remain positive to all
data points, as shown in Fig. 2, regardless of whether their predictions are right
or wrong. This can lead the decision line in Fig. 1(c) to magnify its deviation
degree after minimize the loss of all training data. Therefore, training network
with Hinge loss rather than commonly used cross-entropy loss is more likely to
improve the generalization ability and robustness in the case of insufficient SAR
target images.

For multi-class classification problem, the multi-class hinge loss is used in
this paper. Given an input image xi, the corresponding loss function can be
expressed as:

L(xi, yi)=
∑
j ̸=yi

max(0, f(xi)j − f(xi)yi
+∆) (1)

where f(x) is the output of network, f(x)j denotes each category score of the
output, j ∈ {1, 2, ..., C}, and ∆ denotes the threshold value.

Fig. 2. Hinge loss and other loss functions

2.2 WGAN-HL-Convnet

Overflow of WGAN-HL-Convnet Fig. 3 demonstrates the overall architec-
ture of the method. According to reference [9], although CNN based on hinge
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loss can avoid extracting redundant features under the condition of insufficient
samples, the number of effective features extracted is much sparser than the
CNN based on ordinary cross-entropy loss. To enhance the representability of
the target network, the unsupervised generative adversarial network and trans-
fer learning technique are introduced to the proposed method. The classifier
layers in the target classification are redesigned to make it capable of the SAR
recognition tasks in the case of sparse training data.

Fig. 3. Processing flow of the proposed method

According to the theory of transfer learning, the training stage can be divided
into a pretraining phase and a fine-tuning phase. The typical GAN is known as
an unsupervised learning framework to counterfeit images that visually looks
like a real image. By means of adversarial training, the discriminator will have
the representational ability to distinguish the authenticity of the input images.
Meanwhile, the convolutional layers in the discriminator map the original input
to the hidden feature space. Therefore, a GAN will be trained to learn univer-
sal features from the limited data as far as possible, and then based on the
model transfer learning idea, a convolutional classifier will be added to create a
SAR recognition model using the hinge loss. Lastly, the whole network will be
finetuned to convergence. By combining pretraining technique using GAN and
hinge loss, the model extracts a complete feature representation to compensate
for the degradation in feature extraction ability, which reduces the over-fitting
and owe-fitting risk.

Pretraining Encoder using WGAN with gradient penalty An unsuper-
vised learning method based on Wasserstein GAN is adopted to improve feature
extraction capability. Traditional GAN plays a ‘minmax’ game through alter-
nately optimizing the following adversarial function:

min
G

max
D

{V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))]} (2)
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where x denotes the sample from real probability distributionand pdata(x) and
z denotes the noise vector, of which the elements are produced randomly by a
Gaussian distribution.

SAR target images have obvious background speckle noise and irregular
scattering light spots, which make it hard for generator to generate visually
similar SAR images. Since only a fraction of the background clutter and tar-
get contour images can be generated, it is difficult for discriminator to con-
verge to ideal state. What’s more, typical GAN usually uses Sigmod function,
fsig mod (x) = 1

1+e−x , as the activation function of the last layer, and the deriva-
tive f ,

sig mod (x) = f(x)(1 − f(x)) ≤ 1
4 �which causes the gradient disappearing

to zero due to the multiplicative effect of the gradient back propagation.
In order to train the discriminator fully, GAN based on Wasserstein distance

with gradient penalty is used. Wasserstein distance, namely the bulldozer dis-
tance, can maintain smoothness even where there is no overlap between two dis-
tributions. To regression the Wasserstein distance in loss function, the sigmod ac-
tivation function of the last layer in the discriminator is removed. Loss functions
for the generator and the discriminator can be expressed as −Ez∼Pz(z)[D(G(z))]
and Ez∼pz(z)[D(G(z))] − Ex∼pdata(x)[D(x)]. In order to impose the Lipschitz
constraint, the gradient penalty term focuses on generating the sample con-
centration region, and the real sample concentration region and the transition
region between them are added to the discriminator’s loss function, expressed
as follows:

L(D) = Ez∼pz(z)[D(G(z))]−Ex∼pdata(x)[D(x)] +λE
x̂∼X̂

[
∥∥∇

x̂
D(x̂)

∥∥
p
− 1]2 (3)

where x̂ = εx + (1 − ε)G(z), ε is a random variable that obeys 0-1 uniform
distribution, and λ is a proportion controlling hyperparameter.

All-Convolutional network for Model transfer An all-convolutional net-
work without fully connected layers is used in the proposed SAR target recog-
nition model. The first five layers are transferred from the encoder of GAN, and
the last two layers used to classify extracted features are initialized randomly.
All connection layers adopt sparse connection instead of full connection, which
effectively reduce the number of free parameters and avoid the severe overfitting
due to limited training examples. The forward propagation of each convolutional
kernel is express as:

Oj(w, h) =

N∑
i=1

K−1∑
u,v=0

W
(l)
j (u, v)F

(l)
i (w − u, h− v) (4)

where Oj(w, h) denotes the output of the jth kernel, F (l)
i (w − u, h− v) refer to

the pixel at the position (w − u, h − v) of the ith feature map of the lth layer.
And W

(l)
j (u, v) is the trainable convolutional kernel with the size of K.

The overall flow architecture of the network is depicted in Fig. 4. For the
feature extraction module, each convolutional block is followed by a leakRelu
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function to avoid the activation value falling in the interval where the gradient
is zero, which is expressed as, LeakyRELU(x) = max(0.2x, x). The stride of
each convolutional operation is set to 2 to compress the size of feature image.
The classification module is consist of two convolutional block. The size of the
first convolutional block is 4, resulting in feature maps of size 1 × 1. The second
one is a point-wise convolution block ensuring the final output size to be 1 × 1
× C, where C is the number of categories.

Fig. 4. The architecture of our model

3 Experiments and Results

3.1 Experimental data sets

The accuracy test is performed using the airborne Moving and Stationary Target
Acquisition and Recognition(MSTAR) system. The dataset has released pub-
licly 6 different categories of ground targets(armored personnel carrier, tank,
rocket launcher, air defense unit, truck, bulldozer). To comprehensively assess
the performance, the algorithm is tested both under standard operating condi-
tions(SOC). SOC refers to that the serial numbers and target configurations in
the test set are the same with those in the training set, but with different de-
pression angles. The dataset under SOC consists of ten different of car targets,
of which the optical and corresponding SAR images are shown in Fig. 5.

Fig. 5. SAR image examples and their correspondingoptical images of ten types of
targets in the MSTAR database
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3.2 Training details

The Adam optimizer is utilized for training GAN since it could adjust the learn-
ing rate dynamically. The batch size is 32, and initial learning rate of discrimina-
tor and generator is 0.003. The input noise of the generator is a 128-dimensional
random vector of which the elements are produced by as Gaussian distribution
. When training the classification, the initial learning rate is set to 0.001. Each
sample in the MSTAR dataset is resized to 128 × 128 and no image augmenta-
tion and preprocessing algorithm is applied to the SAR images. All experiments
are conducted on a Linux computer with a NVIDIA 3090 GPU card and 32 GB
of memory. The used neural network framework is Pytorch.

3.3 Experiment results

Generated images with learned features A common method to verify the
feasibility of features extracted from GAN is to see whether the data can be
generated from the features derived from real images through discriminator. We
randomly enter some real images into encoder to get the feature vectors and
then feed the feature vectors into the generator to contrust the fake images
at different training stages of WGAN-gp. The generated images are given in
Fig. 6(b)-(c). It is suggested that the generated image turn to be identical to the
real image increasingly as the training epoches increases, which demonstrates
the effectiveness of the feature extraction through the discriminator.

Fig. 6. Generated SAR images with WGAN-gp, where (a) is the real images.(b)-(g)
present the fake images at different training epoches

Testing Accuracy This method mainly focuses in SAR target recognition
research on limited number of training samples. Therefore, based on the MSTAR
SOC dataset, training sets with smaller number of samples are constructed, we
contruct four subsets with 200, 500, 1000, 2000 samples have been established
by randomly extracted 20, 50, 100, 200 samples respectively from each class of
training dataset, and the testset is unchanged. We use subset-200, subset-500,
subset-1000, subset-2000 to denote the four training sets

To illustrate the effectiveness of the proposed network under limited number
of training samples, three control trails, i.e. baseline-CNN, baseline-Convnet,
HL-Convnet, WGAN-HL-Convnet are set up. The specific implementation are
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shown as follows: 1) baseline-CNN�directily training the random initialized tar-
get work of full connection layers in the classification modules with cross-entropy
loss function, 2) baseline-Convnet: directily training the random initialized tar-
get work of convolutonal layers in the classification modules with cross-entropy
function, 3) HL-Convnet: training the baseline-Convnet with hinge loss instead
of cross-entropy loss, 4) WGAN-HL-Convnet: training the HL-Convnet which is
initialized by the pretrained feature extraction module with WGAN-GP.

Table 1. Test accuracies of the trained models on SOC dataset.

Training set baseline-CNN baseline-Convnet HL-Convnet WGAN-HL-Convnet
subset-2000 95.63 96.86 96.37 98.35
subset-1000 91.22 93.73 94.15 97.64
subset-500 81.22 85.77 86.43 93.64
subset-200 64.55 65.07 72.20 86.43

Table 1 records the recognition accuracy of four networks trained on the four
subsets. We repeat every experiment five times and choose the average value
to mitigate the impact of fluctuation. The second row shows when the train-
ing data is abundant, the test accuracies of baseline-CNN, baseline-Convnet,
HL-Convnet, WGAN-HL-Convnet are 95.63%, 95.75%, 94.06%, 97.19%. The
performances of four methods are very close to each other, but our method still
rank the first accuracy. The accuracy of baseline-Convnet surpasses that of HL-
Convnet, which verifies cross-entropy loss accelerates in extracting useful features
better than hinge loss under sufficient training data condition. As the number
of training samples decreases, our method outperforms the other method signif-
icantly, exceeding the second highest accuracy over 5.49%, 7.21% and 14.23%
under subset-1000, subset-500, subset-200 conditions respectively. Note that, in
such three conditions the HL-Convnet behaves better than baseline-Convnet and
our method behave better than HL-Convnet. The experiment demonstrates that
in the case of scarce training samples, hinge loss is useful in improving the robust-
ness of the classification network, and pretraining network through WGAN can
further greatly improve the performance by enhancing the capability of feature
extraction.

Table 2. Detailed accuracies of each categories on subset-2000.

Method 2S1 BMP2 BRDM2 BTR70 BTR60 D7 T62 T72 ZIL131 ZSU234
WGAN-HL-Convnet 98.54 100.00 92.70 99.48 98.46 99.27 98.16 98.97 99.27 99.27
HL-Convnet 94.89 91.28 95.62 94.89 97.43 98.54 94.87 97.95 97.81 98.90
baseline-Convnet 93.79 96.92 93.06 97.95 97.43 97.08 94.50 100.00 99.63 99.27

To analyse the classification accuracies in each categories, we enter all the test
images into the model in batches by category and calculate the accuracy score
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Table 3. Detailed accuracies of each categories on subset-1000.

Method 2S1 BMP2 BRDM2 BTR70 BTR60 D7 T62 T72 ZIL131 ZSU234
WGAN-HL-Convnet 95.25 92.82 97.44 97.44 95.89 98.9 98.9 98.46 99.63 99.63
HL-Convnet 98.9 93.33 84.30 94.89 92.82 97.44 84.61 100.00 97.44 98.90
baseline-Convnet 95.98 96.41 80.29 93.36 90.25 97.81 90.84 94.89 98.17 98.9

on each type. The recall of each type is list in the Table 2-3. For WGAN-HL-
Convnet, only the BRDM2 and BMP2 are relatively low, 92.7% and 92.82%,
respectively in two tables. Other categories are all more than 95%. But for
HL-Convnet, in Table 3, BRDM2, BTR60, T62 show lower scores than other
types with accuracies of 84.30%, 84.61%. Similarly, baseline-Convnet has a poor
performance accuracies in BRDM2, BTR60, T62 in Table 3. The results shows
that the GAN-HL-Convnet not only has higher recognition accuracies than the
HL-Convnet and baseline-Convnet in the case of scarce training dataset, but
alse performs more balanced in each categories.

4 Conclusion

In the present paper, a method based on the hinge loss and model transfer using
Wasserstein GAN is proposed to address the limited label difficulty in SAR-ATR.
We transfer the feature extraction module pre-trained from GAN and finetune
the whole network with newly added convolutional classification module. The
transfer method produces a higher performance on MSTAR dataset than other
methods. This superiority becomes more apparent as the training set becomes
sparser. Its reveals us that combining hinge loss functions and GAN’s pretraining
through model transfer is a good way to improve recognition in the case of scarce
training samples.
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