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Abstract. The advances of sensing and computing technologies pave
the way to develop novel applications and services for wearable devices.
For example, wearable devices measure heart rate, which accurately re-
flects the intensity of physical exercise. Therefore, heart rate prediction
from wearable devices benefits users with optimization of the training
process. Conventionally, Cloud collects user data from wearable devices
and conducts inference. However, this paradigm introduces significant
privacy concerns. Federated learning is an emerging paradigm that en-
hances user privacy by remaining the majority of personal data on users’
devices. In this paper, we propose a statistically sound, Bayesian in-
ference federated learning for heart rate prediction with autoregression
with exogenous variable (ARX) model. The proposed privacy-preserving
method achieves accurate and robust heart rate prediction. To validate
our method, we conduct extensive experiments with real-world outdoor
running exercise data collected from wearable devices.

Keywords: Federated learning · Bayesian inference · Wearable comput-
ing · Heart rate prediction

1 Introduction

Cardiovascular diseases (CVD) are the number one cause of death globally. Ac-
cording to the world health organization report, 17.9 million people die from
CVD each year, an estimated 31% of all deaths worldwide [1]. Many factors can
trigger these diseases, including tobacco use, unhealthy diet, physical inactivity,
and harmful use of alcohol. Preventing CVD is becoming an urgent task. It is
well-known that exercising has a proven therapeutic effect on the cardiovascu-
lar system. Hence, predicting and controlling heart rates during the exercise is
important to avoid overstrain and prevent sudden heart rate break.

Wearable devices enable intelligent human-computer interactions. The wear-
able fitness, sport technologies, and service business are expected to grow expo-
nentially in the near future. Users of wearable devices are expecting the service
that can guide their smart exercise coaching, rather than only tracking their
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activities. Heart rate based training is a well-known technique to improve the ef-
fectiveness of training and prevent over-exercising. Designing an optimal exercise
training plan to avoid overstrain is crucial. Ignoring the limits of the physical
activities will not only nullify the effect of the exercise but also cause harmful
effect on the cardiovascular system. The first step of designing the optimal exer-
cise training plan is predicting heart rate from the exercise, which will be then
used for the training control. The designed recommendation and control systems
can be adopted in the mobile phone or smart watches. Subjects can use the con-
trol system in those smart devices to guide their exercise in order to reach the
desired heart rate response and avoid overtraining, which will benefit the users’
health. However, most existing research work related to heart rate prediction
focuses on indoor exercises. For outdoor physical exercise, it is not possible to
automatically regulate the workload intensity due to the dependence on environ-
mental conditions. Hence, it’s typical for an outdoor exerciser to continuously
check heart rate and increase or decrease the speed accordingly for regulating
his or her heart rate.

Machine learning has demonstrated its promising performance in providing
the users with recommendations regarding to physical activity and physiological
response [2, 3]. Machine learning algorithms typically learn from centralized data
in order to train a powerful model. However, pooling data from many users to
the Cloud introduces significant privacy concern; for example, leaking sensitive
health information of users. Recently, EU General Data Protection Regulation
(GDPR) [4] states the need for trust to be built into personal data services and
allows users to control their own data, including data their devices generate.
Based on GDPR, collecting a massive amount of user data from wearables is
not allowed. Federated learning has been regarded as a promising architecture,
allowing learning from a large volume of distributed local data without pooling
users’ private data to the Cloud [5]. Federated learning preserves the users’
privacy by training the model in a decentralized manner where multiple local
models are synthesized to a global model which is used for future applications.

In this paper, we propose a Bayesian inference based federated learning for
heart rate prediction. Bayesian inference provides a statistically sound way to
combine local models; and at the same time achieves robust predictions even
when data are unevenly distributed among the peripheral nodes, which is com-
mon in real world applications. Our work is the first Bayesian inference federated
learning approach for heart rate prediction with autoregression with exogenous
variable model (ARX) and this framework can be extended to other ARX pre-
diction problems.

Our contributions are threefold:

– We propose two Bayesian federated learning methods, namely Federated
Learning based on Sequential Bayesian method (FD Seq Bayes) and the
Empirical Bayes based Hierarchical Bayesian method (FD HBayes-EB), for
heart rate prediction without pooling data to the Cloud for privacy preser-
vation. The former model FD Seq Bayes is proposed to provide a statisti-
cally sound way of integrating local models; whereas the latter model, FD
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HBayes-EB, provides an alternative but more scalable way from a Bayesian
hierarchical model perspective.

– We have conducted extensive evaluation on real-world data from wearable
devices. Compared to various state-of-the-art baseline models, our proposed
methods have demonstrated their strength in achieving higher prediction
accuracy on unseen, new users with lower computation cost.

– Our proposed Bayesian federated learning methods can be easily extended to
address other ARX regression problems taking consideration of user privacy
preservation and achieving good performance.

The remainder of this paper is organized as follows. Section 2 describes the
background and related work. Section 3 presents the proposed Bayesian inference
federated learning methods. We present experimentation setup and results in
Section 4 and summarize our insights and conclude the paper in Section 5.

2 Related Work

In this section, we review the state-of-the-art techniques in heart rate prediction
and federated learning.

2.1 Heart Rate Prediction

Heart rate modelling and prediction have been extensively studied. Existing
approaches to model and predict the heart rate response to running exercises
can be divided into two categories: (1) Physiological models, which are usually
described by deterministic mathematical formulas and used in specific biological
systems; and (2) machine learning approaches, which do not encode any prior
information but will learn and generalize the response model in the learning
process. While approaches in the first category gain its appeal from its analytical
closed-form notation, the approaches in the second category are more attractive,
because they allow accounting for environmental parameters and other relevant
information that is not represented in the analytic equations.

An ordinary differential equation (ODE) model had been proposed by Cheng
et al. [6] to describe the dynamical changes of heart rate from resting heart rate
by taking consideration of exercise speed and heart rate effects from hormonal
system. Levenberg-Marquardt algorithm is used for estimating the optimized pa-
rameters. The proposed ODE model is designed for speed control in the treadmill
for heart rate regulation. In order to use those models, the subject’s resting heart
rate need to be known beforehand and special test need to be performed in order
to get subject’s resting heart rate.

A nonparametric hammerstein model decoupled the linear and nonlinear
parts using pseudorandom binary sequences is proposed by Su et.al [7] for heart
rate regulation. Support vector regression is adopted to estimate the parameters
of the model. Mohammad et al. [8] have used takagi-sugeno fuzzy model for
controlling the heart rate in cycling exercises. They build a takagi-sugeno fuzzy
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model for each subject based on that subject’s own observed data. Subjects did
not share their data nor model parameters.

Machine learning methods, such as time series linear regression, support vec-
tor regression, feedforward artificial neural network, and long short-term memory
(LSTM) [2] have also been used in modelling and predicting the heart rate in
exercise. Ni et al. [3] propose an LSTM-based context-aware sequential model to
capture the heart rate and the personalized patterns of fitness data. Ludwig et
al. [9] summarize most of the recent models related to predicting and controlling
heart rate response to exercise.

Current research work related to heart rate modeling and prediction for wear-
able devices mainly develop general models on the Cloud by sharing subjects’
data or developing the personal model with using each subject’s own data with-
out sharing other subjects’ data. Less attention has been paid on building a
general model that can be used for all subjects while keeping data isolated for
privacy preservation.

2.2 Federated Learning

Kairouz et al. [10] define federated learning as a machine learning setting where
multiple entities (clients) collaborate in solving a machine learning problem, un-
der the coordination of a central server or service provider. Each client’s raw
data is stored locally and not exchanged or transferred; instead, focused updates
intended for immediate aggregation are used to achieve the learning objective
[10]. Federated learning was firstly proposed by Google [5], aiming to keep the
training data on the device while collaboratively learning a shared model by
coveraging the parameters changes learned from local models. Privacy and com-
munication efficiency are most important concerns in federated learning.

Recently, federated learning has attracted widespread attention and made
considerable success in many applications [11]. McMahan et al. [12] have in-
troduced the Federate Averaging (FedAvg) algorithm, which learns the feder-
ated global model based on averaging of local learner parameters trained us-
ing stochastic gradient descent. Smith et al. [13] treat federated learning as a
multi-task learning problem and develop MOCHA method to solve the statisti-
cal challenges in federated setting. More significant research work on distributed
deep learning can refer to [14, 15]. Chen et al. [16] develop a federated transfer
learning framework, named FedHealth, for wearable healthcare. Their proposed
approaches combine transfer learning and federated learning using the FedAvg
algorithm, which requires to share the same random initialization and is not
applicable for combing pre-trained models. Here, we look into a Bayesian model
for integrating local models.

Yurochkin et al. [17] propose a Bayesian federated learning framework to
aggregate pre-trained neural networks, each being trained locally in parallel with
its own specific dataset. The parameters of these local neural networks will be
matched to a global model, which is governed by the posterior of a Bayesian
nonparametric model. Different from existing work, we focus on learning time-
series data with ARX model and we propose two variants of Bayesian methods.
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3 Proposed Approach

This section presents the problem statement on federated learning for heart
rate prediction and introduces two Bayesian-based techniques: sequential and
hierarchical models.

3.1 Problem Definition

The objective of heart rate prediction is to predict the heart rate yt given the
historic readings of the previous heart rates and other useful inputs like speed:

yt = f(y1:t−1, x1:t) + et,

where et is the error term and f can be any parametric function, say a linear
function or neural network. The objective of federated learning is to learn such
a parametric model f in the server without sending each user’s raw data. In
particular, given data from n different users stored at each distributed node,
and denote the reading from user i as Di, the learning outcome is a trained
global model in the server with datasets {Di}ni=1; and the global learning should
only involve model parameters rather than raw user data. For later prediction,
the trained model at the server can then be directly used for predictions of future
users with personalization if possible.

3.2 Autoregression with Exogenous Variable Model

As the heart rate data is a time series with serial correlations, a suitable model
for such data sets is ARX. An ARX model with p autoregression components
and q + 1 lagged inputs can be formally written as:

yt = θ0 +

p∑
i=1

θiyt−i +

q∑
j=0

ωjzt−j + et

where et ∼ N(0, σ2) is white noise with variance σ2, yt, zt are heart rate and
speed measurements at time t. By defining β,x as the vectors concatenating the
model parameters and covariates, the model can be succinctly written as

yt = xTβ + et,

where βT = [θ0, θ1, . . . , θp, ω0, . . . , ωq] and xT = [1, yt−1, . . . , yt−p, xt, . . . , xt−q].

3.3 Federated Learning with Sequential Bayesian Inference

Bayesian inference provides a natural solution to the federated learning problem,
where the inference is on the posterior distribution of model parameters. By
making conditional independent assumption of the data at different nodes given
the model parameter, the posterior distribution of the model parameter can be
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learnt in a sequential manner. Denoting Di = {Xi,yi} as the dataset at node i
where yi = [yi,1, . . . , yi,ni

]T and Xi = [xi,1, . . . ,xi,ni
]T , and ni is the number of

time instances for user i; then the posterior distribution is

p(β, σ2|D1,D2, . . .Dn) ∝ p(β, σ2)p(D1,D2, . . .Dn|β, σ2) (1)

= p(β, σ2)

n∏
i=1

p(Di|β, σ2) ∝ p(β, σ2|D1,D2, . . .Dn−1)p(Dn|β, σ2), (2)

where the second equation has used the conditional independence assumption
and the last equation shows that the posterior can be recursively learnt by
updating the posterior of the previous n− 1 sites.

For an ARX model with fixed p, q terms, the model parameters are β and
σ2. A conjugate prior for the unknown parameters are Normal-Inverse Gamma
distribution, i.e.

p(β, σ2) = NIG(β, σ2;m0,Λ0, a0, b0) (3a)

= N(β;m0, σ
2Λ−10 )Inv-Gamma(σ2; a0, b0), (3b)

where N(µ,Σ) denotes a Gaussian distribution with mean and variance µ and
Σ; and Inv-Gamma(a, b) denotes a inverse Gamma distribution with shape and
rate parameter a, b respectively.

It can be shown that the posterior distribution can be obtained recursively
in a closed form by updating the prior parameters, {m0,Λ0, a0, b0}, and the
inference result is summarized in Theorem 1. According to the update proce-
dure in Equation (5a), instead of averaging all the model parameters learnt at
different sites, the Bayesian method essentially provides an alternative weighted
average procedure that takes into account of the model uncertainties as well as
the parameters themselves. That is, the weights depend on the variance Λ−1n ,
indicating the uncertainty of the parameter.

Fig. 1: Federated learning with sequential Bayesian inference

Theorem 1 (Sequential Bayesian inference). Adopt the NIG prior for β, σ2|∅
as defined in Eq. (3) for some pre-determined parameters m0,Λ0, a0, b0; for user
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Fig. 2: Federated learning with hierarchical Bayesian inference and empirical
Bayes method

datasets {Di}ni=1, the posterior distribution can be learnt sequentially, i.e. for
n > 0:

p(β, σ2|D1, . . . ,Dn) = NIG(β, σ2;mn,Λn, an, bn), (4)

where,

mn = (Λn)−1(Λn−1mn−1 +XT
nyn) (5a)

Λn = XT
nXn +Λn−1 (5b)

an = an−1 +
Nn
2

(5c)

bn = bn−1 +
1

2
(yTnyn +mT

n−1Λn−1mn−1 −mT
nΛnmn) (5d)

and Nn is the number of data points at site n.

To protect the privacy of the user, instead of sending all the raw data {Di}
to the server, we carry out the inference locally in a sequential manner. Each
node will learn the posterior sequentially, where the posterior parameters are
communicated. To achieve this, a pre-fixed sequential update order needs to
be decided at the server and the learning is done essentially by circulating the
posterior parameters among the sites. To be more specific, after an update se-
quential order is initialized, each node i will first receive the model parameters
Φi−1 = {mi−1,Λi−1, ai−1, bi−1} from the previous user, or the server if it is the
first update iteration, i = 1. Then the parameters will be updated according to
Theorem 1. The updated parameters Φi = {mi,Λi, ai, bi} will be relayed to the
next node i+1 until all sites update their parameters. The server will receive and
keep the learnt posterior parameter Φn = {mn,Λn, an, bn} for later prediction.
The learning procedure is described in Fig. 1.

3.4 Federated Learning with Hierarchical Bayesian Inference

The sequential processing algorithm clearly does not scale well when the number
of users/nodes increases. A distributed inference algorithm that allows parallel
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processing therefore is more appealing. To achieve this, hierarchical Bayesian
model is proposed, where hyper-priors over the prior parameters are introduced
and the model parameters at each individual site become conditionally indepen-
dent. By using a hierarchical model, we also achieve a principled way of learning
hyperparameters, {m0,Λ0, a0, b0}.

Formally, a hierarchical Bayesian linear regression model can be formulated
as follows

yi|βi, σ2
i ,Xi ∼ N(Xiβi, σ

2
i I)

βi, σ
2
i |m0,Λ0, a0, b0 ∼ NIG(m0,Λ0, a0, b0)

m0,Λ0, a0, b0|Ψ ∼ P (.),

where each user/node has its own model parameter {βi, σ2
i }. A common Normal-

InvGamma prior is imposed on the model parameters and the model parameters
become conditionally independent or exchangeable given the hyperparameters
Φ0 = {m0,Λ0, a0, b0}. A further hierarchical hyper-prior P of appropriate form
is imposed on the hyperparameters Φ0. For example, Gaussian is form0, Inverse-
Wishart is for Λ0, and Gamma is for a0 and b0. Usually vague uninformative
hyper-priors are used for the second tier distributions [18].

Empirical Bayes The inference for the hierarchical model cannot be solved in
closed form any more. Usually computationally expensive inference procedures
like Markov Chain Monte Carlo (MCMC) has to be used. An alternative is
Empirical Bayes (EB) method where hyperparameters Φ0 = {m0,Λ0, a0, b0}
are not sampled but directly maximised against the model evidence

Φ̂0 = argmax
Φ0

P (D1,D2 . . .Dn|m0,Λ0, a0, b0).

By treating the model parameters {βi, σ2
i }ni=1 as missing data, an EM algorithm

can be derived to find the optimal hyperparameters. The detailed derivation and
the EM algorithm is listed in the appendix.

The EB-based federated learning becomes an iterative procedure to accom-
modate the learning of the hyperparameters Φ0. The learning procedure iterates
between the following two steps:

1. Update the hyperparameter at the server given P ({βi, σ2
i }ni=1|{Di}ni=1, Φ̂

t−1
0 )

by an EM procedure listed Eq. (9):

Φ̂
t

0 = argmax
Φ0

P (D1,D2 . . .Dn|m0,Λ0, a0, b0).

2. At each site i, update the local posterior given Φ̂
t

0 = {m̂0, Λ̂0, â0, b̂0} in
parallel:

P (βi, σ
2
i |Φ̂

t

0,Di) = NIG(mi,Λi, ai, bi), where (6a)
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mi = (Λi)
−1(Λ̂0m̂0 +XT

nyn)

Λi = XT
i Xi + Λ̂0

ai = â0 +
Ni
2

bi = b̂0 +
1

2
(yTi yi + m̂T

0 Λ̂0m̂0 −mT
i Λimi) (6b)

To be more specific, at each iteration t ≥ 1, the server will propagate the current

hyperparameter Φ̂
t−1
0 to the clients (some initial non-informative piror’s param-

eters are used for the first iteration), each node then updates their posterior
distributions of the local parameters according to a variant of Theorem 1 and
sends back the learnt posterior parameters Φti = {mi,Λi, ai, bi} to the server.

The server will then optimize the hyperparameter Φ̂
t

0 based on the received
posterior distributions by the EM algorithm. Fig. 2 summarizes the learning
procedure at iteration t. Note that the local learning in Eq (6) is still in closed
form hence computationally cheap. Thanks to this conjugacy, we find that only
two to three iterations are usually good enough for the EB method to work in
practice.

4 Evaluation and Results

This section illustrates our evaluation methodology, including the dataset and
comparison techniques, and then present the results.

4.1 Dataset

We analyze the performance of proposed Bayesian inference federated learning
with collecting real-world outdoor running exercise data from 10 subjects wearing
Polar smart watches. Exercise time, running speed, and heart rate are recorded
in each exercise. The physical characteristics of subjects are listed in Table 1.
The duration of one exercise ranges from 30 minutes to 90 minutes and heart rate
ranges from 60bpm to 200bpm. Outliers are removed based on the interquartile
range criteria and missing values are imputed with linear interpolation. The ten
subjects are regarded as isolated to each other and cannot share their data due
to the privacy concern during the federated learning process.

4.2 Evaluation Methods

We evaluate the two proposed Bayesian Federated learning, FD Seq Bayes and
FD HBayes-EB, with two baseline solutions.

– FedAvg: a simple average based federated learning method where the local
regression models are trained by the least squared error method. A simple
average of the learnt parameters is used for future testing and prediction.
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Table 1: Physical characteristics of the subjects.

Age(yr) Height(cm) Weight(kg) BMI(kg/m2)

Mean 30.4 175.2 70.8 23.05

Standard Deviation 2.5 7.5 9.2 1.6

Range (27, 34) (162, 187) (55, 87) (19.9, 24.8)

– HBayes-MCMC: It refers to hierarchical Bayesian model inferred by Markov
Chain Monte Carlo (MCMC) method [18]. Note that this method does not
belong to federated learning realm as the training data from all the users is
aggregated and stored in the server.

4.3 Experiment Procedure

To evaluate the effects of the proposed methods thoroughly, we firstly randomly
select nine out of ten users as the existing users, leaving one user’s data for
testing as new users. For the nine chosen users, a random subset of each user’s
Ki exercises data is selected for model training: the selected exercises data is
further split into training and testing. The following three types of errors are
compared, including training error, testing error, and new exercise error (on the
left-out user’s and the unselected exercises’ data). We assume that the training
and testing data are drawn from the same population, and thus the training and
testing errors are used to assess the learning capability of the model. The new
exercise error represents the model performance on new users and new exercises
from selected users (which might have different distributions from the training
and testing data), indicating the generalization of the model. Squared errors
are used for evaluating the performance of the models. The errors are further
decomposed as by time-instance error and by-user error. The definitions of these
two errors are as follows.

errortime =

∑n
i=1

∑ni

t=1(yi,t − ŷ,it)2∑n
i=1 ni

,

erroruser =

∑n
i=1(

∑ni

t=1(yi,t − ŷi,t)2/ni)
n

,

where n is the total number of users (10 users in our case) and ni is the number
of data records of user i’s data.

4.4 Results

Table 2 and Fig. 3 report the experiment results of Ki = 10 for 100 repeated
experiments. Table 2 reports the means of squared errors and standard deviations
of means. As we can see that the proposed two federated learning methods, i.e.
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Train Error by User Test Error by User New Exercise Error by User

Train Error Test Error New Exercise Error

1.5

2.0

2.5

3.0

1.5

2.0

2.5

3.0

M
S

E

Method

FedAvg

FD Seq Bayes

FD HBayes−EB

HBayes−MCMC

Fig. 3: Experiment results on the four methods; where Ki = 10 exercises data
are used for training; where the error bars are the standard error

FD Seq Bayes and FD HBayes-EB outperform the simple FedAvg by significant
margins in all six types of errors; e.g., FD Seq Bayes and FD HBayes-EB reduce
0.16 and 0.46 on the mean of train error and 0.15 and 0.28 on the mean of test
error from FedAvg.

The hierarchical Bayesian method achieves better result compared to the
sequential method. The empirical Bayes method also achieves very similar re-
sults compared to the more computation intensive MCMC-based method in both
training and testing errors and outperforms its counterpart in the new exercise
error. Our results show that Bayesian based federated learning methods pro-
vide a more sound model synthesis (smaller testing error) and also new user
personalization performance (new exercise error).

Effects of Varied Training Datasets To further demonstrate the effects
of the Bayesian inference federated learning method, we deliberately make the
training data imbalanced to better simulate the real world scenario. To be more
specific, a random selection ratio (0.01%, 25%, 50%, 75%, 100%) is applied to
each user’s training data to make the training data imbalanced among the users.
We assume different amounts of data from users might have a negative impact
on federated learning; for example, the prediction might be biased towards the
users whose data takes the majority. The results of 100 random experiments
are listed in Fig. 4. It is obvious that all Bayesian based methods, both feder-



12 L. Fang et al.

Table 2: Experiment results of by user error on the four methods; where Ki = 10
exercises data are used for training. The mean and the standard deviations (in
brackets) are reported.

Train Error Test Error New Ex Error
by User by User by User

FedAvg 3.27 (0.27) 3.23 (0.31) 3.3 (0.18)
FD Seq Bayes 3.11 (0.26) 3.08 (0.28) 3.16 (0.19)
FD HBayes-EB 2.81 (0.23) 2.95 (0.33) 3.04 (0.19)
HBayes-MCMC 2.81 (0.23) 2.95 (0.33) 3.2 (0.26)

Train Error by User Test Error by User New Exercise Error by User

FD
 Average

FD
 Seq Bayes

FD
 H

Bayes−EB
H

Bayes−M
C

M
C

FD
 Average

FD
 Seq Bayes

FD
 H

Bayes−EB
H

Bayes−M
C

M
C

FD
 Average

FD
 Seq Bayes

FD
 H

Bayes−EB
H

Bayes−M
C

M
C

2

4

6

8

M
S

E Balanced 
Training Data
Inbalanced 
Training Data

Fig. 4: Experiments on imbalanced training data scenario

ated and traditional learning, outperform the likelihood based average method.
When imbalanced training data is used, the average methods fail in all three
error categories, and their large standard error also signifies the instability of
the methods. The Bayesian methods however are all more robust, i.e. the perfor-
mance deteriorates to a much less degree. We can also observe that the sequential
Bayesian method achieves slightly better results than the hierarchical model, as
the sequential method essentially pools the data together by integrating all local
parameters with weights but at the price of scalability.

5 Conclusion

When users perform physical exercises, one important goal is to optimize the
training process. Heart rate has been used as a most important indicator for
monitoring the training strain. Therefore, predicting heart rate during physical
exercise is crucial for tracking physiological responses and improving the effect of
the exercise. The majority of the existing research focuses on pooling together a
large amount of users’ data for building a robust model, which often has incurred
much privacy concern. To tackle this issue, we leverage a statistically sound
model – Bayesian inference and propose two Bayesian-based federated learning
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methods, i.e. FD Seq Bayes and FD HBayes-EB. They enable collaborative
model training under the orchestration of a central server, while not accessing
to any user’s local data. Through extensive evaluation on real-world dataset, we
have demonstrated the advantages of our methods in accurate prediction and
low computation cost. In the future, we will extend our evaluation to other ARX
regression problems to assess the generalization of our methods.
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A EM algorithm for hyperparameter estimation for
hierarchical Bayesian regression model

E step: The complete data log likelihood is

L(Φ0) = logP ({βi, σ2
i }n1 , {Di}ni |Φ0)

= log(P ({Di}ni |{βi, σ2
i }n1 ,Φ0)P ({βi, σ2

i }n1 |Φ0))

= log

(
n∏
i=1

N(yi;Xiβi, σ
2
i I)NIG

(
{βi, σ2

i };Φ0

))

=

n∑
i=1

log
(
NIG

(
{βi, σ2

i };Φ0

))
+ C,

where C contains all the terms that are independent of Φ0. The conditional
expected complete data likelihood is:

Q(Φ0|Φt−10 ) = E{βi,σ
2
i }n1 |Φ

t−1
0 ,{Di}ni

[L(Φ0)]

≈ 1

nL

L∑
m=1

n∑
i=1

log(NIG({βi, σ2
i }(m);Φ0))

where {βi, σ2
i }(m) denotes the m−th i.i.d. sample from P (βi, σ

2
i |Di,Φ

t−1
0 ), which

are NIG distributed. Sampling from a NIG distribution is straightforward by
a standard two step procedure by firstly sampling σ2 from Inv-Gamma(ai, bi)
then sampling from β from N(mi, σ

2Λ−1i ). Essentially, we are approximating the
conditional expectation with a Monte Carlo estimator with L samples from the
posterior P ({βi, σ2

i }n1 |{Di}n1 ,Φ
t−1
0 ). The EM algorithm degenerates to a Monte

Carlo Expectation Maximization (MCEM) [19].
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M step: the objective here is to maximize the conditional expectation, namely

Φ̂0 = argmax
Φ0

Q(Φ0|Φt−10 ) (7)

= argmax
Φ0

1

nL

L∑
m=1

n∑
i=1

log(N(β
(m)
i ;m0, σ

2(m)
i Λ−10 )) + log

(
G
(
σ
−2(m)
i ; a0, b0

))
(8)

where we have used the property that if x ∼ Inv-Gamma(a, b), then 1/x is
Gamma distributed with shape and rate parameters a, b, denoted as G(a, b). It

is easy to see that the optimal â0, b̂0 w.r.t Q are just the maximum likelihood

estimator of a Gamma distribution with dataset {σ2(m)
i }n,Li,m=1 (the second term

of Equation (8)). An iterative generalized Newton’s method can be used to find
the ML estimator of Gamma as follows [20].

1

a0
=

1

a0
+

log σ−2 − log(σ−2) + log a0 − Ψ(a0)

a20(1/a0 − Ψ ′(a0))
(9a)

b0 =
σ−2

a0
, (9b)

where

σ−2 =

∑L
m=1

∑n
i=1 1/σ

2(m)
i

nL
, log σ−2 =

∑L
m=1

∑n
i=1 log(1/σ

2(m)
i )

nL
.

Take the derivative of the Gaussian term in Eq. (8) w.r.t m0,Λ0 and set
them to zero, we can find the estimators for m0,Λ0:

m0 =

∑L
m=1

∑n
i=1

1

σ
2(m)
i

β
(m)
i∑L

m=1

∑n
i=1

1

σ
2(m)
i

(9c)

Λ−10 =
1

nL

L∑
m=1

n∑
i=1

1

σ
2(m)
i

(β
(m)
i −m0)(β

(m)
i −m0)T (9d)
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