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Abstract. The amount of functional MRI (fMRI) data processed in re-
search is growing, yet no practice or protocol to store them in a lossy
format exists. Many researchers are struggling with limited storage space,
and speed of common processing tools are often bound by storage speed.
In this work, we present a lossy compression framework for fMRI data
with user adjustable trade-off between compression ratio and root mean
squared error (RMSE). Our goal is to demonstrate the usability of on-the-
fly lossy compression for fMRI data. On one hand, the storage footprint
and processing speeds both benefit from higher data compression rates
achieved with lossy compression. On the other hand, data quality for
functional analysis remains effectively the same. With this short demon-
stration we encourage the research community to develop a lossy data
standard for fMRI data.
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1 Introduction

The most commonly used and standardized way of handling functional MRI
(fMRI) data is the Neuroimaging Informatics Technology Initiative (NIfTI) for-
mat[1]. The data format claims to deliver a unified representation for medical
professionals, scientists and engineers. However, fMRI nowadays produces im-
mense amounts of raw data, and the standard has not been updated to provide
lossy compression where applicable. While work has been done previously on
lossy and lossless fMRI data compression in [2–7], none of them is actively used.
Meanwhile, the size of recordings is growing with increased frame rates, e.g.
magnetic resonance encephalography (MREG)[8].

In direct medical, i.e. diagnostic use of MRI recordings, introducing lossy
compression is usually unacceptable, since the cost of buying and operating
recording devices are particularly high, and there is no room for technical degra-
dation of accuracy in medical diagnosis. But the situation is different in research,
where prototyping and feasibility analysis of methods do not necessarily require
lossless compression. For example, the commonly used process of registering
fMRI recordings of multiple subjects introduces data loss through interpolation.
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Some data loss may be even beneficial, in case the smaller storage space require-
ments and analysis speed improvements compensate for the drawbacks of lossy
data compression.

In this work, a novel lossy compression encoding and decoding framework
(codec) for fMRI data and its effects on analysis are presented. We show, that our
codec significantly reduces fMRI file sizes, while maintaining acceptable quality
for analysis.

2 Methods

In the NIfTI data format[1], 4D fMRI voxels are stored sequencially in a one-
dimensional array in row-major order with a leading 352-bit header. Optionally,
the file is compressed losslessly in the gzip format. This introduced serious
seek speed limitations earlier, which have been solved with indexed gzip[9] as
proposed in [10].

In this work, we are focusing on IEEE 754 32-bit floating point data only,
since that is the most common data representation format in fMRI research in
the processing pipelines.

To simplify file format definitions, we used the widely adapted HDF5[11] file
format for our result, which can also conveniently store the header information
as a separate entity within the same file. Figure 1 presents the overview of the
encoding pipeline used for our demonstration. All elements have been widely
used for many years in encoding various data types. Our algorithm is similar to
established image and video compression algorithms.

DCT zig-zag quantization compression

Fig. 1. The main steps of the encoding pipeline: discrete cosine transform, zig-zag
reordering, quantization, generic compression.

2.1 Discrete Cosine Transform

For simplicity, the data is processed in 8 × 8 × 8 blocks (512 voxels) for each
time step, and the coding steps are executed block-wise. Zero padding was used
where necessary. Discrete cosine transform (DCT)[12] is applied using FFTW
library[13] on the data for its attractive computational attributes: operating in
real-to-real domain, reducing required operations, and saving time compared to
discrete Fourier transform.

The one-dimensional DCT-II is formulated as
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where k = 0, . . . N − 1, N is the number of samples in the sequence x =
[x1, x2, . . . xn] and k is the index of the currently computed element in the trans-
formed vector X. The inverse DCT-II (IDCT-II or DCT-III) is
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where denotations are as previously. In addition, as the transformed objects
are three-dimensional, and multi-dimensional DCT transforms are simply the
product of the transforms for each dimension with FFTW, data is multiplied by
scaling factor (1/2)3.

2.2 Reordering (Zig-zag)

The elements of a DCT-transformed block are reordered by frequency in ascend-
ing order using L1 distance. The first element is thus the DC coefficient.

This sort of arranging is known as zig-zag reordering in digital image process-
ing, which we are extending here to three spatial dimensions. It is used e.g. in
JPEG image compression as well[14]. The motivation is to sort the DCT domain
elements by frequency: as the low-frequency coefficients usually contain most of
the energy of the block, they are to be quantized as little as possible[14].

2.3 Quantization

Part of the data is decimated by gradually zeroing least significant digits of
mantissas towards the end of the reordered block. The DC element is always left
untouched.

We decided on the decimating method with the help of a short experiment.
Three different sample blocks were selected (S1: inside brain, S2: brain edge,
S3: mostly zero) to evaluate achievable compression and normalized root mean
square error (NRMSE) defined as NRMSE = RMSE

ȳ , where ȳ is the average

value of the data for which root mean squared error (RMSE) was calculated.
The three experiments were following a linear, a quadratic, and a logarithmic

function between the distance of the DC coefficient and the number of least
significant bits zeroed from the mantissa. The mathematical formulation for the
linear function is

f linq (x) = round

[
(Bmax −Bmin)(x−Bmin)

N −Bmin

]
(3)

where 0 ≤ Bmin < N ≤ Bmax and x is the element index counted from the DC
coefficient, Bmax is the index of the last bit that is zeroed, Bmin is the index for
the first zeroed bit, and N is the index of the element at which Bmax is reached,
hence referred to as the cut-off index. Only the mantissa is decimated, so Bmax

cannot be more than 22 for single precision float. For the rest of the paper, Bmax
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is referred to as the quantization level. The lower limit for Bmin is 1. In a similar
manner, the formula for the quadratic function is

fquadq (x) = round

[
−Bmax

N2
x2 − 2x

(
−Bmax

N

)]
(4)

and for the logarithmic function

f logq (x) = min [Bmax,max [0, round(c · log(x))]] (5)

where c is the scaling coefficient that can be adjusted to obtain the desired curve.
Various cut-off indices for the linear and quadratic functions, and different

coefficients for the logarithmic function were tested on S1−3 blocks, and their
NRMSE on 10−3 scale is presented in Table 1.

Table 1. NRMSE and compression ratio improvement (CR+) with different quanti-
zation functions and parameters for three different data block types

Block S1 S2 S3

NRMSE (10−3) CR+ NRMSE (10−3) CR+ NRMSE (10−3) CR+

Cut-off Linear

N = 512 0.0864 28.1% 0.2261 32.1% 4.288 33.8%
N = 384 1.083 42.5% 3.542 47.3% 65.11 48.8%
N = 256 2.893 60.3% 10.10 63.8% 154.1 64.8%
N = 128 7.635 58.6% 33x.56 62.1% 418.8 63.5%

Cut-off Quadratic

N = 512 0.2553 40.7% 0.8633 47.1% 14.01 49.6%
N = 384 0.5121 47.5% 1.892 55.6% 26.95 58.2%
N = 256 0.7868 39.8% 3.416 46.3% 49.37 48.7%
N = 128 3.883 57.6% 15.45 62.5% 189.77 64.6%

Coeff. Logarithmic

c = 3.6 0.4549 57.7% 1.699 66.3% 23.81 70.0%
c = 4.5 2.291 69.0% 8.194 79.7% 93.30 83.1%
c = 5.4 5.030 72.4% 16.55 84.0% 125.8 87.2%
c = 6.3 8.123 74.0% 23.97 85.7% 179.9 88.8%

2.4 Compression

Table 1 also presents the compression ratio improvement (CR+) compared to
the original (losslessly compressed) block. With these results it was concluded,
that the logarithmic function has the most desirable properties for quantization:
while NRMSE is generally low with every function, the logarithmic function
produces higher compression ratios. The later experiments were conducted with
logarithmic quantization, with coefficient c = 4.5.
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In general, all the data were compressed with gzip level 6 parameter. The
encoded data was stored in the HDF5 format[11] with data chunks of 327, 680
blocks and gzip compression. To improve performance on blocks with many
zeros, each lossily compressed block was compared to its losslessly compressed
counterpart (no DCT, no reordering, no quantization). In case the lossless com-
pression outperformed the lossy block, the original block was used, and the
binary mask of losslessly compressed blocks was saved within the HDF5 file.

All steps described here were implemented in C++17 with GNU GCC compiler
into a single threaded application. Tests were run on an Intel i7-8700 desktop
PC with Ubuntu 18.04.

3 Results

To evaluate the performance of our lossy compression method, we compressed
72 MREG brain recordings of 5 minutes (2961 frames at sampling rate of 10
Hz) at spatial resolution of 61 × 73 × 61 voxels per frame. The sample data was
registered frame-wise and subject-wise to 3mm × 3mm × 3mm standard MNI
space. This is an excellent use case for lossy compression, since data had to be
interpolated already, lossy transformations were applied already earlier during
data preprocessing (e.g. registration).

3.1 Coding Speed with Different Quantization Levels

We have measured encoding and decoding speeds with different quantization
levels, which are presented in Table 2. This includes storage read and write times,
together with the HDF5 overhead. The quantization level is the parameter Bmax

of equation 5.

Table 2. Encoding and decoding speed with different quantization levels

q=4 q=10 q=16 q=22

Encode (106 voxel/s) 3.01 2.68 29.19 2.45
95% conf. range ±0.04 ±0.06 ±3.35 ±0.02

Decode (106 voxel/s) 35.72 29.19 36.06 37.78
95% conf. range ±3.77 ±3.35 ±3.75 ±3.24

3.2 Compression Ratio and NRMSE

Figure 2 presents the NRMSE values against achieved compression ratios for
the selected quantization levels 4, 10, 16, and 22. Quantization level 0 denotes
lossless compression. 95% confidence intervals are also plotted in the background.
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Fig. 2. Compression ratios and NRMSE values with lossless compression (q = 0) and
quantization levels 4, 10, 16, 22.

3.3 Coding and Storage Speed

Hard disks were used as storage in the previous experiments. We realized, that
I/O operation (disk read and write) were the slowest components of encoding
and decoding. Therefore, using the samples from section 2.3, we evaluated I/O
operation speeds of encoding and decoding with fast non-volatile memory express
(NVMe) solid state (SSD) storage as well. The speed of reading (from disk),
encoding (in memory), decoding (in memory), and writing (to disk) operations
are presented in Table 3 in million (106) voxel/second.

Table 3. Speed of coding parts using fast NVMe SSD storage

Read Encode Decode Write

Average speed (106 voxel/s) 56.68 73.35 169.03 118.21
95% confidence range ±5.04 ±6.13 ±15.82 ±25.46

The table clearly shows, that the read and write I/O operations are slower
than encoding and decoding. Furthermore, encoding and decoding can be con-
veniently parallelized, since compression chunks (327, 680 block units) are com-
pletely independent computationally. This means, that it is feasible for our al-
gorithm to be used on-the-fly, keeping the storage operations as speed limiting
factors. Also note, that times spent on storage operations are reduced linearly
with higher compression rates: there is simply less data to read or write.
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3.4 Effect on Functional Analysis

We chose a simple example to test feasibility in functional analysis. Seed-based
correlation analysis shows the areas of the brain correlating with a seed region
of interest (ROI). We chose the posterior cingulate cortex (PCC) ROI, accord-
ing to the Harvard-Oxford cortical atlas[15] with a 50% probability threshold
in the standard MNI brain. The analysis was performed with FSL[16] dual re-
gression[17]. Results were compared to original data with different quantization
parameters (c.f. Table 4).

Table 4. RMSE of seed-based correlation analysis results

q=4 q=10 q=16 q=22

RMSE (10−3) 0.6916 11.01 40.84 88.15
95% conf. range (10−3) ±0.16 ±2.122 ±7.317 ±14.54

Since the results of this analysis are zero-centered, we used RMSE without
normalization. The RMSE values together with compression ratios are presented
in Figure 3 for comparison. Figure 4 presents the group averages of the analysis
result, the areas exceeding threshold of 1.0.

Fig. 3. Compression ratios against RMSE of seed-based correlaton analysis results with
lossless compression (q = 0), and quantization levels 4, 10, 16, 22.

Figure 4 demonstrates, that there are some differences introduced with lossy
compression, but it minimally affects the shape and extent of the results. Data
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Fig. 4. Group average of seed-based correlation analysis result maps of orthogonal
planes intersecting MNI point (18,−60, 48). Lossless results are shown in red color
with threshold 1.0, and results from lossily compressed data with quantization levels
4, 10, 16, 22 similarly in blue color.
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are overlapping nearly exactly, and there is no structural difference. If higher
accuracy is necessary, lower quantization levels can be applied by the user.

4 Discussion

We have shown that compression ratio of fMRI data can be improved consider-
ably with lossy compression, while it does not affect functional analysis substan-
tially. Higher compression ratios enable lower storage space and higher processing
speeds. Therefore, lossy compresion is a valuable option, especially in research
with large number of recordings. Furthermore, we have demonstrated, that en-
coding and decoding can be performed on-the-fly, since they are always shorter
tasks than reading and writing data to disk, even on high performance NVMe
SSD storage.

The trade-off between accuracy and compression ratio can be balanced with
the quantization parameter to suite user needs. Additionally, gzip compression
levels can be adjusted to trade-off between storage size and processing speeds.
The HDF5 file format is also extendable with other compression protocols, but
gzip turned out to be superior for floating point data against szip. HDF5 also
provices compatibility with many existing software tools, and random access
(seek) times can be adjusted with number of blocks included in a data chunk.

This work did not present data on a large variety of fMRI sequences, and
many parameters can be fine-tuned with further measurements in the future.
We did not intend to make an exhaustive presentation of compression options or
choosing the best lossy compression method. Instead, we would like to encourage
the research community to develop and standardize an fMRI data compression
protocol, because it would have many benefits in fMRI research and the imple-
mentation can be as simple as in our example. We only wrote 3600 lines of code
which included multiple tests and prototypes.
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