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Abstract. The latest smartphones have advanced sensors that allow
us to recognize human and environmental contexts. They operate pri-
marily on Android and iOS, and can be used as sensing platforms for
research in various fields owing to their ubiquity in society. Mobile sens-
ing frameworks help to manage these sensors easily. However, Android
and iOS are constructed following different policies, requiring develop-
ers and researchers to consider framework differences during research
planning, application development, and data collection phases to ensure
sustainable data collection. In particular, iOS imposes strict regulations
on background data collection and application distribution. In this study,
we design, implement, and evaluate a mobile sensing framework for iOS,
namely AWARE-iOS, which is an iOS version of the AWARE Frame-
work. Our performance evaluations and case studies measured over a
duration of 288 h on four types of devices, show the risks of continuous
data collection in the background and explore optimal practical sensor
settings for improved data collection. Based on these results, we develop
guidelines for sustainable data collection on iOS.

Keywords: Mobile Sensing Framework, Sustainable Sensing, Guideline,
iOS, Data Collection Rate

1 Introduction

Mobile crowd sensing (MCS) is a research method to understand human activ-
ities on individual, group, and community levels using data collected by smart-
phones, which have become ubiquitous worldwide [1]. MCS-based research is
being conducted on various scales and terms, including research in fields like
computer science, social science, and public health [2–4].

The developments in mobile sensing frameworks [5–7] have accelerated these
kinds of MCS research. Such frameworks are capable of dramatically reducing
the developmental and maintenance costs of sensing software. For instance, Fer-
reira et al. developed the AWARE framework [5], which allows the collection of
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hardware-based (e.g., accelerometer, GPS, and barometer), software-based (e.g.,
battery, screen, and network), and human-based (Experience Sampling Method
(ESM)) data on the Android platform. In addition, AWARE is designed to man-
age large-scale human subject studies remotely through a web dashboard.

According to market research [8], Android systems account for 71.94% of the
market share, and iOS accounts for 18.89% of the global market share. However,
in certain countries (e.g., Japan, the United States of America, the United King-
dom), the market share of iOS is bigger than or comparable to that of Android.
For example, in Japan, iOS accounts for 72.45% of the market share, compared
to Android’s 26.43%. If iOS accounts for more than 50% of the market share
in a specific area, then collecting data from both iOS and Android in that re-
gion becomes imperative to expand data collection opportunities. Several mobile
sensing tools [6, 7] have been developed for iOS, but planning and managing a
sustainable MCS-based study using iOS remains a challenge.

In this paper, we propose a mobile crowd sensing framework for iOS (namely
AWARE-iOS) based on the AWARE Framework [5] which is a mobile sensing
framework for Android. AWARE-iOS allows us to collect sensor data sustainably
with a few lines of code or through a published client application. Moreover, it
provides options for controlling sensors, storage, remote server-connection, and
web dashboard to optimize each research purpose. This proposed framework has
already been used in various studies [9–11]. Through performance evaluations
and case-studies of AWARE-iOS, we demonstrate the potential risks of in-the-
wild mobile sensing on iOS and explore a configuration which allows sustainable
data collection on iOS. Finally, based on these results, we propose a guideline
for realizing sustainable MCS studies using iOS.

The contributions of this study are as follows:

– This study studies the regulations regarding background sensing on iOS,
and demonstrates the advantages and disadvantages of iOS in the context
of mobile sensing.

– It designs and develops an open-source MCS framework for iOS based on
the regulations on iOS.

– It performs basic performance evaluations and in-the-wild studies, demon-
strating the risks and modes of their prevention in background sensing on
iOS.

– Based on these results, it proposes guidelines for a MCS study using iOS.

2 Mobile Crowd Sensing Studies and Frameworks

MCS-based research in Ubiquitous Computing, Human-Computer Interaction,
and/or Public Health collect information regarding human activities using mo-
bile devices to gain an understanding of activities in the daily lives of people.
Rachuri et al. [4] developed a mobile sensing platform for social psychology
studies that operated using mobile phones, called EmotionSense. Their devel-
oped system can detect individual emotions and verbal and proximal interac-
tions between social group members from the sensors (e.g., microphone, GPS,
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Table 1. Existing Mobile Sensing Frameworks for iOS

Name OS Client Library Server Survey OSS

AWARE [5] iOS+Android X X X X Apache 2.0
Sensus [7] iOS+Android X X X Apache 2.0

mEMA [21] iOS+Android X X X
SensingKit [6] iOS+Android X X LGPL-3.0
StudentLife [3] iOS+Android X

and accelerometer) on off-the-shelf smartphones. Similarly, StudentLife [3] mea-
sured hidden stress and strain in the lives of students based on data gathered
by smartphones. In particular, they focused on detecting the day–to–day and
week–by–week impacts of workload on stress, sleep, activity, mood, sociability,
mental well–being, and academic performances of students. In SmartGPA [12],
Wang et al., predicted the academic performance of participants based on the
dataset of StudentLife. In addition to passive sensor data gathered by a smart-
phone, these research projects collect human subject data using a questionnaire
on the smartphone. The questionnaire is called ESM and/or Ecological Mo-
mentary Assessment (EMA) [13–15]. Participants who have enrolled in a study
record temporal thinking and their emotions at the same moment on memos or
digital devices. For example, in StudentLife [3] project, they recorded partici-
pants’ subjective data (e.g., stress-level, social-pressure, and sleep quality.) using
EMA during their study.

Various mobile sensing frameworks for Android platform [4, 5, 16–20] have
been proposed and used real studies. For instance, AWARE Framework [5] is an
open-source mobile sensing framework, and that allows us to access hardware-
, software-, and human-based sensor easily. AWARE is designed to handle a
large–scale MCS study remotely through a web dashboard, flexibly extend or
import the client and library for satisfying requirements of each study.

Table 1 shows the iOS supported frameworks [3, 6, 7, 21] and functions of
each framework. Though stable sensing is an important factor in a mobile sensing
framework, these frameworks have not been satisfactorily evaluated the data col-
lection performance in the real condition. SensingKit [6] has evaluated the bat-
tery consumption in simple sensor conditions, however, the performance might
fluctuate by the sensor and device settings in the real situation. Moreover, Xiong
et al. [7] conducted a case study using Sensus, however, the evaluation does not
illustrate the stability of data collection during the study. While providing data
loss risks and prevention methods assume helps us to plan and manage an MCS
study, these risks are not clear and a guideline for sustainable MCS study using
iOS platform does not exist.
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3 Hindrances of Sustainable Mobile Crowd Sensing

A smartphone possessing multiple sensors is a powerful sensing tool to track the
daily lives of people. At the same time, they are frequently used in daily life for
multiple purposes such as web-browsing, emailing, gaming, camera, etc.

The Operating System (OS) tries to minimize resource usage for each ap-
plication that is running as a background process to improve User Experience
(UX), because each application on a smartphone uses shared resources like bat-
tery, CPU, and storage. On recent versions of OS, an application that does not
follow the regulations of the OS is killed or suspended automatically by the OS.
In particular, iOS imposes strict regulations on background sensing. This section
describes the regulations of iOS regarding MCS-based studies.

3.1 OS Diversity

As a sensing platform, iOS and Android exhibit different characteristics, and
they have been tabulated. While Android can access various sensors and dis-
tribute an application flexibly, the maintenance costs of the application on it are
high because lots of devices are released every year from different manufacturers
all over the world, and each Android OS is customized by the corresponding
manufacturer.

On the other hand, iOS suffers from various limitations to accessing Applica-
tion Programming Interfaces (APIs) and distribution methods of an iOS app are
limited. However, the maintenance costs are low in its case because iOS devices
are released exclusively by Apple. In addition, more than 90% of iOS users use
a newer version of OS (iOS 12 or 131 on January 10, 2020) while only 38.7% of
Android users use Android 8(Oreo) or 9(Pie)2.

3.2 Resource Limitation

Minimizing resource usage is a common challenge on an off-the-shelf smartphone
to improve UX. For example, Low-Power Mode on iOS reduces battery con-
sumption by restricting CPU performance and background activities, especially
network connections.

To evaluate storage consumption, we checked the available storage space for
54 undergraduate male students, who possess 16 GB (N = 10), 32 GB (N = 5), or
64 GB (N = 40) storage models, at Keio University, Japan in 2016. As recorded
in Figure 1, 80% of 16 and 32 GB models had less than 1.5 GB free space. The
data size of contents increase with time (e.g., Full HD to 4K video), and thus,
in this context, available storage is also a significant risk for sustainable data
collection.

In addition, an application is barred from using more than 80% of the CPU
for more than 60 s while running as a background operation, according to Apple

1 https://developer.apple.com/support/app-store/
2 https://developer.android.com/about/dashboards/index.html
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Fig. 1. Free storage space for each specification (16, 32, and 64 GB)

document 3. If an application oversteps this regulation, the iOS shuts down the
application process immediately.

3.3 Restricted Background Sensing on iOS

An iOS app that tracks human activities courteously in the daily lives of people
needs to run even if the application is not running as a foreground process. As a
lifecycle4, apps on iOS may have one of the following five statuses: Not Running,
Inactive, Active, Background, and Suspended. If an application is allowed to run
in the background, it can continue to run after closing the app. On iOS, if
the application serves a function from the following list, it can be run in the
background.

– Location updates
– Remote Notifications – Voice over IP (VoIP)
– Audio, AirPlay, and Picture in Picture
– External accessory communication
– Uses Bluetooth LE accessories
– Acts as a Bluetooth LE Accessories
– Background Fetch
– Background Processing

“Location Updates” and “Remote Notifications” functions are commonly
used in most applications, and, therefore, such apps easily pass the review by
Apple and do not flout iOS regulations. Silent Push Notification (SPN) is a
part of remote notification that can be used to send data in JSON format to
smartphones from the server-side without any alert and sound to the recipient
two or three times per hour5. The notification’s priority is low, and the system
does not guarantee its delivery.

3 https://developer.apple.com/library/archive/documentation/Performance/

Conceptual/EnergyGuide-iOS/WorkLessInTheBackground.html
4 https://developer.apple.com/documentation/uikit/app_and_environment/

managing_your_app_s_life_cycle
5 https://developer.apple.com/documentation/usernotifications/setting_up_

a_remote_notification_server/pushing_background_updates_to_your_app
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Table 2. Application distribution methods

Method Device Deployment Review Estimated Account Software Private Study Build
Registration Platform by Apple Review Time Fee Update API Scale Expiration

AppStore NO AppStore YES 1-7 days 99$ Automatic NO 1˜∞ Never
or Manual

TestFlight NO TestFlight YES 1-7 days 99$ Manual NO 1˜10000 90 days
(External) or URL

Apple Developer NO URL NO Immediate 299$ Manual NO 1˜100 Never
Enterprise Program

TestFlight YES TestFlight NO Immediate 99$ Manual NO 1˜100 90 days
(Internal)

DeployGate YES DeployGate NO Immediate 99$ Manual YES 1˜100 Never
(AdHoc)

Xcode YES Xcode (PC) NO Immediate 99$ Manual YES 1˜100 Never

3.4 Limitation of Application Distribution

Table 2 depicts distribution methods for an application to an iOS user. An
application developer and researcher can choose the best way to provide an
application for their study from the list.

During the developmental phase, a developed application can be installed on
a device that is registered as an Apple Developer Account by Xcode (which is
an IDE for Xcode). However, each developer account can register a maximum
of only 100 devices. By using AdHoc distribution (like DeployGate), we can
deploy the application by URL, but the iOS device is required to be registered
to an Apple developer account before building the application. AppStore is a
digital distribution platform for iOS applications managed by Apple. iOS devices
can download and update applications through the platform. However, releasing
an application on AppStore needs to pass a review by Apple. The review is
conducted under AppStore review guideline6, and generally takes a few days.

4 AWARE Framework for iOS

AWARE Framework is an open-source mobile sensing framework for Android
which has been developed by Ferreira et al. [5]. The AWARE Framework is com-
posed of an AWARE-Server (hereafter referred to as AWARE-Server), which is a
common LAMP (Linux+Apache+MySQL+PHP) server, and -Client (hereafter
referred to as AWARE-Android), which is an Android application.

In this study, we design and implement an AWARE Framework for iOS,
namely AWARE-iOS, that is compatible with AWARE-Android and -Server.
Figure 2 presents an overview of AWARE-iOS. Its architecture is inspired by
AWARE-Android. AWARE-iOS is composed of a Library (see Section 4.1) and
a User Interface (UI) module (see Section 4.2) to improve reusability.

Compared to AWARE-Android [5], iOS does not allow connections to MQTT
for a background process. Thus, instead of MQTT on Android, AWARE-iOS uses

6 https://developer.apple.com/app-store/review/guidelines/
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Fig. 2. Overview of AWARE-iOS

SPN7 to transmit data (in JSON format) from the server-side. An SPN can be
included as a payload whose maximum size is 4096 bytes8.

4.1 Core Library

The Library module comprises three sub-modules to manage study, sensors, and
survey schedules (see Section 4.1). This section describes these sub-modules with
sample codes.

Table 3 depicts the supported sensors on AWARE-iOS. The number of sup-
ported sensors are less than that of AWARE-Android due to API limitations
(e.g., light, proximity, and temperature), but all of the accessible sensors on iOS
are supported, to the best of our knowledge [3, 6, 7]. The source code is written
in Objective-C and supports iOS 10 or later. AWARE-iOS is published under
Apache License 2.0 on GitHub9, similar to AWARE-Android.

Library Instruction The core library is released on CocoaPods10, which is a li-
brary management tool for Xcode project. Just to write pod ’AWAREFramework’

into Podfile and run pod install, a developer and add AWARE-iOS into Xcode
project. The developer can use the functions of AWARE-iOS by importing the
library into the application by import AWAREFramework.

The supported sensors (as depicted in Table 3) can be categorized into the
following two types:

7 https://github.com/tetujin/aware-push
8 https://developer.apple.com/documentation/usernotifications/setting_up_

a_remote_notification_server/generating_a_remote_notification
9 https://github.com/tetujin/AWAREFramework-iOS

10 https://cocoapods.org/
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Table 3. Supported sensors on AWARE-iOS comparing with -Android

Sensors Support Type Source Permission

Accelerometer XX Periodical Hardware NPS
Gravity XX Periodical Hardware NPS
Linear Accelerometer XX Periodical Hardware NPS
Gyroscope XX Periodical Hardware NPS
Rotation XX Periodical Hardware NPS
Magnetometer XX Periodical Hardware NPS
Wi-Fi X Periodical Hardware NPS
Location XX Periodical Hardware PS
Barometer XX Periodical Hardware PS
Ambient Noise XX Periodical Hardware PS
Bluetooth X Periodical Hardware PS
Telephony Periodical Hardware —
Light Periodical Hardware —
Temperature Periodical Hardware —
Processor XX Periodical Software NPS
Timezone XX Periodical Software NPS
Activity Recognition XX Periodical Software(Auto) PS
Pedometer XX Periodical Software(Auto) PS
HealthKit ∗ XX Periodical Software(Auto) PS
Weather XX Periodical Software(Web API) NPS
Fitbit XX Periodical Software(Web API) NPS
Proximity X Event Hardware NPS
Screen XX Event Software NPS
Battery XX Event Software NPS
Communication X Event Software NPS
Installations Event Software —
Applications Event Software —
Keyboard X Event Software PS
ESM X Event Human NPS
XX Supported
X Partly Supported
∗ Only iOS

– Non-permission-imposed Sensors (NPS): An NPS does not require permis-
sion for an app to access it. For example, accelerometer, gyroscope, Wi-Fi,
and processor are NPS on iOS.

– Permission-imposed Sensor (PS): A PS requires permission for an app to
access it, and might need to describe the reason of requirement during the
application review by Apple. On iOS, location, microphone, motion activity,
Bluetooth, calendar, contact, and HealthKit are considered to be PS.

All applications on AppStore or TestFlight need to pass the review by Apple.
Apple developer guideline demands minimizing the use of PS owing to security
concerns, and therefore, a developer should focus on minimizing sensor usage. PS
can be installed separately by using subpod function on CococoaPods as shown
in Listing 1.1.

1 pod ’AWAREFramework ’
2 pod ’AWAREFramework/Microphone ’
3 pod ’AWAREFramework/MotionActivity ’
4 pod ’AWAREFramework/Bluetooth ’
5 pod ’AWAREFramework/Calendar ’
6 pod ’AWAREFramework/Contact ’
7 pod ’AWAREFramework/HealthKit ’

Listing 1.1. Podfile
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Anchor To collect data continuously, AWARE-iOS maintains a location sensor
perpetually activated in the background as an anchor. The iOS location sensor
has the following six levels of accuracy: best, best for navigation, nearest ten
meters, hundred meters, kilometer, and three kilometers. By default, AWARE-
iOS uses a location sensor that is accurate up to three kilometers. The battery
impact of the low-accuracy location sensor is considered in our basic performance
evaluation (see Section 5.2).

Sensor Manager Listing 1.2 depicts a sample code for using the accelerom-
eter sensor in the background. During launch, the app (1) imports AWARE
Framework into the project, and (2) requests permission for background sens-
ing from the user. After authorization, AWARECore can be activated for back-
ground sensing (3). Each sensor can be initialized by (4). AWARECore, AWAREStudy
and AWARESensorManager are designed as a singleton class; these classes can
be accessed from anywhere in the app. AWAREStudy handles study configura-
tions, such as a remote server URL, sensor activation if a study exists, and
remote DB sync. In addition, (5) each sensor event can be handled by the
-setSensorEventHandler method. (6) A sensor instance can be retained on
the memory by adding it to AWARESensorManager, and can be accessed from
any place in the app through the manager. The collected data are saved in
SQLite, JSON, or CSV based local storage temporarily.

1 /// (1) import ‘AWAREFramework ‘
2 import AWAREFramework
3 /// (2) request permission
4 let core = AWARECore.shared ()
5 core.requestPermissionForBackgroundSensing{ (status) in
6 /// (3) activate AWARECore
7 core.activate ()
8 /// (4) initialize sensor(s)
9 let study = AWAREStudy.shared ()

10 let acc = Accelerometer(awareStudy: study , dbType: AwareDBTypeSQLite)
11 /// (5) handle sensor events (option)
12 acc.setSensorEventHandler { (sensor , data) in
13 // YOUR CODE
14 }
15 acc.startSensor ()
16 /// (6) add the sensor(s) into the sensor manager
17 AWARESensorManager.shared ().add(acc)
18 }

Listing 1.2. A sample code for activating a sensor

Survey Manager As in the case of AWARE-Android, AWARE-iOS supports
Mobile ESM as a survey function. On AWARE-iOS, the following types of survey
are supported: Text, Radio, Checkbox, Likert Scale, Quick Answer, Scale, Date-
Time, PAM [22], Numeric, Web, Date, Time, Clock, Picture, Audio, and Video
(screenshots can be found here11).

11 https://github.com/tetujin/AWAREFramework-iOS/tree/master/Screenshots/

esms
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Listing 1.3 depicts a sample code for setting a build-in survey with a Ra-
dio format. The ESMScheduleManager manages the entire ESM schedule that is
instanced by ESMScehdule. An ESMScehdule instance possesses parameters for
scheduling surveys as notification titles, expiration thresholds, times for notifi-
cation, and survey items. The survey items support the 16 types of the surveys
mentioned above. Moreover, ESMScheduleManager can be set up using a JSON
file which includes configuration of survey schedule from a connected AWARE-
Server.

1 let schedule = ESMSchedule ()
2 schedule.notificationTitle = "Notification Title"
3 schedule.expirationThreshold = 60
4 schedule.fireHours = [9, 15, 21]
5
6 let radio = ESMItem(asRadioESMWithTrigger: "trigger", radioItems:

["A","B","C"])
7 radio.setTitle("Title")
8 radio.setInstructions("Instructions")
9 schdule.addESM(radio)

10
11 ESMScheduleManager.shared ().add(schdule)

Listing 1.3. Generating an ESM schedule

In addition to the fixed schedule survey, AWARE-iOS can implement a
context-based survey by using sensors and the setSensorEventHandler method.
For example, AWARE-iOS is able to send a survey to the user when a user fin-
ishes a phone call.

Study Manager AWARE-iOS can upload sensor data to a connected remote
cloud server if the user has signed up for a study. Studies can be managed on a
dashboard on the AWARE-Server (accessible at https://api.awareframework.
com). The AWARE-Server is also an Open Source Project (under Apache 2.0),
and thus each researcher can host an AWARE server on the researcher’s hosting
server, such as Google Cloud Platform, Amazon Web Services, and Microsoft
Azure. Listing 1.4 depicts a sample code for signing-up to a study by using a
study URL, and for activating sensors with a study configuration on AWARE-
Server

1 let url = "https :// aware.server_url.com/STUDY_ID/PASS"
2 study.join(withURL: url) { (settings , studyState , error) in
3 let manager = AWARESensorManager.shared ()
4 manager.addSensors(with: study)
5 manager.startAllSensors ()
6 }

Listing 1.4. Joining a study using a study URL

4.2 User Interface

The AWARE Client iOS is a sample application that serves as the user interface.
Users access AWARE-iOS APIs through the application. The application is writ-
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Fig. 3. Screenshots of the AWARE Client on iOS

ten in Swift and has been released on AppStore12 and GitHub13 under Apache
License 2.0. As depicted in Figure 3, the application has three views: settings,
ESM, and context cards. A user can modify study settings on the settings view.
ESM displays a survey if the survey has been delivered to the app, and con-
text cards show collected sensor data on a card-like view. These functions are
changeable through the AWARE-Server and on the client.

5 Evaluation and Case Studies

In this section, we evaluate (1) basic performance of SQLite, JSON and CSV-
based local storage that is supported on AWARE-iOS, and (2) battery con-
sumption of each sensor and configuration. Finally, (3) we conduct case studies
to measure data collection rates and coverages in each case study.

5.1 Data Insertion and Fetching Performance

Motion sensors such as accelerometers, gyroscopes, and magnetic-fields are com-
monly used to detect human and mobile movement. While such sensors are
implemented on various devices and are usable for multiple purposes, raw sensor
data are collected at high frequencies (1—100 Hz), and this generates a signifi-
cant amount of data on a smartphone.

Table 4 depicts the table format on the SQLite database on AWARE-iOS,
which is a sample table format available on AWARE-Android. Accelerometer
data are saved with a timestamp, device ID, values (including X, Y, and Z axes),
and label. Table 5 depicts the estimated data sizes gathered by the accelerometer
at 5 Hz and 50 Hz over an hour, day, week, and month (4 weeks). The total data
size exceeds 1 GB in a week at 50 Hz and in a month at 5 Hz and 50 Hz.
12 https://apps.apple.com/app/aware-client-v2/id1455986181
13 https://github.com/tetujin/aware-client-ios-v2
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Table 4. Table format of Accelerome-
ter sensor

Column Type Bytes

timestamp Double 8

device id String 32

x Double 8

y Double 8

z Double 8

accuracy Int32 4

label String 32

Table 5. Expected data size

Fre. Term Rows Estimated Size

5Hz Hour 18,000 1.72MB

Day 432,000 41.20MB

Week 3,024,000 288.39MB

Month 12,096,000 1.13GB

50Hz Hour 180,000 17.17MB

Day 4,230,000 403.40MB

Week 30,240,000 2.82GB

Month 120,960,000 11.27GB
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Fig. 4. Resource usage during a data insert operation

Insert Performance To evaluate insert performance, we measured the time
taken and CPU usage during data insertion of different numbers of records (100,
101, 102, 103, and 104). Generally, accessing a number of files over a period of
time influences battery consumption, and thus file access should be minimized.
During this evaluation, we explore the best batch size based on CPU usage
and execution times for inserting data into each type of local database (SQLite,
JSON, and CSV). This evaluation is conducted on the iPhone 7 (iOS 13.2).

As depicted in Figure 4, data insertion time exceeds 103 units. CPU usage
(depicted in Figure 4(b)) also exhibits an almost identical transition with time,
except the insertion of 103 records per insertion. This result indicates that 103

is approximately the correct practical batch size for data insertion.

Fetch Performance As indicated by the data in Table 5, the amount of stored
data continues to increase unless it is cleared. In this evaluation, we measure
the time taken and the CPU usage during the process of fetching records from
SQLite-, JSON-, and CSV- based storages. As a simulation, we prepared SQLite
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databases of multiple sizes based on the data presented in Table 5 and measured
the performance of each. The fetch request is one of the following three requests:
(1) fetch 103 records, (2) fetch 104 records, and (3) count number of stored
records.

As depicted in Figure 5(b) and 6(b), CPU usage is observed to increase
sharply when the number of stored records exceeds 106. CPU usage decreases
once the number exceeds 107, but, in this case, each fetch takes more than 10
s (as depicted in Figure 5(a) and 6(a)); 106 rows are almost equal with data of
3-days by 5 Hz or 0.5-day by 50 Hz.

As depicted in Figure 7, operations that read all data in the storage (e.g.,
counting the number of stored records) significantly affects time consumption
and CPU usage. The time taken for the counting process for JSON and SQLite
increased to more than 30 s when the size of stored data was greater than or
equal to 107. However, the CPU usage for SQLite was less than 20% even when
the size of stored data was increased. On the other hand, the CPU usage for
JSON and CSV increased sharply with increase in the stored data size.
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Fig. 8. Battery consumption of AWARE-iOS

5.2 Battery Impact

We measured the battery consumption while running AWARE-iOS on an iPhone X
running iOS 12. All data were erased from the device and the manufacturer’s
default settings were restored[6]. No other third-party applications were installed
or allowed to run in the background. The device was set to flight mode, and wifi,
Bluetooth, and cellular connectivities were disabled. Finally, the background app
refresh setting was turned off and the low power mode was turned on.

Figure 8 depicts the battery consumption of AWARE-iOS under the afore-
mentioned conditions. In this experiment, we evaluated battery consumption of
the library while using the four types of sensors (viz., accelerometer, location,
Wi-Fi, and ambient noise from periodical hardware sensor, as recorded in Ta-
ble 3), which use different storage systems (SQLite or JSON), sampling rates,
and accuracies of sensors if required. In the idle condition, a smartphone can be
run for a maximum of 35.05 h.

SQLite vs JSON Battery consumption of the accelerometer that used JSON-
based storage was observed to be lesser than that using SQLite-based storage
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Table 6. Device specification

Name Device OS Storage

ideal (Ideal Condition) iPhone 11 13.2 64GB
non-c (Non-control Condition) iPhone 6 Plus 11.4.1 64GB
heavy (Heavy Use Condition) iPhone 6 Plus 12.3 64GB
low-p (Low-Power Mode Condition) iPhone 11 13.2 128GB

over nearly 5 h. As described in Section 5.1, the data insertion time corresponding
to the JSON format is lower than that corresponding to SQLite, and the overall
CPU usage is lower for the JSON format than for SQLite as well.

Effects of Location Accuracy We also compared battery consumptions dur-
ing the use of three levels of accuracy for the location sensors — best for naviga-
tion (0 m), 10 m, and 100 m. The battery lives corresponding to the less accurate
settings (34.05 and 22.52 h, respectively) were higher than that corresponding
to the most accurate setting (16.05 h).

5.3 Case Study

As described in Section 3.3, iOS imposes several restrictions on apps that run
continuous background sensing. In this section, we measure the data collection
rates over three days in the following four cases.

BL A user does not interact with the data collection application during the
term as a baseline.

ESM A user needs to open the application three times a day during the term.

SPN A user does not interact with the application. Instead, a remote-server
sends a silent push notification to the device every 30 min for restart sensors.

ESM+SPN A user needs to carry out the tasks of ESM and SPN.

In all of these cases, we used AWARE Client iOS (described in detail in
Section 4.2) with the following sensors: Accelerometer (5 Hz), location (accurate
to 3 min and 100 m), weather (accurate to 10 min), pedometer (accurate to 10
min), screen, and battery. The collected data were saved in SQLite and synced
with a remote server when the device had access to Wi-Fi and the battery was
charged. The results corresponding to the four devices have been recorded in
Table 6. The participants carried and used these devices in their daily lives.
ideal represents the initial setting on the iPhone in which the AWARE Client
iOS was installed. low-p represents the statistics measured when the phone was
in Low-Power Mode during the entire term of investigation. heavy represents the
case of an iPhone that received memory warnings more than 10 times a day.
The memory warning appeared when the user used applications (e.g., YouTube,
Instagram, and Camera) that consume significant memory.
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Rate of Data Collection Status Figure 9 depicts the rates of data collection
in each of the aforementioned cases. We defined the following three data collec-
tion statuses: Comp, Incomp, and Loss. For example, location data are collected
every 3 min; thus, ideally, 20 records are collected in 1 h. In this case, records =
20 is categorized as Comp, 0<records<20 is categorized as Incomp, and records
= 0 is categorized as Loss.

As depicted in Figure 9(a), corresponding to BL, though ideal and non-c
almost exclusively exhibited the Comp status, more than half of the statuses
corresponding to heavy and low-p were observed to be Loss. ESM, SPN, and
ESM+SPN exhibited nearly 100% Comp in all devices except in heavy running
ESM and SPN; 86.11% of the statuses in heavy with SPN condition were Incomp.
The reason behind this is after receiving a silent push notification once every 30
min, the application was able to run for 30 s after which the device suspended it
Thus, As recorded in Figure 5.3, data were collected only twice in 1 h on average.

Low power mode restricts network connections when applications are run-
ning in the background. Figure 9(b) depicts the number of records each hour
corresponding to this mode. As is evident from the figure, if the low power
mode is turned on, low-p loses weather information (collected by a Web API of
OpenWeatherMap (https://openweathermap.org/), even if the application is
running in the background.

In all cases, the pedometer sensor (Figure 9(c)) collected ideal amounts of
data. More recent versions of iPhone 5S and iOS devices run on Apple M-series
coprocessors that collect, process, and store sensor data motions even if the iOS
device is asleep. This aids the safe collection of data.

Coverage of Data Collection Each cell in Figure 5.3 depicts the total amount
of location data collected each hour. Ideal and non-c phones had collected 100%
of the location data under all four conditions. However, heavy and low-c devices
had suspended the application after 12:00 hours on Day 1 in BL. However, in
the cases of ESM and ESM+SPN, data collection was restarted after interaction
with the app to take the provided survey.

Memory Warnings Figure 5.3 depicts the total number of memory warnings
during the study for each case. As is evident from 5.3, data collection had been
suspended on heavy devices frequently. On the other hand, ideal devices did not
suspend the application even once. In this sense, the user of a heavy iOS device
runs the risk of reduced data collection rate.

6 Design Guideline for Sustainable MCS Studies on iOS

An MCS study involves the following phases: (1) research planning, (2) ap-
plication development, (3) data collection, and data analytics. In this section,
we illustrate a guideline for sustainable data collection by using iOS devices.
Based on performance evaluation and case studies, we list recommendations
corresponding to each phase for AWARE-iOS.
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Fig. 9. Data collection status rates

1. Research planning phase
(a) A researcher should make one or more hypotheses and attempt to col-

lect sensor data as preliminary research to check the difference between
Android and iOS using a preset client. (Section 3.1 and 4.2)

(b) The number of sensors, durations of sensing intervals, and levels of ac-
curacy on the sensing application should be optimized to reduce battery
consumption. (Section 5.2)

(c) An application distribution method that agrees with the research plan
should be selected for smooth app distribution. (Section 3.4)

2. Application development phase
(a) The number of PS should be minimized by using subpod for smooth app

distribution. (Section 4.1)
(b) The sensing application should present periodic opportunities to the user

to open it, if possible. (Section 5.3)
(c) To detecting suspension of the application, a researcher should send

Silent Push Notifications to the participants’ devices regularly during
a study. (Section 5.3)

(d) We recommend using a software-based sensor that is collected by mo-
tion co-processor automatically if you can replace it from other sensors.
(Section 5.3)
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(e) The table size corresponding to SQLite should be less than 106 rows to
reduce CPU impact and fetch speed. (Section 5.1)

(f) The batch size for data insertion should be less than 103 rows to reduce
CPU usage. (Section 5.1)

3. Data collection phase
(a) Sufficient free storage space should be obtained before beginning the

study. In particular, it should be noted that iPhones have models with
low storage capacities (e.g., 16 and 32 GB). (Section 3.2)

(b) If possible, low power mode should be turned off during the study. (Sec-
tion 5.3)

The performance evaluation in this study was conducted on limited types of
iOS devices and OS. Therefore, if a device or OS of a different type is consid-
ered, its performance might be drastically different. Moreover, this study was
performed over merely three days. The performance of AWARE-iOS needs to be
evaluated over much longer durations to draw dependable conclusions regard-
ing it. Moreover, we did not inspect the differences in settings on Anchor (see
Section 4.1) in this study. Further, location sensors with high accuracy might
consume battery at a faster rate, but their superior performance grants them a
better data collection rate.

7 Conclusion

MCS is a research method for understanding everyday human activities on the
individual, group, and social levels using data collected through smartphones.



Lecture Notes in Computer Science: Authors’ Instructions 19

Even though Android is the most popular OS for smartphones globally, iOS
is more popular in certain specific areas or among certain communities. Several
MCS frameworks [5–7] for iOS have been proposed. However, planning and man-
aging a sustainable MCS-based study with iOS remains a challenge, in spite of
the strict rules that iOS enforces on collecting sensor data in the background.

In this paper, we propose an MCS framework for iOS, namely, AWARE-
iOS, based on the AWARE framework for Android [5]. AWARE-iOS allows us
to collect sensor data sustainably based on a few lines of code or by using a
published client application, and grants us the opportunity to optimize each
research purpose.

Our performance evaluations show that the battery consumption rates of
devices depend on sensor settings and storage type. Moreover, case studies illus-
trate that ideal- and non-control devices can collect nearly all the data. However,
when the device is on low power mode or is being used heavily, it runs the risk of
data loss if silent-push notifications or periodical interactions are not employed.
Finally, based on these results, we propose a guideline for creating a research
plan and managing mobile sensing studies.
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