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Abstract

Some inverse scattering problems for the three-dimensional biharmonic
operator are considered. The operator is perturbed by first and zero order
perturbations, which may be complex-valued and singular. We show the
existence of the scattering solutions in the Sobolev space W 1

∞(R3). One of
the main result of this paper is the proof of analogue of Saito’s formula (in
different form as known before), which can be used to prove a uniqueness
theorem for the inverse scattering problem. Another main result is to
obtain the estimates for the kernel of the resolvent of the direct operator in
W 1

∞ and to prove the reconstruction formula for the unknown coefficients
of this perturbation.

1 Introduction

We consider the following three-dimensional biharmonic operator

H4u(x) = ∆2u(x) + ~W (x) · ∇u(x) + V (x)u(x) = 0, (1)

where ∆ is the Laplacian and · denotes the dot-product in R3 for complex-
valued vectors in C3. The bi-Laplacian is perturbed by the first and zero order
perturbations, vector-valued function ~W and a scalar function V , that may be
complex-valued and very singular. More precisely, we assume that ~W belongs
to L∞(R3) and V belongs to the Kato space K3, i.e.

sup
x∈R3

∫
|x−y|≤1

|V (y)|
|x− y|

dy <∞, (2)

and both have special behaviour at the infinity

| ~W (x)|, |V (x)| ≤ C

|x|µ
, |x| ≥ R, µ > 3, (3)

where C > 0, and R > 0 is big enough.
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The motivation to study operators of order four appears for example in the
study of elasticity and the theory of vibration of beams. As a concrete example,
the linear beam equation [2]

∂2tU(x, t) + ∆2U(x, t) +m(x)U(x, t) = 0,

under time-harmonic assumptions U(x, t) = u(x)e−iωt leads to the equation

∆2u(x) +m(x)u(x) = ω2u(x).

The wave parameter ω is fixed (in general) here, nevertheless we can consider
it fixed but big enough. This allows to consider some scattering problems with
high frequency for this potential equation. In particular, we can use some nu-
merical methods in that case. For the scattering problems (including linear or
nonlinear equations), see for example [8] and references therein. In terms of in-
verse problems for bi- and poly-harmonic operators it might be mentioned some
solutions to inverse boundary value problems, see for example [6]. One can refer
also to [13], where the fundamental result concerning the global uniqueness for
an inverse boundary value problem was proved. For the operators with vector
potential one can mention [14].

The present work is concerned with the following scattering problem for
operator H4 given by

H4u(x) = k4u(x), u(x) = u0(x) + usc(x), u0(x) = eikx·θ, θ ∈ S2, (4)

where scattered wave usc and its Laplacian ∆usc are required to satisfy Som-
merfeld radiation condition at the infinity

lim
r→∞

r
n−1
2

(
∂f(x)

∂r
− ikf(x)

)
= 0, r = |x|, f = usc or f = ∆usc. (5)

The author was originally motivated to start studying scattering for fourth order
operators by the article [1] (see also [15]) , where the time-evolution of several
scattering coefficients for the one-dimensional biharmonic operator were stud-
ied. In terms of inverse scattering problems for fourth order operator might be
mentioned Iwasaki’s results [4], [5]. In these works Iwasaki studied the scatter-
ing problem in one-dimensional case and considered the inverse problem as a
Riemann-Hilbert boundary value problem with respect to the wave number k
in the complex cone arg([0, π4 ]) \ {0}.

The main differences of present work is that all considered scattering prob-
lems are studying here in the usual Sobolev spaces (compare with the weighted
Sobolev spaces in the previous publications) and that the possible local singular-

ities of the unknown coefficients ~W and V are stronger than it was considered
before. Another important difference is concerned to Theorem 2, where the
inverse scattering problem in terms of the Green’s functions is considered.

We are looking for the scattering solutions usc to the equation (4) in the
Sobolev space W 1

∞(R3). Under the Sommerfeld radiation conditions (5) the
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scattering solutions to equation (4) are the unique solutions of the integral
Lippmann-Schwinger equation (see [15] for details)

u(x) = u0(x)−
∫
R3

G+
k (|x− y|)( ~W (y) · ∇u(y) + V (y)u(y)) dy, (6)

where G+
k is the outgoing fundamental solution of the operator (∆2−k4) in R3,

i.e., the kernel of the integral operator (∆2 − k4 − i0)−1. This function G+
k in

R3 has the following form

G+
k (|x|) =

eik|x| − e−k|x|

8πk2|x|
, k > 0. (7)

Since u0 is just a bounded function with the norm ‖u0‖L∞(R3) = 1 it is more
convenient to study (in stead of (6)) the equivalent integral equation for the
scattered wave, namely

usc(x) = ũ0(x)−
∫
R3

G+
k (|x−y|)( ~W (y)·∇usc(y)+V (y)usc(y)) dy =: ũ0+Lk(usc),

(8)
where ũ0 = Lk(u0). As it is shown (see [15]) that a solution to the scattering
problem (4), (5) also satisfies equation (6). This translates the study of the
scattering problem to the study of integral equation (6) ((8)). It will be shown
that this solution admits for fixed k > 0 asymptotic representation

u(x, k, θ) = eikx·θ + C
eik|x|

k2|x|
A(k, θ′, θ) + o

(
1

|x|

)
, |x| → ∞,

where θ, θ′ = x
|x| ∈ S

2, C is known constant, and function A(k, θ′, θ) is called a

scattering amplitude and defined by

A(k, θ′, θ) :=

∫
R3

e−ikθ
′·y( ~W (y) · ∇u(y, k, θ) + V (y)u(y, k, θ)) dy. (9)

From the point of view of inverse problems one regards this scattering amplitude
as one possible scattering data. For these purposes one requires the scattering
amplitude to be known for all possible angles θ and θ′ and all arbitrarily high
frequencies (k > 0 large). Then Saito’s formula is given by the following theo-
rem.

Theorem 1 (Saito’s formula) Assume that ~W belongs to L∞(R3), V belongs
to the Kato space K3 and both satisfy conditions (3). Then the limit

lim
k→+∞

k2
∫

S2×S2

e−ik(θ−θ
′)·xA(k, θ′, θ) dθ dθ′ =
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= 4π2∇x
∫
R3

~W (y)

|x− y|2
dy + 8π2

∫
R3

V (y)

|x− y|2
dy (10)

in the sense of distributions.

The significance of Saito’s formula for inverse problems is apparent from its
corollary.

Corollary 1 (Uniqueness) Let ~W1, V1 and ~W2, V2 be as in Theorem 1. Let, in

addition, Fourier transform of ~W1 and ~W2 behaves as o(|ξ|−1) at the infinity. If
the corresponding scattering amplitudes for these coefficients coincide for some
sequence kj → +∞ then

V1(x)− 1

2
∇δ ? ~W1(x) = V2(x)− 1

2
∇δ ? ~W2(x)

in the sense of tempered distributions, where δ is Dirac delta function and ?
denotes the convolution.

The limiting absorption principle can be applied for the operator H4 to obtain
the existence of the integral operator (see [15])

Ĝp := lim
ε→+0

(H4 − k4 − iε)−1

such that the kernel Gp(x, y, k) for k > 0 large enough is the unique solution of
the integral equation

Gp(x, y, k) = G+
k (x, y, k)−

∫
R3

G+
k (|x−z|)( ~W (z)·∇Gp(z, y, k)+V (z)Gp(y, z, k)) dz,

(11)
From the point of view of inverse problems this kernel Gp can be considered as
another possible scattering data. More precisely the following theorem holds.

Theorem 2 (Reconstruction) Assume that ~W belongs to L∞(R3), V belongs

to the Kato space K3 and V satisfies conditions (3) and, in addition, ~W satisfies
this condition with µ > 4. Then for each fixed ξ ∈ R3

F−1(V )(ξ)− iξ

2
· F−1( ~W )(ξ) =

= lim
k,|x|,|y|→+∞

32
√

2πk4|x||y|e−ik(|x|+|y|)(G+
k (|x− y|)−Gp(x, y, k)) (12)

such that ξ = k
(
x
|x| + y

|y|

)
.

Corollary 2 (Uniqueness-II) Let ~W1, V1 and ~W2, V2 be as in Theorem 2.

If the corresponding kernels G
(1)
p (x, y, k) and G

(2)
p (x, y, k) for these coefficients

coincide for all x, y large enough and some sequence kj → +∞ then

V1(x)− 1

2
∇δ ? ~W1(x) = V2(x)− 1

2
∇δ ? ~W2(x)
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in the sense of tempered distributions, where δ is Dirac delta function and ?
denotes the convolution.

This paper is organised as follows. In Section 2 some notations and estimates
for G+

k are recalled. Then it will be proved the existence and the uniqueness of
the solutions to (6) and (11) together with asymptotic behaviour of the scatter-
ing solution u and the kernel Gp. Several estimates for u and Gp are also given.
Finally in Section 3 it will be given the proof of Theorem 1 and 2.

2 Solvability of direct scattering problems

We use the usual definitions of the Sobolev space W 1
∞ and the Lebesgue spaces

Lp, 1 ≤ p ≤ ∞. We use also the following definitions for three-dimensional
Fourier transform F and inverse Fourier transform F−1:

F(f)(ξ) =
1√

(2π)3

∫
R3

f(x)eix·ξ dx, F−1(f)(x) =
1√

(2π)3

∫
R3

f(x)e−ix·ξ dξ.

Next, taking into account the definition (7) of G+
k (|x|) in R3 we obtain

|G+
k (|x|)| ≤ 1

4πk2|x|
, |∇G+

k (|x|)| ≤ 1

2πk|x|
, k > 0, x ∈ R3. (13)

We now proceed to prove some estimates for the operator Lk.

Proposition 1 Let ~W belongs L∞(R3), V belongs to the Kato space K3 and
both satisfy conditions (3). Then the following properties are satisfied.

1. The function ũ0 belongs to W 1
∞(R3) with the estimates

‖ũ0‖L∞(R3) ≤
c0
k
, ‖∇ũ0‖L∞(R3) ≤ c0, k ≥ 1,

where constant c0 is equal to

c0 =
1

2π

(
‖ ~W‖L∞(R3)CR + CV + 2CCµ

)
, CR := sup

x∈R3

∫
|y|≤R

1

|x− y|
dy,

CV := sup
x∈R3

∫
|y|≤R

|V (y)|
|x− y|

dy, Cµ := sup
x∈R3

∫
|y|≥R

1

|x− y||y|µ
dy (14)

with C,R, µ are as in (3).

2. The operator Lk : W 1
∞(R3)→W 1

∞(R3) is bounded and satisfies for k ≥ 1
the norm estimates

‖Lkf‖L∞(R3) ≤
c0
k2
‖f‖W 1

∞(R3), ‖∇Lkf‖L∞(R3) ≤
c0
k
‖f‖W 1

∞(R3). (15)
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Proof Applying (13) one can obtain (see (14))

|ũ0(x)| ≤ 1

4πk2

 ∫
|y|≤R

k| ~W (y)|+ |V (y)|
|x− y|

dy + C

∫
|y|≥R

k + 1

|x− y||y|µ
dy

 ≤
≤ 1

4πk

(
‖ ~W‖L∞CR + CV + 2CCµ

)
≤ c0

k
, k ≥ 1.

By similar method it can be proved that

‖∇ũ0‖L∞(R3) ≤ c0, k ≥ 1.

This proves 1. Suppose now that f ∈W 1
∞(R3). Then

|Lkf(x)| ≤ 1

4πk2

 ∫
|y|≤R

|∇f(y)|| ~W (y)|+ |V (y)||f(y)|
|x− y|

dy + CCµ‖f‖W 1
∞

 ≤

≤ 1

4πk2

‖∇f‖L∞ ∫
|y|≤R

| ~W (y)

|x− y|
dy + ‖f‖L∞

∫
|y|≤R

|V (y)|
|x− y|

dy + CCµ‖f‖W 1
∞

 ≤
≤ 1

4πk2

(
‖∇f‖L∞‖ ~W‖L∞CR + ‖f‖L∞CV + CCµ‖f‖W 1

∞

)
.

This proves first inequality from (15). The second inequality from (15) can be
proved using (13) similarly. Thus, Proposition 1 is completely proved.

Proposition 2 Under the same assumptions for ~W and V as in Proposition
1 there is a constant k0 > 1 such that the function usc(x, k, θ) defined by the
series

usc(x, k, θ) =

∞∑
j=0

Ljk(ũ0)(x, k, θ) (16)

solves integral equation (8) ((6)) uniquely in W 1
∞(R3), when k ≥ k0. Moreover,

‖usc‖L∞(R3) ≤
2c0
k
, ‖∇usc‖L∞(R3) ≤ 2c0 (17)

uniformly in θ ∈ S2, when k ≥ k0.

Proof The estimates (15) imply that the norm estimate for operator Lk for
k ≥ 1 is

‖Lk‖W 1
∞→W 1

∞
≤ 2c0

k
.

Since ũ0 belongs to W 1
∞(R3) this estimate in turn implies that

‖usc‖W 1
∞
≤
∞∑
j=0

(
2c0
k

)j
‖ũ0‖W 1

∞
.
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We may choose any k0 > max{1, 2c0} to conclude that the series (16) con-
verges in W 1

∞(R3). Because the operator Lk is linear and maps continuously
in W 1

∞(R3) the series (16) solves (8). Choosing now k0 > max{1, 4c0} one can
easily obtain (17). Uniqueness of solution follows from the contraction condition
of Lk. Proposition 2 is completely proved.

Concerning the kernel Gp (see integral equation (11)) of the integral operator
(H4 − k4 − i0)−1 one can prove the following result.

Proposition 3 Under the same assumptions for ~W and V as in Proposition 1
there is a constant k0 > 1 such that the function Gp(x, y, k) can be defined by
the series

Gp(x, y, k) =

∞∑
j=0

G(j)(x, y, k), G(0) = G+
k ,

G(j)(x, y, k) := −
∫
R3

G+
k (|x−z|)( ~W (z)·∇G(j−1)(z, y, k)+V (z)G(j−1)(y, z, k)) dz

(18)
which solves integral equation (11) uniquely, when k ≥ k0. Moreover,

|Gp(x, y, k)−G+
k (x, y, k)| ≤ c̃0

4π2k3|x− y|
,

|∇Gp(x, y, k)−∇G+
k (x, y, k)| ≤ c̃0

2π2k2|x− y|
, (19)

where c̃0 = 2‖ ~W‖L∞CR +CV + 3CCµ with constants CR, CV , C and Cµ are as
in (14).

Proof To prove (18)-(19) it is needed first to estimate G(1). Indeed, using (13)
one can obtain (k ≥ 1)

|G(1)(x, y, k)| ≤ 1

8π2k3

 ∫
|z|≤R

| ~W (z)|+ 1
2k |V (z)|

|x− z||z − y|
dz +

∫
|z|≥R

C + C
2k

|x− z||z − y||z|µ
dz


with constant C from the condition (3). Considering now two cases: |x − z| ≤
|z − y| and |x − z| ≥ |z − y| and taking into account conditions (2), one can
obtain (k ≥ 1)

|G(1)(x, y, k)| ≤ 1

8π2k3

(
2‖ ~W‖L∞CR
|x− y|

+
CV
|x− y|

+
3CCµ
|x− y|

)
≤

≤ c̃0
8π2k3|x− y|

, (20)
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where the constant c̃0 is as above. Similarly one can obtain

|∇xG(1)(x, y, k)| ≤ c̃0
4π2k2|x− y|

. (21)

We show now that for k ≥ 1

|G(j)(x, y, k)| ≤ c̃j0
2k(2πk)j+1

1

|x− y|
, j = 1, 2, ..., (22)

and

|∇xG(j)(x, y, k)| ≤ c̃j0
(2πk)j+1

1

|x− y|
, j = 1, 2, .... (23)

By (20) and (21) the claim holds for j = 1. Suppose that the claim is proved
for j ≥ 1. The induction hypothesis leads to

|G(j+1)(x, y, k)| ≤ c̃j0
4πk2(2πk)j+1

 ∫
|z|≤R

| ~W (z)|+ 1
2k |V (z)|

|x− z|
1

|z − y|
dz+

+

∫
|z|≥R

C + C
2k

|x− z||z|µ
1

|z − y|
dz

 ≤ c̃j0
4πk2(2πk)j+1

(
2‖ ~W‖L∞CR
|x− y|

+

+
CV
|x− y|

+
3CCµ
|x− y|

)
=

c̃j0
4πk2(2πk)j+1

c̃0
|x− y|

.

This finishes the proof of (22) by induction. The estimate (23) can be ob-
tained similarly (by induction). Choosing now k0 > max{1, c̃0π } we obtain the
estimates (19). Thus, Proposition 3 is proved.

Next we study the asymptotic behaviour of the scattering solutions u that
provides the scattering data fo the inverse scattering problems in the foregoing
section.

Proposition 4 Assume that ~W is bounded, V belongs to the Kato space K3

and both satisfy condition (3). Then for fixed k ≥ k0 the solution u(x, k, θ) to
(6) ((8)) admits the representation

u(x, k, θ) = eikx·θ − 1

8π

eik|x|

k2|x|
A(k, θ′, θ) + o

(
1

|x|

)
, |x| → ∞,

The function A(k, θ, θ′) is called the scattering amplitude and is defined by equa-
tion (9).

Proof Since

usc(y, k, θ) = −
∫
R3

G+
k (|x− y|)( ~W (y) · ∇u(y) + V (y)u(y)) dy =
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= −
∫

|y|≤|x|a

G+
k (|x− y|)( ~W (y) · ∇u(y) + V (y)u(y)) dy−

−
∫

|y|≥|x|a

G+
k (|x− y|)( ~W (y) · ∇u(y) + V (y)u(y)) dy =: I1 + I2,

where parameter a is chosen such that 0 < a < 1
2 . For the integral I1 we use

the following asymptotic

G+
k (|x− y|) =

1

8πk2

(
eik|x|e−ikθ

′·y − e−k|x|ekθ
′·y
)

+O(|x|2a−2).

This implies that

I1 = − 1

8πk2

∫
|y|≤|x|a

(
eik|x|e−ikθ

′·y − e−k|x|ekθ
′·y
)(

~W · ∇u+ V u
)
dy+O(|x|2a−2).

And this in turn leads as |x| → +∞ to

I1 = −e
ik|x|

8πk2

∫
R3

e−ikθ
′·y
(
~W · ∇u+ V u

)
dy + o(|x|−1). (24)

Next we consider the integral I2 and split the region of integration as

|I2| ≤
∫

|y|≥|x|a

|G+
k (|x− y|)|| ~W (y) · ∇u(y) + V (y)u(y)| dy =

=

∫
|x|a≤|y|≤ |x|2

|G+
k (|x− y|)|| ~W (y) · ∇u(y) + V (y)u(y)| dy+

+

∫
|y|≥ |x|2

|G+
k (|x− y|)|| ~W (y) · ∇u(y) + V (y)u(y)| dy =: J1 + J2.

In the case J1 we have |x − y| ≥ |x| − |y| ≥ |x|2 . Thus, as |x| → +∞, one can
have

J1 ≤
1

4πk2|x|

∫
|x|a≤|y|≤ |x|2

| ~W (y) · ∇u(y) + V (y)u(y)| dy = o(|x|−1)

due to conditions (2), (3) and Proposition 1. To estimate the integral J2 we use
condition (3) and Proposition 1 and obtain

J2 ≤
c

k2

∫
|y|≥ |x|2

1

|x− y||y|µ
dy ≤ c

k2|x|ε

∫
|y|≥ |x|2

1

|x− y||y|µ−ε
dy,
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where positive ε is chosen such that 2 < µ − ε < 3 and c > 0. Apply now the
estimate for the convolution of weak singularities (see, for example, [12], Lemma
34.3) one can finally obtain that

J2 ≤
c

k2|x|µ−2
= o(|x|−1)

since µ > 3. The latter estimates and (24) finish the proof of Proposition 4.

3 Proof of the main results

This Section is devoted to the proof of the main results and their consequences.

Proof We prove Theorem 1. Indeed, denoting by I the integral

I := k2
∫

S2×S2

e−ik(θ−θ
′)·xA(k, θ, θ′) dθ dθ′

one can write (because u = u0 + usc)

I := k2
∫

S2×S2

e−ik(θ−θ
′)·x
∫
R3

e−ikθ
′·y[ikθ · ~W (y) + V (y)] dy dθ dθ′+

+k2
∫

S2×S2

e−ik(θ−θ
′)·x
∫
R3

e−ikθ
′·y[ ~W (y) · ∇usc(y) + V (y)usc(y)] dy dθ dθ′ =

=: I1 + I2.

Since ~W and V belong to L1(R3) (see conditions (2) and (3)) then I1 can be
rewritten as

I1 = k2
∫
R3

~W (y) dy ·
∫
S2

ikθe−ikθ·(x−y) dθ

∫
S2

eikθ
′·(x−y) dθ′+

+k2
∫
R3

V (y) dy

∫
S2

e−ikθ·(x−y) dθ

∫
S2

eikθ
′·(x−y) dθ′.

It is very well known that (see, for example, [7])∫
S2

e−ikθ·(x−y) dθ =
√

(2π)3
J 1

2
(k|x− y|)√
k|x− y|

= 4π
sin(k|x− y|)
k|x− y|

. (25)

Hence, I1 is equal to

I1 = 8π2

∫
R3

~W (y) · ∇x
(

sin2(k|x− y|)
|x− y|2

)
dy + 16π2

∫
R3

V (y)
sin2(k|x− y|)
|x− y|2

dy.
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If now ϕ ∈ C∞0 (R3) then in the sense of distributions

< I1, ϕ >= 8π2

∫
R3

∫
R3

~W (y) · ∇x
(

sin2(k|x− y|)
|x− y|2

)
ϕ(x) dy dx+

+16π2

∫
R3

∫
R3

V (y)
sin2(k|x− y|)
|x− y|2

ϕ(x) dy dx.

Using the smoothness of ϕ and compactness of its support and integrating by
parts we obtain

< I1, ϕ >= −8π2

∫
R3

~W (y) dy

∫
R3

sin2(k|x− y|)
|x− y|2

∇xϕ(x) dx+

+16π2

∫
R3

V (y) dy

∫
R3

sin2(k|x− y|)
|x− y|2

ϕ(x) dx =

= −4π2

∫
R3

~W (y) dy

∫
R3

1

|x− y|2
∇xϕ(x) dx+

+4π2

∫
R3

~W (y) dy

∫
R3

cos(2k|x− y|)
|x− y|2

∇xϕ(x) dx+

+8π2

∫
R3

V (y) dy

∫
R3

1

|x− y|2
ϕ(x) dx−

−8π2

∫
R3

V (y) dy

∫
R3

cos(2k|x− y|)
|x− y|2

ϕ(x) dx.

Then application of Fubini theorem and Riemann - Lebesgue lemma lead to the
equality

lim
k→+∞

< I1, ϕ >= 4π2 < ∇x
∫
R3

~W (y)

|x− y|2
dy, ϕ > +8π2 <

∫
R3

V (y)

|x− y|2
dy, ϕ > .

To estimate I2 one can first rewrite it (using again (25)) as

I2 = 4πk

∫
R3

sin(k|x− y|)
|x− y|

~W (y) dy ·
∫
S2

e−ikθ·x∇usc(k, y, θ) dθ+

+4πk

∫
R3

sin(k|x− y|)
|x− y|

V (y) dy

∫
S2

e−ikθ·xusc(k, y, θ) dθ.
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Next, we use the following equalities (see, for example, [15] or [12])

usc(y) = −Ĝp
(
~W (z) · ∇u0(z) + V (z)u0(z)

)
(y),

∇yusc(y) = −∇yĜp
(
~W (z) · ∇u0(z) + V (z)u0(z)

)
(y),

where Ĝp denotes the integral operator with kernel Gp(x, y, k) (see Proposition
3). These equalities and (25) allow to obtain for I2 the following representation

−16π2

∫
R3

sin(k|x− y|)
|x− y|

~W (y)·∇yĜp
(

sin(k|x− z|)
|x− z|

V (z) + ~W (z)∇x
sin(k|x− z|)
|x− z|

)
dy−

−16π2

∫
R3

sin(k|x− y|)
|x− y|

V (y)Ĝp

(
sin(k|x− z|)
|x− z|

V (z) + ~W (z)∇x
sin(k|x− z|)
|x− z|

)
dy.

The estimates (13) and (19) for Gp(x, y, k) and the same technique as for I1
allow easily to obtain that for any ϕ ∈ C∞0 (R3)

lim
k→+∞

< I2, φ >= 0.

This finishes the proof of Theorem 1.

Remark If we assume in addition that ~W ∈ W 1
p (R3) and V ∈ Lp(R3) with

some 3 < p ≤ ∞ and with the same behaviour at the infinity then it can be
proved that the limit in Saito’s formula holds uniformly in x ∈ R3 (see [15], [9]).

Proof We prove Corollary 1 (Uniqueness). We have only to show that the
homogeneous equation

Ψ(x) :=
1

2
∇x
∫
R3

~W (y)

|x− y|2
dy +

∫
R3

V (y)

|x− y|2
dy = 0

has a unique solution such that 1
2∇δ ? ~W − V = 0. Indeed, following [11] and

[10] consider the space S0(R3) of all functions from the Schwarz space which
vanish in some neighborhood of the origin. Then for every ϕ(ξ) ∈ S0(R3) it
follows that

0 =< F(Ψ(x))(ξ), ϕ(ξ) >= 2π2 < − iξ

2|ξ|
· F( ~W )(ξ) +

F(V )(ξ)

|ξ|
, ϕ(ξ) >=

= 2π2 < − iξ
2
· F( ~W )(ξ) + F(V )(ξ),

ϕ(ξ)

|ξ|
>,

where F is usual Fourier transform in R3. Since ϕ(ξ) ∈ S0(R3) then ϕ(ξ)
|ξ| ∈

S0(R3) also. Hence, for every h ∈ S0(R3), one can see that

<
iξ

2
· F( ~W )(ξ)−F(V )(ξ), h(ξ) >= 0.

12



This means that the support of the function iξ
2 · F( ~W )(ξ)−F(V )(ξ) is at most

in the origin, and therefore it can be represented as follows (with some integer
m)

iξ

2
· F( ~W )(ξ)−F(V )(ξ) =

∑
|α|≤m

Cα∂
αδ(ξ),

where δ(ξ) is Dirac δ−function and Cα are constants. The conditions for ~W
and V imply that all these constants are equal to 0. Thus,

F−1
(
iξ

2
· F( ~W )(ξ)−F(V )(ξ)

)
= 0, i.e.

1

2
∇δ ? ~W (x)− V (x) = 0.

This finishes the proof of Corollary 1.

Proof We prove now Theorem 2 (Reconstruction). Based on Proposition 3,
one can represent (see (11) and (18))

G+
k (|x−y|)−Gp(x, y, k) =

∫
R3

G+
k (|x−z|)[ ~W (z)·∇zGp(z, y, k)+V (z)Gp(z, y, k)] dz =

=

∫
R3

G+
k (|x− z|)[ ~W (z) · ∇zG+

k (|z − y|) + V (z)G+
k (|z − y|)] dz+

+

∫
R3

G+
k (|x−z|)[ ~W (z) ·∇z

∞∑
j=1

G(j)(z, y, k)+V (z)

∞∑
j=1

G(j)(z, y, k)] dz := J1+J2,

where k ≥ k0. We first consider J1 and divide it into to parts J ′1 and J ′′1 w.r.t.
|z| < k and |z| > k, respectively for fixed k big enough. Using conditions (3)
and estimates (13) the value J ′′1 can be estimated as

|J ′′1 | ≤
c

k3

∫
|z|>k

1

|x− z||z − y||z|µ
dz, (26)

where constant c > 0 is independent on x, y, k. Since µ > 4 then the latter

integral is o
(

1
k4|x||y|

)
uniformly in k, x, y big enough. For estimation of J ′1 we

assume that |x| > k4+s, |y| > k4+s with s > 0 and with k is big enough. In this
case

ik(z − y) = −|y|ikθ′ + ikz, ik|x− z| = ik|x| − ikθ · z +O(k−1−s),

where θ = x
|x| , θ

′ = y
|y| . These representations lead to the following asymptotic

behaviour

G+
k (|x− z|) =

eik|x|e−ikθ·z

8πk2|x|

(
1 +

O(1)

k1+s

)
, |z| < k,

13



∇zG+
k (|y − z|) =

eik|y|e−ikθ
′·z

8πk2|y|

(
1 +

O(1)

k1+s

)(
−ikθ′ + ikz

|y|

)
, |z| < k.

This allows to obtain that

J ′1 = − eik(|x|+|y|)

64π2k4|x||y|

∫
|z|<k

(ik ~W (z) · θ′ − V (z))e−ik(θ+θ
′)·z dz +O

(
1

k4+s|x||y|

)
.

(27)
The next step is: symmetric (w.r.t. θ and θ′) form of the latter integral∫

|z|<k

ik ~W (z) · θ′e−ik(θ+θ
′)·z dz

leads to the fact that∫
|z|<k

ik ~W (z) · θ′e−ik(θ+θ
′)·z dz =

1

2

∫
|z|<k

ik ~W (z) · (θ′ + θ′)e−ik(θ+θ
′)·z dz.

Hence, the first term of the sum (27) can be represented as

− eik(|x|+|y|)

64π2k4|x||y|

∫
|z|<k

(
ik

2
~W (z) · (θ + θ′)− V (z)

)
e−ik(θ+θ

′)·z dz. (28)

For estimation of the term J2 one can use the estimates (19), (22), (23) and
conditions (2) and (3). Then using quite similar technique (with more careful
considerations of G(2)) as for the proof of the estimates (27) and (28) one can
obtain that

J2 = o

(
1

k4|x||y|

)
, k, |x|, |y| → +∞. (29)

Letting now k, |x|, |y| → +∞ such that fixed ξ = k
(
x
|x| + y

|y|

)
and combining

now (26) - (29) we obtain formula (12). Thus, Theorem 2 is completely proved.

Corollary 2 can be proved similarly as the proof of Corollary 1.

Conclusions

The direct scattering problems for a first order perturbation of the three-
dimensional biharmonic operator with singular coefficients ( ~W belongs to L∞loc
and V belongs to the Kato space K3,loc) was studied. It was shown that a solu-
tion to scattering problem with certain radiation conditions satisfies the integral
Lippmann-Schwinger equation. The same was shown for the Green’s function
of the perturbed biharmonic operator with these coefficients. These integral
equations have the unique solutions in the usual Sobolev spaces W 1

∞(R3). The
asymptotic behaviour of the scattering solutions for fixed k > 0 as |x| → +∞

14



was studied and a formula for the scattering amplitude was obtained. Similar
asymptotic is obtained for the Green’s function when k, |x|, |y| → +∞.

The main results of this paper, Saito’s formula and formula for the Green’s
functions of the bi-Laplacian and the perturbed bi-Laplacian, were proved un-
der very general assumptions on the coefficients. The proof of these formulas
itself was based on explicit calculations starting from the formula for scatter-
ing amplitude and from the integral equation for the Green’s functions. Some
consequences of these results were discussed w.r.t. inverse scattering problems.
Namely, the scattering amplitude uniquely determines a combination of the co-
efficients for the direct problem and in turn gives a uniqueness result for the
inverse problem. And the behaviour of the Green’s function of the perturbed
bi-Laplacian for x, y, k large enough uniquely determines the same combination
of the unknown coefficients.
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