Skip to main content

Alteration of Gut Microbiota in EDCs-Induced Metabolic Disorders

  • Chapter
  • First Online:
  • 550 Accesses

Abstract

There are over 103–104 microorganisms that inhabit gut microbiome. Together gut microbiome consists of 150 times more genes as compared to that of human genome. Therefore, it is considered as an “organ.” Due to several factors gut dysbiosis occurs and it might result in neurobehavioral, immunological, gastrointestinal disorders, obesity, and diabetes. Changes in gut microbiota favor more pathogenic species and these species can result in producing such kind of host diseases that produce various factors that have their role in virulence, such as LPS (lipopolysaccharide). One of the most important originating factors that undergo dysbiosis in gut microbiota is endocrine-disrupting chemicals (EDCs). At present, endocrine-disrupting chemicals are found in many products that are being used in our daily life including cosmetics, plastic bottles, metal cans, toys, pesticides, and in the production of food. These EDCs impede the synthesis, secretion, transport, elimination, and activity of many natural hormones. This kind of interfering ability of EDCs can block or inhibit the action of hormones and finally persuade a wide range of harmful effects that may be metabolic and immunological, cardiovascular, developmental, neurological, and reproductive. The increased accumulating evidence of EDCs in our environment as persistent organic pollutants, bisphenol A, and phthalates may also illustrate their important role in the occurrence of metabolic diseases (obesity, T2D, and metabolic syndrome). This chapter will provide us information that how EDCs can influence the gut microbiome and finally lead to the development of metabolic disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Monneret C. What is an endocrine disruptor? C R Biol. 2017;340(9-10):403–5.

    Article  Google Scholar 

  2. Rhomberg LR, Goodma JE, Foster WG, Borgert CJ, Van-Der KG. A critique of the European Commission document, “State of the Art Assessment of Endocrine Disrupters”. Crit Rev Toxicol. 2012;42(6):465–73.

    Article  CAS  Google Scholar 

  3. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev. 2009;30(4):293–342.

    Article  CAS  Google Scholar 

  4. Rousselle C, Ormsby JN, Schaefer B, Lampen A, Platzek T, Hirsch-Ernst K, et al. Meeting report: international workshop on endocrine disruptors: exposure and potential impact on consumers health. Regul Toxicol Pharmacol. 2013;65(1):7–11.

    Article  CAS  Google Scholar 

  5. Casals-Casas C, Desvergne B. Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol. 2011;73:135–62.

    Article  CAS  Google Scholar 

  6. Colborn T, Vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101(5):378–84.

    Article  CAS  Google Scholar 

  7. De Coster S, Van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health. 2012;2012:713696.

    Article  Google Scholar 

  8. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9(1):88.

    Article  Google Scholar 

  9. Keith SW, Redden DT, Katzmarzyk PT, Boggiano MM, Hanlon EC, Benca RM, et al. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int J Obes (Lond). 2006;30(11):1585–94.

    Article  CAS  Google Scholar 

  10. Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56(11):2655–67.

    Article  CAS  Google Scholar 

  11. Smith MS. H. Maurice Goodman: Basic medical endocrinology. 4th ed. Cambridge: Academic Press; 2009.

    Google Scholar 

  12. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548–56.

    Article  CAS  Google Scholar 

  13. Newbold RR, Padilla-Banks E, Jefferson WN. Environmental estrogens and obesity. Mol Cell Endocrinol. 2009;304(1-2):84–9.

    Article  CAS  Google Scholar 

  14. Howdeshell KL, Hotchkiss AK, Thayer KA. Vandenbergh JG, vom Saal FS. Exposure to bisphenol A advances puberty Nature. 1999;401(6755):763–4.

    CAS  Google Scholar 

  15. Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN. Developmental exposure to estrogenic compounds and obesity. Birth Defects Res A Clin Mol Teratol. 2005;73(7):478–80.

    Article  CAS  Google Scholar 

  16. Grün F, Blumberg B. Endocrine disrupters as obesogens. Mol Cell Endocrinol. 2009;304(1-2):19–29.

    Article  Google Scholar 

  17. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10(4):355–61.

    Article  CAS  Google Scholar 

  18. Hurst CH, Waxman DJ. Activation of PPARα and PPARγ by environmental phthalate monoesters. Toxicol Sci. 2003;74(2):297–308.

    Article  CAS  Google Scholar 

  19. Rubin BS, Soto AM. Bisphenol A: perinatal exposure and body weight. Mol Cell Endocrinol. 2009;304(1-2):55–62.

    Article  CAS  Google Scholar 

  20. Gore AC. Endocrine-disrupting chemicals. JAMA Intern Med. 2016;176(11):1705–6.

    Article  Google Scholar 

  21. Neel BA, Sargis RM. The paradox of progress: environmental disruption of metabolism and the diabetes epidemic. Diabetes. 2011;60(7):1838–48.

    Article  CAS  Google Scholar 

  22. Nadal A, Fuentes E, Ripoll C, Villar-Pazos S, Castellano-Muñoz M, Soriano S, et al. Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: Is there toxicology beyond paracelsus? J Steroid Biochem Mol Biol. 2018;176:16–22.

    Article  CAS  Google Scholar 

  23. Longnecker MP, Daniels JL. Environmental contaminants as etiologic factors for diabetes. Environ Health Perspect. 2001;109(suppl 6):871–6.

    Article  Google Scholar 

  24. Yang O, Kim HL, Weon JI, Seo YR. Endocrine-disrupting chemicals: review of toxicological mechanisms using molecular pathway analysis. J Cancer Prev. 2015;20(1):12–24.

    Article  Google Scholar 

  25. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14(5):273–87.

    Article  CAS  Google Scholar 

  26. Patterson AD, Turnbaugh PJ. Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology. Cell Metab. 2014;20(5):761–8.

    Article  CAS  Google Scholar 

  27. Carmody RN, Turnbaugh PJ. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest. 2014;124(10):4173–81.

    Article  CAS  Google Scholar 

  28. Donovan SM. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes. 2017;8(2):75–81.

    Article  Google Scholar 

  29. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.

    Article  CAS  Google Scholar 

  30. Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes. 2016;2:16003.

    Article  Google Scholar 

  31. Snedeker SM, Hay AG. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environ Health Perspect. 2011;120(3):332–9.

    Article  Google Scholar 

  32. Van de Wiele T, Gallawa CM, Kubachk KM, Creed JT, Basta N, Dayton EA, et al. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ Health Perspect. 2010;118(7):1004–9.

    Article  Google Scholar 

  33. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122(3):284–91.

    Article  CAS  Google Scholar 

  34. Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol. 2015;28(10):2000–9.

    Article  CAS  Google Scholar 

  35. Ba Q, Li M, Chen P, Huang C, Duan X, Lu L, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health Perspect. 2017;125(3):437–46.

    Article  CAS  Google Scholar 

  36. Wu J, Wen XW, Faulk C, Boehnke K, Zhang H, Dolinoy DC, et al. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice. Toxicol Sci. 2016;151(2):324–33.

    Article  CAS  Google Scholar 

  37. Zhang Y, Zhao F, Deng Y, Zhao Y, Ren H. Metagenomic and metabolomic analysis of the toxic effects of trichloroacetamide-induced gut microbiome and urine metabolome perturbations in mice. J Proteome Res. 2015;14(4):1752–61.

    Article  CAS  Google Scholar 

  38. Lai KP, Chung YT, Li R, Wan HT, Wong CC. Bisphenol A alters gut microbiome: comparative metagenomics analysis. Environ Pollut. 2016;218:923–30.

    Article  CAS  Google Scholar 

  39. Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, DeVito M, et al. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review. Environ Health Perspect. 2013;121(7):774–83.

    Article  Google Scholar 

  40. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40(7):749–52.

    Article  Google Scholar 

  41. Chen L, Zhang W, Hua J, Hu C, Lok-Shun Lai N, Qian PY, et al. Dysregulation of intestinal health by environmental pollutants: involvement of the estrogen receptor and aryl hydrocarbon receptor. Environ Sci Technol. 2018;52(4):2323–30.

    Article  CAS  Google Scholar 

  42. Xun L, Topp E, Orser C. Glutathione is the reducing agent for the reductive dehalogenation of tetrachloro-p-hydroquinone by extracts from a Flavobacterium sp. Biochem Biophys Res Commun. 1992;182(1):361–6.

    Article  CAS  Google Scholar 

  43. James-Todd TM, Huang T, Seely EW, Saxena AR. The association between phthalates and metabolic syndrome: the National Health and Nutrition Examination Survey 2001–2010. Environ Health Perspect. 2016;15(1):52.

    Google Scholar 

  44. James-Todd T, Stahlhut R, Meeker JD, Powell SG, Hauser R, Huang T, et al. Urinary phthalate metabolite concentrations and diabetes among women in the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Environ Health Perspect. 2012;120(9):1307–13.

    Article  Google Scholar 

  45. Hu J, Raikhel V, Gopalakrishnan K, Fernandez-Hernandez H, Lambertini L, Manservisi F, et al. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model. Microbiome. 2016;4(1):26.

    Article  Google Scholar 

  46. Provvisiero D, Pivonello C, Muscogiuri G, Negri M, de Angelis C, Simeoli C, et al. Influence of bisphenol A on type 2 diabetes mellitus. Int J Environ Res Public Health. 2016;13(10):989.

    Article  Google Scholar 

  47. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55.

    Article  CAS  Google Scholar 

  48. Greiner T, Bäckhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab. 2011;22(4):117–23.

    Article  CAS  Google Scholar 

  49. Alonso-Magdalena P, Vieira E, Soriano S, Menes L, Burks D, Quesada I, et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ Health Perspect. 2010;118(9):1243–50.

    Article  CAS  Google Scholar 

  50. Montgomery MP, Kamel F, Saldana TM, Alavanja MCR, Sandler DP. Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993–2003. Am J Epidemiol. 2008;167(10):1235–46.

    Article  CAS  Google Scholar 

  51. Jaacks LM, Staimez LR. Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: A systematic review. Environ Int. 2015;76:57–70.

    Article  CAS  Google Scholar 

  52. Velmurugan G, Ramprasath T, Swaminathan K, Mithieux G, Rajendhran J, Dhivakar M, et al. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biol. 2017;18(1):8.

    Article  Google Scholar 

  53. Swaminathan K, Veerasekar G, Kuppusamy S, Sundaresan M, Velmurugan G, Palaniswami NG. Noncommunicable disease in rural India: Are we seriously underestimating the risk? The Nallampatti noncommunicable disease study. Indian J Endocrinol Metab. 2017;21(1):90–5.

    Article  Google Scholar 

  54. Harishankar MK, Sasikala C, Ramya M. Efficiency of the intestinal bacteria in the degradation of the toxic pesticide, chlorpyrifos. 3 Biotech. 2013;3(2):137–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the research grants (5661/Punjab/NRPU/R&D/HEC/2016, 6429/Punjab/NRPU/R&D/HEC/2016, and 8365/Punjab/NRPU/R&D/HEC/2017) received from the Higher Education Commission (HEC) of Pakistan.

Conflict of Interest

Nothing to declare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fiayyaz, F., Rehman, K., Sharif, H., Irshad, K., Kamal, S., Akash, M.S.H. (2021). Alteration of Gut Microbiota in EDCs-Induced Metabolic Disorders. In: Akash, M.S.H., Rehman, K., Hashmi, M.Z. (eds) Endocrine Disrupting Chemicals-induced Metabolic Disorders and Treatment Strategies. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-45923-9_9

Download citation

Publish with us

Policies and ethics