Skip to main content

Abstract

Inherited metabolic diseases (IMDs) are heterogeneous group of diseases that are mostly monogenic in nature. IMDs are caused by the genetic mutation in the enzyme activity results in accumulation of progressive intoxication compounds which ultimately leads to cell dysfunction or cell death. The clinical results of inherited metabolic diseases are severe that ultimately leads to death. In the past there are limited therapeutic measures available which are used for the treatment of inherited metabolic diseases including enzyme replacement therapy, and chaperone technology. Recent studies in the disciplines of molecular genetics, biochemistry, and cell biology have emerged many novel technologies in medicines including gene therapy, gene editing, cellular therapies, and organ transplantation provide potential treatment against these diseases. Main genetic defects cannot be fully cured by current therapies but these are helpful to overcome the metabolic problems. Further studies are required to make these therapeutic measures more efficient so that families get benefit that are affected by these in born errors of metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun JM, Kurtzberg J. Cell therapy for diverse central nervous system disorders: inherited metabolic diseases and autism. Pediatr Res. 2018;83(1–2):364.

    Article  CAS  Google Scholar 

  2. Dickson PI, Kaitila I, Harmatz P, Mlikotic A, Chen AH, Victoroff A, et al. Safety of laronidase delivered into the spinal canal for treatment of cervical stenosis in mucopolysaccharidosis I. Mol Genet Metab. 2015;116(1-2):69–74.

    Article  CAS  Google Scholar 

  3. Warnock DG, Bichet DG, Holida M, Goker-Alpan O, Nicholls K, Thomas M, et al. Oral migalastat HCl leads to greater systemic exposure and tissue levels of active α-galactosidase a in Fabry patients when co-administered with infused agalsidase. PLoS One. 2015;10(8):e0134341.

    Article  Google Scholar 

  4. Garrod A. The incidence of alkaptonuria: a study in chemical individuality. The Lancet. 1902;160(4137):1616–20.

    Article  Google Scholar 

  5. Alfadhel M, Benmeakel M, Hossain MA, Al Mutairi F, Al Othaim A, Alfares AA, et al. Thirteen year retrospective review of the spectrum of inborn errors of metabolism presenting in a tertiary center in Saudi Arabia. Orphanet J Rare Dis. 2016;11(1):126.

    Article  Google Scholar 

  6. Illsinger S, Das AM. Impact of selected inborn errors of metabolism on prenatal and neonatal development. IUBMB Life. 2010;62(6):403–13.

    CAS  Google Scholar 

  7. Ferreira CR, Van Karnebeek CD, Vockley J, Blau N. A proposed nosology of inborn errors of metabolism. Genet Med. 2019;21(1):102.

    Article  Google Scholar 

  8. Sanderson S, Green A, Preece M, Burton H. The incidence of inherited metabolic disorders in the West Midlands, UK. Arch Dis Child. 2006;91(11):896–9.

    Article  CAS  Google Scholar 

  9. Fridovich-Keil J, Wlater J. Galactosemia. In: Valle D, Beaudet A, Vogelstein B, Kinzler BW, Antonarakis SE, Ballabio A, Scriver CR, editors. The online metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2008.

    Google Scholar 

  10. Timmers I, Zhang H, Bastiani M, Jansma BM, Roebroeck A, Rubio-Gozalbo ME. White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging. J Inherit Metab Dis. 2015;38(2):295–304.

    Article  Google Scholar 

  11. Coss K, Doran P, Owoeye C, Codd M, Hamid N, Mayne P, et al. Classical galactosaemia in Ireland: incidence, complications and outcomes of treatment. J Inherit Metab Dis. 2013;36(1):21–7.

    Article  CAS  Google Scholar 

  12. Calderon FR, Phansalkar AR, Crockett DK, Miller M, Mao R. Mutation database for the galactose-1-phosphate uridyltransferase (GALT) gene. Hum Mutat. 2007;28(10):939–43.

    Article  CAS  Google Scholar 

  13. Hartnett C, Kim H-O, Scaman CH. Effect of processing on galactose in selected fruits. Can J Diet Pract Res. 2007;68(1):46–50.

    Article  Google Scholar 

  14. Ali S, Khan RI, Azhar. Galactosemia: A Genetic Disease of Leloir Pathway. Int J Sci Res Technol. 2017;3(4):389–97.

    Google Scholar 

  15. Van Calcar SC, Bernstein LE, Rohr FJ, Scaman CH, Yannicelli S, Berry GT. A re-evaluation of life-long severe galactose restriction for the nutrition management of classic galactosemia. Mol Genet Metab. 2014;112(3):191–7.

    Article  Google Scholar 

  16. Tang M, Odejinmi S, Vankayalapati H, Wierenga K, Lai K. Innovative therapy for classic galactosemia—tale of two HTS. Mol Genet Metab. 2012;105(1):44–55.

    Article  CAS  Google Scholar 

  17. Scriver CR, Kaufman S. Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly SW, et al., editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 1667–724.

    Google Scholar 

  18. Blau N, Van Spronsen FJ, Levy HL. Phenylketonuria. The Lancet. 2010;376(9750):1417–27.

    Article  CAS  Google Scholar 

  19. Thöny B, Blau N. Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat. 2006;27(9):870–8.

    Article  Google Scholar 

  20. Lindner M. Treatment of phenylketonuria variants: European recommendations. PKU and BH4: advances in phenylketonuria and tetrahydrobiopterin. Heilbronn: SPS Verlagsgesellschaft mbH; 2006. p. 18087.

    Google Scholar 

  21. LaClair CE, Ney DM, MacLeod EL, Etzel MR. Purification and use of glycomacropeptide for nutritional management of phenylketonuria. J Food Sci. 2009;74(4):E199–206.

    Article  CAS  Google Scholar 

  22. Ney D, Gleason S, Van Calcar S, MacLeod E, Nelson K, Etzel M, et al. Nutritional management of PKU with glycomacropeptide from cheese whey. J Inherit Metab Dis. 2009;32(1):32–9.

    Article  CAS  Google Scholar 

  23. Zurflüh MR, Zschocke J, Lindner M, Feillet F, Chery C, Burlina A, et al. Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum Mut. 2008;29(1):167–75.

    Article  Google Scholar 

  24. Al Hafid N, Christodoulou J. Phenylketonuria: a review of current and future treatments. Translational Pediatr. 2015;4(4):304.

    Google Scholar 

  25. Raivio K, Seegmiller J. Genetic diseases of metabolism. Annu Rev Biochem. 1972;41(1):543–76.

    Article  CAS  Google Scholar 

  26. Parenti G, Andria G, Ballabio A. Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med. 2015;66:471–86.

    Article  CAS  Google Scholar 

  27. Di Fruscio G, Schulz A, De Cegli R, Savarese M, Mutarelli M, Parenti G, et al. Lysoplex: an efficient toolkit to detect DNA sequence variations in the autophagy-lysosomal pathway. Autophagy. 2015;11(6):928–38.

    Article  Google Scholar 

  28. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2014;43(D1):D447–D52.

    Article  Google Scholar 

  29. Beck M. Treatment strategies for lysosomal storage disorders. Dev Med Child Neurol. 2018;60(1):13–8.

    Article  Google Scholar 

  30. Cox TM. Innovative treatments for lysosomal diseases. Best Pract Res Clin Endocrinol Metab. 2015;29(2):275–311.

    Article  CAS  Google Scholar 

  31. Lesch M, Nyhan WL. A familial disorder of uric acid metabolism and central nervous system function. Am J Med. 1964;36(4):561–70.

    Article  CAS  Google Scholar 

  32. Seegmiller JE, Rosenbloom FM, Kelley WN. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967;155(3770):1682–4.

    Article  CAS  Google Scholar 

  33. Nyhan WL. The Lesch-Nyhan syndrome. Annu Rev Med. 1973;24(1):41–60.

    Article  CAS  Google Scholar 

  34. Micheli V, Bertelli M, Jacomelli G, Santucci A, Bernardini G. Lesch-Nyhan disease: a rare disorder with many unresolved aspects. Medical University; 2018.

    Google Scholar 

  35. Balis ME, Krakoff IH, Berman PH, Dancis J. Urinary metabolites in congenital hyperuricosuria. Science. 1967;156(3778):1122–3.

    Article  CAS  Google Scholar 

  36. Saemundsson S, Roberts M. Oral self-injurious behavior in the developmentally disabled: review and a case. ASDC J Dent Child. 1997;64(3):205–9.. 28

    CAS  Google Scholar 

  37. Olson L, Houlihan D. A review of behavioral treatments used for Lesch-Nyhan syndrome. Behav Modif. 2000;24(2):202–22.

    Article  CAS  Google Scholar 

  38. Pralong E, Pollo C, Coubes P, Bloch J, Roulet E, Tetreault M, et al. Electrophysiological characteristics of limbic and motor globus pallidus internus (GPI) neurons in two cases of Lesch–Nyhan syndrome. Neurophysiol Clin/Clin Neurophysiol. 2005;35(5-6):168–73.

    Article  CAS  Google Scholar 

  39. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;349(8):776–88.

    Article  CAS  Google Scholar 

  40. Turcu AF, Auchus RJ. Adrenal steroidogenesis and congenital adrenal hyperplasia. Endocrino Metab Clin. 2015;44(2):275–96.

    Article  Google Scholar 

  41. New MI, Abraham M, Gonzalez B, Dumic M, Razzaghy-Azar M, Chitayat D, et al. Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc Natl Acad Sci. 2013;110(7):2611–6.

    Article  CAS  Google Scholar 

  42. Balsamo A, Cicognani A, Baldazzi L, Barbaro M, Baronio F, Gennari M, et al. CYP21 genotype, adult height, and pubertal development in 55 patients treated for 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2003;88(12):5680–8.

    Article  CAS  Google Scholar 

  43. Muthusamy K, Elamin MB, Smushkin G, Murad MH, Lampropulos JF, Elamin KB, et al. Adult height in patients with congenital adrenal hyperplasia: a systematic review and metaanalysis. J Clin Endocrinol Metab. 2010;95(9):4161–72.

    Article  CAS  Google Scholar 

  44. El-Maouche D, Arlt W, Merke DP. Congenital adrenal hyperplasia. The Lancet. 2017;390(10108):2194–210.

    Article  CAS  Google Scholar 

  45. Trapp CM, Levine LS, Oberfield SE. Congenital adrenal hyperplasia. In: Pediatric endocrinology. New York: Springer; 2018. p. 311–34.

    Chapter  Google Scholar 

  46. German A, Suraiya S, Tenenbaum-Rakover Y, Koren I, Pillar G. Hochberg Ze. control of childhood congenital adrenal hyperplasia and sleep activity and quality with morning or evening glucocorticoid therapy. J Clin Endocrinol Metab. 2008;93(12):4707–10.

    Article  CAS  Google Scholar 

  47. Bonfig W, Dalla Pozza SB, Schmidt H, Pagel P, Knorr D, Schwarz HP. Hydrocortisone dosing during puberty in patients with classical congenital adrenal hyperplasia: an evidence-based recommendation. J Clin Endocrinol Metab. 2009;94(10):3882–8.

    Article  CAS  Google Scholar 

  48. El-Maouche D, Collier S, Prasad M, Reynolds JC, Merke DP. Cortical bone mineral density in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin Endocrinol. 2015;82(3):330–7.

    Article  CAS  Google Scholar 

  49. Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(9):4133–60.

    Article  CAS  Google Scholar 

  50. Bidet M, Bellanne-Chantelot C, Galand-Portier M-B, Golmard J-L, Tardy V, Morel Y, et al. Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2010;95(3):1182–90.

    Article  CAS  Google Scholar 

  51. Auchus RJ. Congenital adrenal hyperplasia in adults. Curr Opin Endocrinol Diabetes Obes. 2010;17(3):210–6.

    Article  Google Scholar 

  52. Gomes LG, Huang N, Agrawal V, Mendonça BB, Bachega TA, Miller WL. Extraadrenal 21-hydroxylation by CYP2C19 and CYP3A4: effect on 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2009;94(1):89–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahid, M., Rasool, A., Anjum, F. (2021). Inherited Metabolic Disorders: A Current Status. In: Akash, M.S.H., Rehman, K., Hashmi, M.Z. (eds) Endocrine Disrupting Chemicals-induced Metabolic Disorders and Treatment Strategies. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-45923-9_4

Download citation

Publish with us

Policies and ethics