
Chapter 7
Science Data Products for AMPERE

Colin L. Waters, B. J. Anderson, D. L. Green, H. Korth, R. J. Barnes
and Heikki Vanhamäki

Abstract Birkeland currents that flow in the auroral zones produce perturbation
magnetic fields that may be detected using magnetometers onboard low-Earth orbit
satellites. The Active Magnetosphere and Planetary Electrodynamics Response
Experiment (AMPERE) uses magnetic field data from the attitude control system
of each Iridium satellite. These data are processed to obtain the location, intensity
and dynamics of the Birkeland currents. The methodology is based on an orthogonal
basis function expansion and associated data fitting. The theory of magnetic fields
and currents on spherical shells provides the mathematical basis for generating the
AMPERE science data products. The application of spherical cap harmonic basis
and elementary current system methods to the Iridium data are discussed and the
procedures for generating the AMPERE science data products are described.

7.1 Introduction

The electric dynamocomprising the solarwindkinetic energy interactingwithEarth’s
magnetic field in space drives a global electric circuit that couples themagnetosphere
with the polar ionospheres through the Birkeland currents. The first averaged spatial
configuration and intensity of the region 1 and region 2 Birkeland currents were
obtained from the low-Earth orbit Triad satellite around 50 years ago (Iijima and
Potemra 1976). Using spatially sparse satellite observations from Triad, MAGSAT,
Viking and DMSP, the intensity and location dependence of the currents on the inter-
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planetary magnetic field (IMF) was recognised (Bythrow et al. 1982; Iijima et al.
1984; Zanetti et al. 1984; Erlandson et al. 1988). Birkeland currents are typically
located between 65◦–75◦ magnetic latitude, expanding to 45◦ during geomagnetic
storms and contracting poleward of 75◦ during quiet periods with similar excur-
sions for the southern hemisphere. Subsequent statistical and event studies using
Iridium satellite data have confirmed the IMF dependence (Anderson et al. 2008;
Green et al. 2009; Korth et al. 2010), provided estimates of ionosphere conductance
(Green et al. 2007) and energy transfer via the Birkeland currents (Waters et al.
2004; Korth et al. 2008) and revealed the spatial sequence from small to enhanced
current flow (Anderson et al. 2014, 2018). These results derived from Iridium satellite
data have highlighted limitations of previous, spatially sparse, in situ measurements,
which required months of data when using single satellite studies in order to cover
all magnetic local times.

The Iridium satellite constellation is a network of about 90 polar orbiting satellites
at an altitude of 780km. Each satellite contains a 3-axis, vector fluxgate magnetome-
ter as part of the attitude control system. The number of satellites and the spatial cov-
erage make the Iridium constellation an excellent sensor system for space physics
research. The quantification and validation of the Iridium magnetometer data for
studying the Birkeland currents was discussed by Waters et al. (2001) Anderson et
al. (2000, 2002, 2008), Green et al. (2009). After removing magnetic field variations
longer than 26min with suitable filtering, the Iridium magnetometer data are pro-
cessed to give the perturbation magnetic field, b = (br , bθ , bφ) which are dominated
by signatures of the Birkeland currents.

Magnetic field data from the Iridiumsatelliteswerefirst available for space physics
research in 1999. These were limited to the cross satellite track components of the
perturbationmagnetic field. Datawere obtained from each satellite at a sample period
of 200 s. This provided a large improvement in spatial and temporal studies of the
Birkeland currents over previous single satellitemeasurements.While severalmonths
of single satellite data are required to build a global pattern (e.g. Gary et al. 1995;
Kosch and Nielsen 1995), the Iridium data allowed the required time frame to be
drastically reduced to data averaged over ≈1h. These 200 s sampled, cross-track
only data will be referred to as pre-AMPERE data.

During2009, enhancements to the Iridiumdata delivery andprocessingwere intro-
duced under the Active Magnetosphere and Planetary Electrodynamics Response
Experiment (AMPERE) project as summarised in Anderson et al. (2014). The data
sample period was reduced tenfold from 200 s to a standard 20 s interval from each
satellite. Furthermore, a 2 s data sample mode is available for storm case study
intervals, enabling higher time resolution studies of active space weather processes.
AMPERE data products are available from October 2009 at the web address, http://
ampere.jhuapl.edu.

The procedure for estimating the radial current from the pre-AMPERE data was
described by Waters et al. (2001). The Iridium, cross-track component data were
expanded using spherical cap harmonic basis functions where the expansion coef-
ficients were estimated from a minimum least squared error process. There are two
main features of the AMPERE data that required enhancements to the pre-AMPERE

http://ampere.jhuapl.edu
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data processing described byWaters et al. (2001) andGreen et al. (2006). The full vec-
tor magnetic field values are available under AMPERE and the higher time cadence
provides the ability to resolve smaller spatial structures in latitude. This required
high order spherical cap harmonic analyses. In particular, the ability to compute the
spatial gradient of the spherical cap harmonic functions for orders greater than 50
over typical spherical cap sizes of θ0 = 50◦.

In this chapter, the theory and data processing used to obtain theAMPERE science
data products available from http://ampere.jhuapl.edu are described. We begin in
Sect. 7.2 with a relevant summary of the theory of magnetic fields and currents on
spherical surfaces, drawing mostly from the work by Backus (1986). This provides
the mathematical framework for computing the Birkeland currents from the Iridium
satellite data. Spherical harmonic functions are discussed in Sect. 7.3, followed by
a description of the expansion of the Iridium data using vector spherical harmonics
as orthogonal basis functions in Sect. 7.4. This leads to a discussion of the vector
spherical cap harmonics used for confining the data fit over a cap rather than the full
sphere at high order for degree-scale spatial resolution.

The underlying theory and application to Iridium data are illustrated in Sect. 7.5
using examples of the preprocessed input magnetic perturbations data (br , bθ , bφ),
the estimated perturbation magnetic field data (br, f , bθ, f , bφ, f ), expanded from the
vector spherical cap harmonic basis functions and the derived radial current densities.
Properties of the uncertainties in the input and fitted satellite data are discussed in
Sect. 7.6 including error statistics and uncertainty estimates in the radial current data
product. The spatial resolution of the data is discussed, particularly around the data-
dense Iridium satellite track convergence locations in each pole. An alternative to
using spherical harmonics is the Spherical Elementary Current System (SECS) basis
functions (Amm 1997 and Chap. 2 of this volume). The AMPERE data processed
using this approach are discussed in Sect. 7.7. Finally, an example of AMPERE data
products combined with other space physics data sets (e.g. SuperDARN radars) is
given in Sect. 7.8.

7.2 Magnetic Fields and Currents on Spherical Surfaces

Electric currents have well-defined magnetic fields as specified through the Maxwell
equations. The mathematical relationships between magnetic fields and currents on
spherical shells were reviewed by Backus (1986). There are three representations
that are relevant for magnetic fields in space physics. These are the Gauss, Mie and
Helmholtz descriptions. The relevant descriptions, parameters and relationships are
summarised in Fig. 7.1. The Gauss form is used for modelling the surface geomag-
netic field, where both∇ • B and∇ × B are zero. Approximating the ionosphere as a
thin current sheet with anisotropic conductance requires the Helmholtz description.
The Mie expressions are used to derive the radial current density, given the input
perturbation magnetic field data, b, from the Iridium satellites.

http://ampere.jhuapl.edu
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b = Λ1Q

μ0J = ∇ × Λ1p

J = J r̂

J = 0
b = −∇ψ

∇⊥ • J⊥ = J

μ0J⊥ = ∇ p⊥ + Λ q⊥

J = J⊥ + J r̂

∇ • J = 0
μ0J = ∇ × Λ p + Λ q

b = ∇ × Λ P + Λ Q

Fig. 7.1 Magnetic fields and currents and relevant mathematics below, within and above the iono-
sphere. The surface curl operator Λ1 = r × ∇ (Green et al. 2006)

Consider a spherical shell denoted S(a, b), with origin at the Earth centre andwith
inner radius, a and outer radius b at the minimum and maximum satellite altitudes
(a < b). Since ∇ • B = 0 the vector field, B, is solenoidal. The converse is not
necessarily true (Backus et al. 1996). A vector field,Q is toroidal in the shell if there
is a scalar field, Q, such that

Q = r × ∇Q (7.1)

This is the Helmholtz representation of the field, Q in the surface S(a, b). The
toroidal scalar, Q, is uniquely determined from Eq. (7.1) provided that for each r in
a < r < b, the average is zero, i.e. 〈Q〉r = 0.

A vector field, P, is poloidal in the shell if there is a scalar field, P , such that

P = ∇ × (r × ∇P) (7.2)

If the current density J �= 0 in the shell then the Mie representation of the magnetic
field, B, is

B = P + Q. (7.3)

Equation (7.1) was introduced by Lamb (1881). The Gauss representation used in
geomagnetism for main field modelling has Q = 0 and ∇2P = 0. The vector fields,
P and Q, are uniquely determined by the field B in the shell. However, the scalar
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fields, P and Q are determined by B only to additive functions of r as discussed by
Backus (1986). They can be made unique by the constraint that the average values,
〈Q〉r = 〈P〉r = 0.

From Maxwell, with negligible displacement current, the magnetic field, B and
the current density, J are related by

∇ × B = μJ (7.4)

Taking the curl of Eq. (7.3) and since J is solenoidal [i.e. ∇ • J = 0] the Mie repre-
sentation of J is

μJ = ∇ × (r × ∇ p) + r × ∇q (7.5)

where p and q are the poloidal and toroidal scalars for the current density vector field,
J. It follows that these are related to the scalars P and Q describing the magnetic
field by

Q = p (7.6)

∇2P = −q (7.7)

Therefore, a toroidal current produces a poloidal magnetic field while a poloidal
current gives a toroidal magnetic field. In summary, toroidal fields are solenoidal
fields with zero radial component while poloidal fields are solenoidal fields whose
curl has no radial component.

We only have information about the horizontal gradients of the magnetic field
from the Iridium data. The perturbation magnetic field, b and current density, J are
solenoidal fields but the horizontal components,b⊥ andJ⊥ are not. Therefore, theMie
representation cannot be used directly. However, theHelmholtz representation allows
the construction of any vector field from curl-free and divergence-free components.
The relationships between theHelmholtz andMie representations for magnetic fields
and currents is described by Backus (1986).

The field aligned (radial) currents (J‖) are derived from the transverse magnetic
field perturbations, b⊥ = b(θ, φ), where θ is the co-latitude and φ is the longitude
coordinate. If vs is some tangent vector field on the spherical surface, S(b), then
there is a unique poloidal field

vp = ∇1g (7.8)

and a unique toroidal field
vt = ∇1h (7.9)

where ∇1 is the dimensionless surface gradient defined by

∇1 = r∇s (7.10)

The scalar functions, g and h, are determined by v if 〈g〉b = 〈h〉b = 0 according to
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∇2
1g = ∇1 • vs (7.11)

∇2
1h = (r × ∇s) • vs (7.12)

for
vs = ∇1g + r × ∇sh (7.13)

and
v = ru f + vp + vt (7.14)

where ru is the radial unit vector so ru f is the radial part of v.
The derivations for the divergence and curl of the vector field, v, are given in

Backus (1986). The results are

∇ • v = r−2[∇r (r
2 f ) + ∇2

1 (rg)] (7.15)

and
∇ × v = ru f ′ + ∇1g

′ + (r × ∇s)h
′ (7.16)

where
f ′ = r−1∇2

1h (7.17)

g′ = −r−1∇r (rh) (7.18)

h′ = r−1[∇r (rg) + 〈 f 〉r − f ] (7.19)

From (7.14), (7.17) and (7.3) any solenoidal vector field, b, can be written

b = ru(r−1∇2
1 P) − ∇1[r−1∇r (r P)] + r × ∇s Q (7.20)

and a similar expression can be written for the current density, J

μJ = ru(r−1∇2
1 p) − ∇1[r−1∇r (rp)] + r × ∇sq (7.21)

For radial, field aligned current with no horizontal currents in S(a, c), the magnetic
perturbations detected by the Iridium constellation form a toroidal magnetic field.
From (7.7) and (7.21) the relation used to obtain the radial current density is

μr Jr = ∇2
1 p (7.22)
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7.3 Spherical Harmonic Basis Functions

The spherical harmonic functions were used by Gauss in 1838 to obtain analytic
expressions for the Earth’s magnetic field. This is now a core technique in geo-
physics and the spherical harmonic expansion of Earth’s main field is publicised as
the International Geomagnetic Reference Field (IGRF) as a set of spherical harmonic
coefficients. There is an abundance of literature describing geomagnetic field mod-
elling. An excellent resource is the two volumes by Chapman and Bartels (1940) in
addition to any text on mathematical methods (e.g. McQuarrie 2003).

The techniques are very similar for modelling perturbation fields due to the Birke-
land currents. This section gives a brief summary of these spherical harmonic meth-
ods, providing a foundation for describing a spherical cap harmonic expansion of
the Iridium data.

The spherical harmonic functions are solutions to the Laplace equation expressed
in spherical coordinates. Electric currents internal to the Earth determine the main
geomagnetic field, B0, observed on Earth’s surface where ∇ • B0 = ∇ × B0 = 0.
This gives the classic Gauss representation

∇2ψ = 0 (7.23)

which is the Laplace equation for some potential function,ψ . In spherical coordinates
Eq. (7.23) becomes

∇2ψ = 1

r2
∂

∂r

(
r2

∂ψ

∂r

)
+ 1

r2sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+ 1

r2sin2θ

∂2ψ

∂φ2
= 0 (7.24)

The solutions to Eq. (7.24) are usually obtained using the separation of variables
technique. At constant radial height (Rsat = 780 km) we are interested in the solu-
tions, Y(θ, φ). The solution in the co-latitude variable, θ involves the associated
Legendre differential equation

d

dx

[
(1 − x2)

dP(x)

dx

]
− m2

1 − x2
P(x) = −λP(x) (7.25)

where λ is a constant, x = cosθ and m = 0,±1,±2,....
For m = 0 and 0 ≤ θ ≤ π , the solutions to Eq. (7.25) are the Legendre polyno-

mials, Pn(x) which may be generated from Rodrigues’ formula

Pn(x) = 1

2nn!
dn

dxn
(
x2 − 1

)n
(7.26)

for n = 0, 1, 2,.... For example, the Legendre polynomials are P0(x) = 1, P1(x) = x ,
P2(x) = 1

2 (3x
2 − 1) and so on,with−1 ≤ Pn(x) ≤ 1 and all Pn(1) = 1.They satisfy

the orthogonality relation



148 C. L. Waters et al.

∫ +l

−l
Pl(x)Pn(x)dx = 1

2l + 1
δl,n (7.27)

For m �= 0 we have the associated Legendre functions

Pl,|m|(x) = (1 − x2)
|m|
2
dm Pn(x)

dxm
(7.28)

which satisfy

∫ +l

−l
Pl,|m|(x)Pn,|m|(x)dx = 2

2l + 1

(l + |m|)!
(l − |m|)!δl,n (7.29)

for the Kronecker delta function, δl,n and |m| ≤ l. The factorial multiplier in Eq.
(7.29) shows that these functions have a large range in magnitude even for small
increments inm. Since these will be used to construct a basis set of the experimental
data, we would like the coefficients to represent the strength of each basis function in
the data. One early choice was to use normalised Pl,m . However, the standard adopted
by the geophysics community in 1939 is Schmidt semi-normalisation where

Pm
l (θ) = Pl,m(θ) m = 0 (7.30)

Pm
l (θ) =

[
2
(l − m)!
(l + m)!

]1/2

Pl,m(θ) m > 0 (7.31)

Including the dependence with longitude gives the spherical harmonics

Ym
l (θ, φ) = Pm

l (θ)eimφ (7.32)

and their mean squared value over the spherical surface is

∫ π

0

∫ 2π

0

[
Ym
l (θ, φ)

]2
sinθdθdφ = 4π

2l + 1
(7.33)

The eimφ in Eq. (7.32) is implemented by using Pm
l cos(mφ) for m > 0 and

Pm
l sin(mφ) for m < 0. The eigenvalues, λ in (7.25) are related to l in Eq. (7.32) by

λ = l(l + 1) so that
∇2ψ(θ, φ) = −l(l + 1)ψ(θ, φ) (7.34)

This simplifies the computation of Jr in Eq. (7.22). For 0 ≤ θ ≤ π the eigenvalues
are integers. This is no longer true for spherical cap harmonics.
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7.4 Basis Functions and Data Fitting

The Iridium satellites orbit at 780km above Earth’s surface. At this altitude the
magnetic field perturbations detected at high latitudes are assumed to be due to
radial currents. Therefore, the perturbation magnetic field is toroidal as defined by
Eq. (7.1) and the radial current may be determined using Eq. (7.22). The toroidal
scalar, Q, in Eq. (7.1) may be expanded on a basis set of spherical harmonics (Backus
1986)

Q =
K∑
l=0

l∑
m=−l

al,m Yr,θ,φ (7.35)

so that Eq. (7.34) can be used for the second order derivative in Eq. (7.22).
The preprocessing of the magnetic field data from the Iridium satellites for

AMPERE provides vector perturbation magnetic field data, b = (br , bθ , bφ). These
are expanded on a basis set of vector spherical harmonics

Yr (θ, φ) = Ym
l (θ, φ)ru (7.36)

Yθ (θ, φ) = r∇Ym
l (θ, φ) (7.37)

Yφ(θ, φ) = r × ∇Ym
l (θ, φ) (7.38)

which involves the gradient of the scalar spherical harmonics of Eq. (7.32). The
derivative of Ym

l with respect to φ is straightforward, involving a multiplication by
m. For 0 ≤ θ ≤ π and Schmidt semi-normalisation, the derivative of Pm

l with respect
to θ is Chapman and Bartels (1940)

dPm
l

dθ
= 1

2
[(l + m)(l − m + 1)]1/2 Pm−1

l (θ) − 1

2
[(l + m + 1)(l − m)]1/2 Pm+1

l (θ)

(7.39)
and for m = 0,

dP0
l

dθ
= −

[
1

2
l(l + 1)

]1/2

P1
l (θ) (7.40)

The Iridium constellation providesmagnetic field data in six longitudinally spaced
orbit planes which gives a maximum value, m=6. However, the latitude spatial reso-
lution changes with the data sample rate and values for l > 60 are common for the 20
second sampled data. According to Eqs. (7.36)–(7.38) the gradient of the basis func-
tions at each (θ, φ) of the recorded magnetic field data is required. Therefore, basis
functions and the data fit are calculated in an orthogonal coordinate system related
to geographic coordinates. The design matrix is a two dimensional array (matrix)
containing the basis function values at the locations of the perturbationmagnetic field
data. If the number of basis functions is nBF and the number of data points is NP
then the design matrix for scalar data would be of size nBF by N P . For AMPERE,



150 C. L. Waters et al.

each vector component of the perturbation magnetic field is loaded into a column
vector and the system is solved for the set of coefficients that minimises the squared
difference between the data and the estimated values. Since NP > nBF, Singular
Value Decomposition (SVD) may be used to solve for the coefficients (Press et al.
1986).

7.5 Practical Considerations

There are a number of reasons for using Spherical Cap Harmonic Analysis (SCHA)
to generate AMPERE data products. The region of interest containing the major
current systems is generally located within 40◦ of the poles. Second, AMPERE can
provide up to 2 s sampled data resulting in higher spatial resolution which requires
a high order fit. For a full sphere spherical harmonic fit, the number of coefficients
required to achieve the spatial resolution can become larger than the number of input
data points. Third, a basis function fit that employs sine/cosine functions in longitude
requires selection ofm that satisfies the Nyquist criterion for the largest separation in
longitude. Finally, given that the northern and southern hemisphere Iridium satellite
track intersection locations are not 180◦ apart, they may be treated separately by
using a spherical cap approach.

The calculation of spherical cap harmonics was described by Haines (1988) and
de Santis et al. (1999). The computer program provided by Haines (1988) used a
recursion process based on the hypergeometric functions to compute the spherical
harmonics over a cap. However, for AMPERE data products these functions need
to be evaluated to high order where the recursion relations require the computation
of very large numbers, stretching the numerical precision capabilities of computers.
In order to circumvent this problem, (Green et al. 2006) used software techniques
to increase the computer numerical precision in order to compute these functions. A
simpler method is to numerically solve Eq. (7.25) using a finite difference algorithm
as an eigen problem, given the two boundary conditions discussed by Haines (1985).
In principle, this method allows for the computation of the set of spherical harmonic
basis functions over a spherical annulus as used, for example, by Waters and Sciffer
(2008).

While the spherical cap harmonic functions may be obtained for any cap size, θ0,
the computation time is decreased if recursion and identity relationships that are well
known for the full sphere associated Legendre polynomials and their derivatives are
used, (e.g. Eqs. 7.39 and 7.40). The Iridium data covers all latitudes in six orbit planes
at 780km altitude. Therefore, the combined advantages of efficient computation
of basis functions and the use of spherical cap harmonics is obtained by selecting
θ0 = 90◦. This strategy yields the two basis function sets obtained using the Dirichlet
and Neumann boundary conditions from standard math library associated Legendre
polynomial routines.

The spherical cap harmonic expansion yields the fitted perturbation magnetic
field (br, f , bθ, f , bφ, f ) and Birkeland current configuration over both the northern
and southern hemisphere auroral regions. As an example, the 20 s (bθ , bφ) data
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for 1520–1530 UT, 24 Aug 2010 are shown in Fig. 7.2a. The data are shown in
the Altitude Adjusted Corrected GeoMagnetic (AACGM) latitude (Baker and Wing
1989) and Magnetic Local Time (MLT) coordinate system with 12 MLT at the top.
The vector spherical cap harmonic fit magnetic field data are shown in Fig. 7.2b.

Using Eqs. (7.37)–(7.40) for the basis set, followed by Eqs. (7.22) and (7.35),
the radial current is obtained and shown in Fig. 7.2c. The region 1 current system is
located near 70◦ with region 2 located a few degrees poleward of 60◦ AACGM lati-
tude. The Interplanetary Magnetic Field (IMF) magnitude and orientation modulate
the Birkeland current pattern (Green et al. 2009). The time shifted solar wind data
from the Advanced Composition Explorer (ACE) spacecraft for this interval shows
the IMF was relatively steady with (Bx , By, Bz) = (7,−16,−8) nT. The negative
By of the IMF twists the current pattern pushing current poleward on the dayside.

The southern hemisphere data are represented as looking through the Earth from
above the north pole. The Iridium tracks in Fig. 7.2a show the larger offset of the
spacecraft intersection location from theAACGMpole in the southern comparedwith
the northern hemisphere. This largely contributed to the difficulty in achieving data
fits for the southern hemisphere using the pre-AMPERE, cross-track only Iridium
data.

The availability of both bθ and bφ data from Iridium post-2009 allows improved
estimates, particularly for the southern hemisphere. As an example, consider the
southern hemisphere data for 2348–2358 UT, 4 April 2010 and the straightforward
application of a spherical cap harmonic fit as shown in Fig. 7.3. While the fitted
magnetic fields look reasonable, the field aligned current pattern shows ‘stripes’ of
current segments, particularly on the dawn side over 700 − 80◦ latitude. This is an
effect caused by the mostly longitudinally oriented currents ‘slicing’ across the finite
basis function sum, particularly in longitude where m ≤ 6 in Eq. (7.35) in order to
avoid aliasing.

The ‘pole’ (or zero co-latitude) location for the basis functions can be placed
anywhere on the sphere (with radius of RE + 780 km altitude). In order to maximise
longitudinal resolution, zero co-latitude for the data fit is located at the average
Iridium track intersection point, which for this case is near 70◦ and 21MLT.Given the
Iridium satellite altitude of 780km and the spacing in each orbit plane, it takes about
9min for full latitude data coverage. Therefore, each fit involves a data collection
window of 10 min. For a given 10min data interval, the average of the satellite track
intersections is obtained from the 15 track pair combinations. There are two average
intersection locations, one for each hemisphere. For a given hemisphere of data, the
‘shifted pole’ and the input magnetic perturbation data in (orthogonal) geographic
(GEO) coordinates are used for the spherical cap harmonic fit.

An outline of the algorithm to improve the fit is as follows. For a given 10min
interval, the data are separated into northern and southern hemisphere caps. The
magnetic field perturbation values midway between the Iridium satellite tracks are
estimated and folded into the fit with reduced weighting. The simplest estimation
scheme is a linear fit (averaged values) between adjacent Iridium tracks. A more
advanced approach is to use Spherical Elementary Currents, as described below.
Either way, a set of ‘ghost’ data tracks are generated between the Iridium satellite
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Fig. 7.2 (top) The perturbation magnetic field data from Iridium for 0520–0530 UT, 24 August
2010, (centre) the fitted magnetic field and (bottom) the radial current density for northern (left) and
southern (right) hemispheres plotted in AACGM and MLT coordinates (see text). Red identifies
outward and blue the inward current

tracks, allowing larger values for m in the fit. The input Iridium data are treated as
more important than the ‘ghost’ data in the weightings for the data fit. The l = 50,
m = 8 spherical cap harmonic fit to the data in Fig. 7.3 is shown in Fig. 7.4.
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Fig. 7.3 The perturbation magnetic field data from Iridium for 2348–2358 UT, 4 April 2010 for
the southern hemisphere. The ‘stripes’ in current on the dawn side result from the offset between
the satellite track intersection and the centre of the current system

Fig. 7.4 The perturbation magnetic field data from Iridium for 2348–2358 UT, 4 April 2010 and
field aligned current for the south hemisphere using the improved algorithm (see text)

7.6 Estimating Uncertainties

Magnetometer data obtained from the Iridium satellite constellation have been used
to estimate the field aligned current (Waters et al. 2001; Anderson et al. 2002; Green
et al. 2009), high latitude Poynting flux (Waters et al. 2004; Korth et al. 2008)
and ionosphere conductance (Green et al. 2007). Since these are key quantities in
magnetosphere–ionosphere coupling it is important to estimate the magnitudes and
identify sources of uncertainties in the AMPERE data products. In this section, the
uncertainties in the magnetic field and the derived current are discussed.

Uncertainties in the measured magnetic field values involves the magnetometer
specifications and performance on each Iridium satellite and the associated analog to
digital data conversion. The instruments are a fluxgate design which sense the total
magnetic field in three orthogonal component directions. These data are reduced to
(br , bθ , bφ) by subtraction from a main field model, filtering and adjustments for
orthogonality and channel cross-talk as described by Anderson et al. (2000). This
process also provides the data quality values which are used as the measurement
errors, σi .
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The perturbation magnetic field data are fit to a set of orthogonal functions with
the coefficients determined by minimising the least squared error. The merit function
is (Press et al. 1986)

χ2 =
N∑
i=1

[
bi (r, θ, φ) − Qi (r, θ, φ)

σi

]2

(7.41)

where Qi (r, θ, φ) are the estimated values obtained from the fit coefficients al,m via
Eq. (7.35) and bi (r, θ, φ) are the experimental data. This is a common data fitting
method and discussions of the ‘goodness of fit’ may be found in many statistical
analysis texts such as Johnson and Wichern (2002) and Press et al. (1986). If mea-
surement errors are normally distributed, then themerit function in Eq. (7.41) follows
a chi-squared distribution and the least squared and maximum likelihood estimates
are equivalent.

The input (br , bθ , bφ) values are located at coordinates (r, θ, φ) where the coef-
ficients and basis functions provide the fitted perturbation magnetic field estimates,
(br, f , bθ, f , bφ, f ). For a data sample interval of 20 s, the number of magnetic field
values from Iridium for a 10min interval is ≈2000. The residuals are the differences
between the input and fitted values and these are included in the AMPERE data
products. For estimating the radial current density, we focus on the (bθ , bφ) data.
The input versus the fitted data for 0520–0530 UT, 24 August, 2010 are shown in
the two upper panels of Fig. 7.5. A ‘good’ fit to the data is shown by points close
to the line with unity slope. In order to check for anomalies in the residuals and the
variance, the residuals are plotted versus the predicted values in the lower panels
of Fig. 7.5. There is no clear trend, indicating the basis function model adequately
describes most of the data and the variance is independent of the input data.

The minimisation of the merit function also yields a covariance matrix which is
related to the data uncertainties if the residuals have a normal distribution. Figure7.6
shows the residuals as a function of the normal distribution quartile (Q-Q plots)
[e.g. see Johnson and Wichern (2002)] for the fitted (bθ , bφ) data. A straight line
indicates the data are from a normal distribution. This is approximately true for the
bθ component and out to one and a half standard deviations from the mean for the
bφ component. A measure of the ‘straightness’ of the line in the Q-Q plot is the
correlation coefficient, which for these data are rQ,θ = 0.97 and rQ,φ = 0.88. A test,
at some significance level, for rejecting the hypothesis that the residuals are from a
normal distribution may be formulated using these values of rQ . The change in slope
in the tails of the bφ component is the reason for the smaller rQ,φ and this corresponds
to the larger values of bφ which are often confined to a few degrees in latitude and
would be better estimated using a higher order fit.

Given estimates of the uncertainties in (bθ , bφ), the associated uncertainties in the
radial currentmay be determined. The procedure for taking the perturbationmagnetic
field values obtained from Iridium to estimate the radial current density involves the
derivatives of potential functions according to Eq. (7.22). An uncertainty estimate
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Fig. 7.5 Top panels: Input versus fitted magnetic perturbation data for 0520–0530 UT, 24 August
2010. Bottom panels: Residuals versus spherical cap harmonic fitted magnetic perturbation data

Fig. 7.6 Normal distribution quartiles versus residuals for the Iridium data and spherical harmonic
fit of the data in Fig. 7.2
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may be obtained by assuming a sheet current structure that flows radially and extends
along the φ coordinate. Integration of Ampere’s law (Eq. 7.4) gives b = μ0K/2
where K is the current density in Am−1. The field aligned current density, J (Am−2)
is obtained through division by the current sheet width. Therefore, the proportional
error in J is the sum of the proportional errors in the perturbation magnetic field and
the resolution in latitude (θ ).

An estimate for the uncertainty in the radial current may also be obtained using the
statistics of the perturbation magnetic field values. The radial component of Eq. (7.4)
is

Jr = 1

μ0rsinθ

[
∂

∂θ
(sinθbφ) − ∂bθ

∂φ

]
(7.42)

Therefore, Jr = jr,1 + jr,2 + jr,3 where

jr,1 = 1

μ0 r

∂bφ

∂θ
(7.43)

jr,2 = 1

μ0 r tanθ
bφ (7.44)

jr,3 = − 1

μ0 r sinθ

∂bθ

∂φ
(7.45)

The measurement resolution in the θ coordinate is related to the spherical harmonic
fit order, l (or nk for cap harmonics). The highest order, associated Legendre function
has a minimum wavelength, λmin so the uncertainty in θ is δθ = λmin/2. Similarly,
the separation of the Iridium orbit planes gives the resolution in φ as δφ = π/6. The
uncertainties in bθ and bφ are δbθ and δbφ and may be estimated from the statistics of
the residuals. From Eqs. (7.43)–(7.45), the uncertainties in the field aligned current
density are

δ jr,1 = 1

μ0 r

2

λmin

√
2 (δbφ)2 (7.46)

δ jr,2 = 1

μ0 r tanθ
δbφ (7.47)

δ jr,3 = 1

μ0 r sinθ

6

π

√
2 (δbθ )2 (7.48)

with the total uncertainty in the field aligned current, δ J =
√

δ j2r,1 + δ j2r,2 + δ j2r,3. The
mass production of data products for AMPERE involves a fixed set of analysis and
fit parameters. Users of these data products should communicate with the AMPERE
science data team for advice on the quality and uncertainties in the data for specific
intervals.



7 Science Data Products for AMPERE 157

7.7 Spherical Elementary Currents and Iridium Data

The orbit configuration of the Iridium satellites provides data at varying spatial
separations in longitude. The spatial density of data samples is greater around the
Iridium satellite track intersection locations providing increased spatial resolution
of the currents where the satellite tracks are close. The average location of pairs
of Iridium track intersections moves relative to geomagnetic coordinates and the
currents form different spatial patterns depending on the IMF and magnetic activity.
Therefore, an average Iridium track intersection location in a given hemispheremight
occur between the main current systems. This represents a difficult situation for data
fitting using a finite number of SCHA basis functions. One alternative approach to
SCHA is the Spherical Elementary Currents Systems (SECS).

The SECS basis functions were described by Amm (1997, 2001). This approach
has many similarities with the multiple multipole method used for solving the
Maxwell equations (e.g. Ballisti and Hafner 1983). The SECS basis functions have
been applied to both ground and satellite magnetometer data. For the latter, with data
confined along single satellite tracks, a one-dimensional (1D) version of the method
has been developed (Vanhamaki et al. 2003; Juusola et al. 2006). In this section,
application of the 2D, curl-free SECS basis functions to Iridium data is described.
These are used for the AMPERE regional fit data products with the aim of providing
enhanced spatial resolution around the Iridium satellite track intersection regions.

As discussed in Chap. 2 (this volume), the SECS expansion of spatial data are
based on a divergence-free and a curl-free basis set to give the total field. They relate
the field aligned and (horizontal) ionospheric currents with the perturbationmagnetic
fields. The curl-free current basis is

Jcf = I0
4πR

cot
θ ′

2
eθ ′ (7.49)

where the dashed coordinates reference the local SECS coordinate system with the
pole at θ ′ = 0, R is the radius of the sphere on which the poles are placed and eθ ′ is
the unit vector. The magnetic field from the curl-free current basis is

bcf = −μ0 I0
4πR

cot
θ ′

2
eφ′ (7.50)

for r > R and zero for r < R . It is straightforward to show that

∇ • Jcf = − I0
4πR2

(7.51)

∇ × bcf = μ0 Jr (7.52)

There are a number of parameters to adjust in the SECS approach to data fitting.
The main considerations are the number and location of the poles and solution grid

http://dx.doi.org/10.1007/978-3-030-26732-2_2
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Fig. 7.7 Normalised basis
function used in the 2D
spherical elementary current
system. The dashed line
shows the limit angle where
the tangent function is used
to avoid infinity at the pole

points. For dense spatial grids compared to the experimental data locations and over
limited spatial extent, the modelled magnetic field and currents appear reasonable
as illustrated in examples provided by Amm (1997) and Amm and Viljanen (1999).
Constraints on the number of pole and solution locations include computation time
required to solve thematrix equation for the fit coefficients and the spatial information
afforded by the input experimental data. Depending on the number of poles and the
spatial separation between the input data and the pole locations, the current pattern
can become less smooth with the appearance of patches of localised current.

A direct application of the SECS basis to Iridium magnetic field perturbation
data proved unsatisfactory for a number of reasons that are related to the spatial
properties of the basis functions and the Iridium data. Equations (7.49) and (7.50)
show an infinity at θ ′ = 0. This was eliminated by changing the cotangent function
to a tangent function within a ‘limit angle’ that spans a SECS grid cell (Vanhamaki
et al. 2003). The modified basis function is shown in Fig. 7.7 with the limit angle
shown by a dashed line. The horizontal axis scale is Rθ ′ where R is 6370 + 780 km,
the radius of the Iridium constellation.

Equation (7.49) and Fig. 7.7 show that there is no flexibility for the spatial extent of
the basis function. However, the Iridium data have finer spatial resolution around the
satellite track intersection locations comparedwith data at lower latitudes. In practice,
this results in a mismatch between the spatial properties of the basis function and
the data. In fact, locating the SEC poles midway between the satellite tracks gave
very small root mean squared error values between the input magnetic field and
fitted values. However, the currents became very localised and did not span the
space between the satellite tracks. This is an illustration of the care required when
interpreting fitted data using a root mean squared error metric.

In order to design a more robust metric for fitting the 2D data from Iridium, a
region 1 and 2 model current system was constructed. The magnetic perturbations
from this model current system were calculated using both a Biot–Savart integration
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and a high order spherical cap harmonic expansion. This provided model radial
current and horizontal magnetic field values with an improved data fit metric based
on the root mean squared values for both magnetic field and current. Using these
model data, a number of spatial data fit methods and their variations were assessed.

The spatial information needs to bemore flexible for the 2DSECSmethod applied
to Iridium data. One approach was to extend the design matrix by including a con-
straint on the longitudinal derivative of the combined basis function solution. While
this modification smoothed the resulting radial current, it required an estimate of
a ‘reasonable’ derivative to be applied a-priori, and the current magnitudes were
reduced compared with the input values.

Another approach was to consider a different basis function formulation with spa-
tial extent flexibility. For the curl-freemagnetic field and radial currents inAMPERE,
the source current is assumed to be radial but the horizontal spatial variation may be
different to a cotangent function. In principle, a Biot–Savart integrationmay be coded
in order to obtain the magnetic field from any current distribution. However, analytic
expressions have advantages for computational speed. AGaussian basis functionwas
trialed, with different widths used to adjust the spatial extent. A disadvantage with
this approach was found to be related to the symmetric nature of the basis function,
while the input Iridium data have less data in longitude compared with latitude.

Before describing the approach chosen, a comment or two on the spatial grids
are in order. The SECS algorithm involves three coordinate systems. For AMPERE
these are the input data in GEO, the number and location of the SECS basis function
poles and the grid on which the solution is desired. The input data locations are
determined by the Iridium satellite locations. The SECS pole and solution spatial
grids were constrained by being interlaced as described in Chap. 2 (this volume).
The desired data product is the radial current, in μAm−2, which requires calculation
of the fit coefficients, I0 and horizontal area. Therefore, a quasi-equal area grid was
chosen, similar to that used by Ruohoniemi and Baker (1998) for HF radar data. The
latitudinal separation is fixed and the longitudinal separation varies with latitude in
order to ensure an integer number of grid cells with the same area in each latitudinal
ring.

The method chosen for obtaining regional data fits around the Iridium satel-
lite track intersection locations was a combination of the SECS and spherical cap
harmonic bases. The input, preprocessed Iridium magnetometer data are used to
compute the SCHA solution, (bθ, f , bφ, f ) over the quasi-equal area grid. This grid is
then searched for locations where the input data are located and the SCHA model
values are replaced by the input (bθ , bφ). The combined input and SCHA data are
then used to compute the SECS solution, weighting the SCHA values as less impor-
tant. The weighting was determined by using the model current and magnetic field
data, computing data fits with different weighting in order to minimise the residuals.
Once the SECS coefficients are obtained, values for the model magnetic field may
be computed on any spatial grid encompassed by the input data. Vanhamaki (2007)
recommend that the SECS grid exceed the spatial extent of the solution grid. It is
straightforward to also obtain values for the equivalent horizontal current density.

http://dx.doi.org/10.1007/978-3-030-26732-2_2
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Fig. 7.8 Regional fit data for 0520–0530 UT, 24 August 2010 processed using the SECS method;
(top) northern and (bottom) southern hemisphere data. Red identifies outward and blue the inward
current

The AMPERE regional data method applied to the Iridium data for 0520–0530 UT
24 Aug 2010 is shown in Fig. 7.8.

7.8 AMPERE and Other Data Sets

The temporal and spatial resolution of the AMPERE data provides unique oppor-
tunities to investigate details of the electrodynamics of magnetosphere–ionosphere
energy exchange and coupling. The previous, cross-track only, Iridium data have
been combined with other comprehensive data sets to provide estimates of the input
Poynting flux (Waters et al. 2004; Korth et al. 2008) and ionosphere conductivity
(Green et al. 2007). In addition to improved temporal resolution, the AMPERE data
may yield improved estimates of these parameters through the introduction of the full
vector perturbation magnetic field values. The integration of AMPERE data with the
electric field measurements obtained from the Super Dual Auroral Radar Network
(SuperDARN) is an example.

The SuperDARN is an international consortium that operate 30 high frequency (8–
20 MHz) over-the-horizon research radars located primarily to study the auroral and
high latitude regions (http://vt.superdarn.org). Using a 16 antenna broadside array,
the signal is phased to form a broad vertical but narrow azimuth (≈3◦) radiation
pattern that is steered over 52◦ in 16 equi-spaced azimuth directions. A multi-pulse

http://vt.superdarn.org
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Fig. 7.9 Radial Poynting flux calculated from combined Iridium and SuperDARN data for 0520–
0530 UT on 24 August 2010

transmit pattern and autocorrelation data processing allow ranges out to ≈3000 km
and Doppler shifts from target velocities up to ≈1 km/s to be resolved. The dual
instrumentation features overlapping radar fields of view in order to resolve the
horizontal plasma velocity vectors, v. The electric field vector, E in the ionosphere
is then estimated from the geomagnetic field, B using E = −v × B. The location of
the radars limits the magnetic latitude extent of the data to≈60◦, although expansion
of the network to lower latitudes is progressing.

The electric field estimates from the radars are available from both hemispheres
over latitudes extending from the poles to a spherical cap size of 30◦. The AMPERE
data provide the perturbation magnetic field estimates at the same locations as the
radar data. The combined data are used to calculate the radial component of the
Poynting flux, E × (bθ, f , bφ, f ), as shown in Fig. 7.9. The latitude extent is limited
by the radar data. Comparing with the Birkeland current pattern in Fig. 7.2c shows
that the downward Poynting flux is largest at latitudes between the region 1 and
2 current systems. The spatial distribution is often quite different in the northern
compared with the southern hemisphere and this is thought to be controlled by details
of the ionosphere conductance. The total power is obtained by integrating the radial
Poynting flux over the area of the caps. For the 24 August 2010, 0520–0530 UT
interval the power estimate is ≈30 GW for the north and ≈20 GW for the southern
hemisphere. These are most likely underestimates due to factors such as the limited
spatial coverage and that the estimated electric and magnetic fields are probably
smaller due to the choice of latitude resolution (spherical harmonic fit order) in both
data sets as discussed by Korth et al. (2008).
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7.9 Conclusion

The AMPERE project provides estimates of the radial current and the full vector
perturbation magnetic field at any location over a sphere with origin at Earth’s centre
and radius 780km above Earth’s surface. The magnetic field may be adjusted for
other altitudes by multiplication of the data by a factor that has an r3/2 dependence.
For AMPERE, the magnetometer data from the Iridium satellites are sampled at 20 s
intervals, a factor of 10 increase over previous data obtained from this constellation.
For storm time case study intervals, the sample interval may be reduced to 2 s. This
improves the spatial resolution in latitude, requiring a high order in the spherical
harmonic fitting process. The time interval required to obtained full latitude coverage
is several minutes which corresponds with the time taken for each Iridium satellite
to move (in their orbit plane) the distance equal to their latitude spacing. These
two factors determine the minimum number of data points required to calculate the
spherical harmonic expansion coefficients. The full vector perturbation magnetic
field and the field aligned current are then estimated over a suitable spatial grid and
made available to the scientific community.

Alternative basis functions, such as the SECS, may also be used. While the spher-
ical cap harmonics have a more global reach due to the domain of the basis functions,
the SECS basis is more localised and may be used for regional data fits. AMPERE
data products are available for download from http://ampere.jhuapl.edu. Although
every effort is made to provide the highest quality, as with all experimental data, the
Iridium data are not perfect. There are a number of parameters that are involved in
the data processing, starting from receipt of the data from Iridium Communications
through to the final AMPERE data products. Through experience, various parame-
ters have been chosen for bulk data processing and web display. The AMPERE web
site provides researchers with sufficient information to identify intervals of interest.
As specified on the AMPERE web site, in order to ensure high quality and the use
of optimum parameters for the processed data, any publication of AMPERE data
products should involve consultation with the AMPERE science team.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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